
Correctness In Access Control*

Gerald J. Popek, Harvard University
Currently, University of California, Los Angeles

ABSTRACT

A number of approaches have been developed to
modularize parts of multiuser computer systems so
that access to each part can be controlled. The
devices of rings and capabilities are two exan~les.
However, today's systems are notably incomplete and
subject to defeat by determined and clever users.
A point of view is presented here which allows prov-
ing that a logical design of an access control sys-
tem is correct relative to a designer-specified set
of criteria. Implementation questions are also
discussed.

KEY WORDS AND PHRASES: access control, correctness,
time-sharing, security, data base, logical design.

THE CONTEXT

One part of the computer community is cur-
rently concerned with security design problems of
the following kind. Given that components of a com-
puter system such as terminals, communications
lines, files, processes, and other resources need
to be safeguarded, these parts can at least partly
be protected by designing proper modularity and
access control mechanisms into a system. How is
such a system best modularized and how are the con-
trols that mediate access among modules best de-
signed and implemented? This question affects
both hardware and software architecture, and is
receiving considerable research attention. See
for example [5], [7], and [9].

Inventive solutions have resulted from this
research. However, as time-sharing systems, util-
ities, and networks have displayed greater and
greater complexity, concern has arisen over the
reliabilit Z of the implementation of the protec-
tion system design, for whatever design is finally
developed. What guarantee exists that the system
actually provides the controlled protection that
it claims? What guarantee exists that it is not
possible for some clever user to circumvent the
controls, gaining access to information, operations,
or other resources which the design was intended to
prohibit.

*1"nis research was partially supported by the
Advanced Research Projects Agency of the Department
of Defense under Contract No. D~d~C-IS-69-C-0285.

Currently, no protection system implementation
of any major multiuser computer system is known to
have withstood serious attempts at circumvention by
deterrained and skilled users [i0].

Organizations such as the military have already
begun to demand that the vendors of multiuser com-
puters provide guarantees that their protection
mechanisms actually do what they claim; verifica-
tion, or certification of that part of the system
is wanted.

It has been suggested by the Military Security
Panel [ii] that the first step in this problem is
the development of a general model of access control
systems that:

(a) is applicable to a sizable group of useful
protection systems; and

(b) can be proven correct.

The second step would then be to guarantee a
faithful implementation of an access control system
specified in terms of that model. Such a model is
presented below in order to suggest that its devel-
opment, while useful, is straightforward, and that
on the level of abstraction of the model, correct-
ness is easily provided.

Here, access control is meant to refer simply
to the problem of controlling access to specified
units of information or other resources. No spe-
cific attempt is made to include problems of infer-
ence or statistical access.

The inference problem concerns the desire to
prevent a user or users from gaining access to a
number of pieces of information, each innocuous,
which together constitute or can be used to deduce
information that it is desirednot be available.
The statistical access proble m is the reverse. It
refers to the desire to allow access to aggrega-
tions or analyses of information with a guarantee
that it is not possible to deduce a specific piece
of information used in the aggregation. Attention
is essentially restricted here instead to the de-
sire for guaranteeing that solutions to the simpler,
access control problem, are properly implemented.

The following approach, in the spirit of pro-
gram schemata, as a guide to the logical design of
an access control system, applies to a wide class
of systems, including many of those in use today.

236

BRIEF DESCRIPTION OF MODEL

The model is described in set theoretic lang-
uage, and has six major components. First is the
set O of security objects: the elements of the
model, reflecting those physical or logical parts
of a computer system that need to be controlled,
protected, or whose status needs to be guaranteed.
The objects are partitioned into disjoint classes,
each containing objects of similar characteristics.
An incomplete list of examples includes terminals,
communication lines, processes and files.

Second, a set A of access types is presented.
Each access type is a program which effects a par-
ticular variety of access, such as read, write, or
execute. An attempted access operation is then
completely specified by an access type and some
meaningful collection of objects, i.e., a particu-
lar process being directed from a given terminal
attempting to reference a specified page in memory.

Third, a collection of descriptive data D[k],
from the set of all possible descriptive data col-
lections D is required. D[k] specifies the
information that forms the basis by which security
decisions will be made. The subscript k indi-
cates a time dependency.

Four th , an e v a l u a t i o n program, ~ d e c i d e s ,
f o r any mean ingfu l g rouping o f o b j e c t s , what o p e r -
a t i o n s a re to be a l lowed.

Fifth, an update program o2g is characterized
separately. This program is the means by which
the descriptive data are changed. Operationally,
this is the manner by which access decisions may
be altered.

In many real implementations, the distinction
between the evaluation program and update program
may not be clear-cut, since the descriptive data
are likely to be stored and protected like any
other security object. Both programs are treated
here so that their similar nature is apparent.
Nevertheless, the distinction will be useful since
implementations of the two programs may differ. ~,
while likely to be software implemented, calls upon
access programs to do its actual work, and these
may be at least partly if not wholly built in hard-
ware. ~ on the other hand in many cases will be
almost exclusively software and actually changes
the formatted descriptive data.

Last, external correctness criteria are re-
quired. These are a set of rules, or standards T,
by which the system is to be adjudged correct.
These standards must be external to the system
description up to this point in order to be mean-
ingful.

A security system S is then specified by the
six-tuple: S = (O, A, D, ~,@], T).

THE COMPONENTS OF THE MODEL

Security Objec t s

The first component of the model, the security
objects, is a finite set O:

o = <o[I], 0[2] o[z]}.

These are the only objects to which access will
be controlled by the-~del, and by a resulting im-
plementation. They include, for example, both the
subjects and objects of the Lampson model [41 .

Access Types

The second component of the model is a set of
access types:

A = {a[o], a[l], a[2] a[w]}.

Each a[i] is a program whose effect will be to
provide a particular variety of access, read, write,
or execute for example. The list of arguments for
each a[i] must be finite and contain names of
security objects. In addition, a[o] is desig-
nated as the null access program. This program will
be invoked when access is to be denied. It can keep
audit trails, set up warnings to administrators,
etc.

D e s c r i p t i v e Data

The t h i r d component, t h e d e s c r i p t i v e d a t a , i s
mere ly a s e t o f t u p l e s :

D[k] = {d[k , 1] , d [k , 2] d [k , v] } .

with some finite upper bound set on v.

We depart somewhat from our strict set theoretic
notation by speaking of the structure of a tuple.
Each tuple is only assumed to have a bounded number
of entries, the first of which acts as a "data
descriptor" to distinguish among tuples of differ-
ent formats and content.

For example, one type of tuple might be an
encoding of a matrix entry in Lampson's model [41;
the entry expressing an access relation between two
security objects. Another might express a property:
user x belongs to project y, or has clearance
z. A property may also be valid only for several
users jointly. Such circumstances do not fit natur-
ally into a matrix representation of the descrip-
tive data, so tuples are preferred here.

Explicit use of the structure of the descrip-
tive data will not be made in the following discus-
sion of correctness, although it is necessary in
the more detailed proof. The finiteness of both
the length and number of tuples will be useful here,
however.

Let X* be the set of all possible tuples,
and D = P(X*) the power set of X*. Then D[k]
is some member of P(X*).

Evaluation Program

The third portion of the model is an evalua-
tion program ~ which uses descriptive data to make
decisions concerning access. For any evaluation
program, the list of arguments is composed of some

237

fixed number of objects from each partition of the
security objects O, and an access type; the name
of an element in A. For convenience, those objects
are denoted by 8.

The task of the evaluation program is to decide
whether or not the specified objects may be associ-
ated in the manner expressed by the access type and
to indicate an appropriate action. That indication
is done by selecting the appropriate access program
and specifying its proper arguments.

The e v a l u a t i o n program @ t a k e s a l i s t o f
o b j e c t names, a p a r t i c u l a r d e s c r i p t i v e d a t a c o n f i g -
u r a t i o n , and t he name o f an a c c e s s t ype (names o f
e l emen t s a re u n d e r l i n e d) ; and invokes t he a l lowed
acces s ~ , s u p p l y i n g i t w i th t h e a p p r o p r i a t e
argument h s t .

~is composed from an access rule E. E is a
fairly arbitrary program that is assumed only to
(i) terminate, returning true or false, and (2) be
read only.

The intent is that E describe conditions to
be fulfilled in order to allow access. It may be
an arbitrary function of its arguments, although
often such programs are fairly simple. In any case
E can be made an effective procedure, since all
arguments are from finite sets.

Than the program ~ may be written as follows:

: p roc (@, D [k] , a [j]) ;

lock;

i f E(@, D[k] , a [j])

t hen b e g i n un lock ; c a l l a [j] (0) end

e l s e b e g i n u n l o c k ; c a l l a [o] (8) end;

end;

The functions lock and unlock are understood
to act on a single semaphore, as Dijkstra's oper-
ators P(x), V[x]. It is necessary to coordinate
the operation of ~ and °~ so that ~ is not read-
ing D[k] while o~ is updating D[k]. Otherwise,
it would not be possible to prove that ~ and ~g
perform in all cases as claimed.

Update Program

The upda te program i s t h e means by which
d e s c r i p t i v e d a t a a re changed. Hence i t i s t h e man-
n e r by which decisions that the evaluate program
makes can be affected. Let 8' denote the set of
arguments for the update program which are security
objects, D[y] is the current descriptive data,
and D[z] is the data to M%ieh it is desired to
change. ~ yields either the original data, pro-
hibiting the change, or the new data, having
allowed the change.

The updateprogram, too, is composed from some
effective procedure U, similar in purpose t o E,
and so the update program o~ may be written as:

~ / : p roc (@', D[y] , D[z]) r e t u r n s e lement o f D;

lock ;

i f U(@', D[yl , D[z])

t hen b e g i n u n l o c k ; r e t u r n D[z] end

e l s e b e g i n u n l o ck ; r e t u r n D[y] end

end;

The arguments for U are the same as for the pro-
cedure itself.

THE CORRECTNESS CRITERIA

The security objectives of the access control
system are the qualities that are necessary to
guarantee. For a certain well-defined class of cri-
teria, there is a straightforward method of taking
a logical description of a security system and
altering that model to provide a derived system
model in which the given correctness criteria hold.

The correctness criteria are expressed as a
set T of predicates:

T = { t [l] , t [2 1 , . . . , t [q] } .

These are the predicates that must be proven true
for the system.

In this model, predicates may be expressed in
one of two forms, and so T is partitioned into
two subsets T1 and T2 corresponding to the two
alternatives.

If t[i] is in T1 then it may be any predi-
cate expressible in the following functional form:

t[i] : @ x D x A + {true, false}.

The interpretation of predicates in T1 is that
the object list from @ may be associated with
access type a[j] in A and a given D[k] in
only if t[i] is true.

If t[i] is in T2, then it maybe any predi-
cate expressible in the following functional form:

t[i] : @' x D x D -F {true, false}.

The interpretation is that the descriptive data
represented by the second argument, say D[j], may
be changed by the objects expressed by @' to that
represented by the third argument, say D[k], only
if t[i] is true.

Let

:9-1 = An_~d(t[i]) for all t[i] in T1 and

let

238

dOr2 = An_~d(t[j]) f o r a l l t [j] i n T2. A s t a t e D[n] o f a sys tem

Brl and g-2 t ake t h e same arguments as t he t [i]
and t [j] , r e s p e c t i v e l y .

To demonstrate that a system is correct, it is
necessary to guarantee the truth of ~i and ~2.
Below, a simple way is shown to take any security
system S and derive from it a system S' for
which the given ~rl and ~r2 are true.

DERIVATION OF CORRECT SYSTEM

System Specification

As described, a security system S is a tuple:

S = (0, A, D[o] , ~,~_g, T)

0 is the object set, A is the set of access
types, D[o] is taken as the set of tuples which
comprise the initial descriptive data, ~ is the
evaluation program, 6~ is the update program, and
T is the set of predicates to be guaranteed.

For a particular system S, the entries A,
~, @~', and T are fixed. The descriptive data
D[k] may be varied by use of o~. Then the state
of a security system S can he completely ex-
pressed by its descriptive data D[k], for some
k. The update program is the means by which a sys-
tem S may change states and the compound predi-
cate ~2 expresses the constraints on allowed
state changes . The evaluation program ~ "inter-
prets" a particular state, and ~rl expresses the
constraints on ~.

Given a s e c u r i t y sys tem S = CO, A, D[o] , ~ ,
~ , T) , sys tem S' = CO, A, D[o] , ~ ' , ~ " , T) i s
produced by t h e following inclusion s t e~ .

~ ' i s d e r i v e d from ~ by t he f o l l o w i n g
change. Replace

"E (. . .) "

by

change:

"EC...) and ,ff'l (0, D[k], a[j])".

is derived from o T[by the following
Replace

"U(...)"

by

" U (. . .) and ~ 2 CQ', D[y] , D [z]) "

Correctness Proof

First it is helpful to define a few terms.

s = (o, A, D i e] , ~ , ~ , T)

is valid if and only if D[n] can be obtained from
D[o] by a finite number of applications of o~ and,
for each such transition from state D[k] . to
D[k+l],

T2(O ' , D[k] , D[k+l]) = t r u e

for some G) .

Second, a s t a t e D[k] i s a c c u r a t e l y i n t e r -
p r e t e d i f and on ly i f f o r any 8 and any j :

~(@, D[k] , a [j]) i nvokes a[o](@)
whenever

,~lC@, D[k] , a [j]) = f a l s e

(where a[o] is the null access type).

Then to say that a system S is correct is
meant the following:

(i) Every state obtainable from D[o] is
valid, and

(2) every valid state is accurately inter-
preted.

We now state the following (system correctness)
theorem;

Given a security system

S = (0, A, D[o] , ~ , ~ , , T) w i t h T p a r t i t i o n e d

into TI and T2;

and S' = (0, A, D[o], ¢', ~/', T) derived from S

by the inelusion ste P

then S' is correct.

Proof Sketch

An easy way to prove the theorem is by contra-
diction. Suppose the theorem false. Then, by
definition of correct, S' reaches an invalid
state, or a valid state is inaccurately interpreted.

Case I: Assume an invalid state. Label that
inval~-d state D[k]. Then there must exist a se-
quence of states D[o], D[I], D[2] D[k] such
that ~'C [i], D[i], D[i+l]) = D[i+l] for all
i<k, since ~'makes the transition from state to
state.

Now D[o] is valid by definition. D[k] is
invalid by assumption. Then there must exist a
non-negative integer j, less than k, such that
D[j] is valid and D[j+l]) is invalid. Hence, by
definition of valid, ~'2C0, D[j], D[j+l]) is
false. But ~/'(0, D[j], D[j+l]) = m[j+l]. By in-
spection.of ~/!, these two conditions cannot hold,
and hence a contradiction is reached.

239

Case 2: Assume an ina(zcurately interpreted
valid' state. Call that valid state D[k]. Then by
definition of an accurate interpretation, for some
O[i] and a[j], the following is true.

~ l (O [i] , D[k] , a [j]) = f a l s e and

~ ' (O [i] , D[k], a [j]) does n o t invoke a[o](O)

By i n s p e c t i o n o f @' , t h i s i s a c o n t r a d i c t i o n .
Hence ev e ry v a l i d s t a t e i s a c c u r a t e l y i n t e r p r e t e d .

Both c a s e s a re i m p o s s i b l e . Hence t h e theorem
cannot be f a l s e .

qed

Th i s p r o o f i s o f cou r se n e a r l y t a u t o l o g i c i n n a t u r e .

DISCUSSION OF APPLICABILITY

The utility of this model depends on several
criteria not yet addressed. First, the access con-
trol model was purposely constructed in an extremely
general way, so that many access control systems can
be placed into its broad framework. As an example,
a ring structure may be modeled by tuples in D
which contain the ring brackets of a segment or
program. An active process has its current ring
changed by an a g e n t , o r g a t e k e e p e r , which u s e s t h e
upda te program ~g. A d i s c u s s i o n o f c u r r e n t a c c e s s
c o n t r o l s y s t e m s a p p e a r s , f o r example , i n [4] .

The second assumption that affects applicabil-
ity primarily concerns the correctness predicates:
the members of the set T. For the given charac-
terizations, effective procedures exist for the
update and evaluation programs, the predicates
from which they are composed, and the predicates
which make up the correctness criteria. This fact
is a result of the finiteness of all the sets in-
volved in the model. It is further argued that the
descriptive data can be structured to make those
procedures relatively efficient. That efficient
procedures exist for all the predicates in the
predicate set T makes the inclusion step meaning-
ful. The assumption is that desired correctness
criteria can be placed in the specified form.
However, no meaningful correctness criteria have
been suggested to the author that cannot be so
handled.

Those c r i t e r i a s u g g e s t e d have been s i m i l a r to
t h e f o l l o w i n g : Users o f c l a s s so and so may no t
pe r fo rm a c e r t a i n s e t o f o p e r a t i o n s on i n f o r m a t i o n
marked i n such and such a way. They a re g e n e r a l l y
n e g a t i v e r e q u i r e m e n t s , i n t h e s e n s e t h a t c e r t a i n
c o n d i t i o n s or o p e r a t i o n s a re t o be g u a r a n t e e d f o r -
b i d d en . A m i l i t a r y r e q u i r e m e n t migh t be t h a t
u s e r s wi th c l e a r a n c e l e v e l x canno t a c c e s s i n f o r -
ma t ion wi th c l a s s i f i c a t i o n y > x. In h e a l t h r e c -
o r d s , i t migh t be d e s i r a b l e t o g u a r a n t e e t h a t mem-
b e r s o f t h e a c c o u n t i n g depa r tmen t be u n a b l e to
d e t e r m i n e t h e r e a s o n s f o r a d m i t t a n c e o f a p a t i e n t ,
t h e c l a s s i c case b e i n g v e n e r e a l d i s e a s e . C l e a r l y ,
any o f t h e s e r e q u i r e m e n t s can be i n c l u d e d i n a
number o f ways.

It may often be possible, of course, to more
efficiently enforce certain theorems through the

logical structure of the system rather than by what
amounts here to run time checks.

Third, the model must include all mechanisms
that any part might require for its proper opera-
tion. Additional apparatus needed must be local to
a single module and not require any further inter-
connections between elements of the model if the
discussion of correctness is to be meaningful and a
properly structured system constructed. Each
module may then, essentially in isolation, be the
subject of a correctness investigation itself. To
fulfill this criterion a locking mechanism is in-
cluded at the top level.

One of the conclusions to be drawn from this
security model is that the task of providing a cor-
rect model is simple, even for a model that can
describe most contemporary systems. Hence the
major problem is the implementation.

IMPLEMENTATION IMPLICATIONS

In order to construct a computer access con-
trol system in which there exists a high degree of
confidence that the logical guarantees are properly
implemented, the following strategy is proposed.
Isolate that part of the operating system respons-
ible for security and place it in a protected part
of the system, in a manner analogous to the manner
in which current supervisors are segregated from
user programs through the mechanism of separate
hardware states.

Cal l t h i s i s o l a t e d p o r t i o n t h e k e r n e l . I t
w i l l be n e c e s s a r y t o d e m o n s t r a t e t h a ~ s e g r e g a -
t i o n i s pe r fo rmed in such a manner t h a t g u a r a n t e e s
t h e k e r n e l ' s i n t e g r i t y and a l s o g u a r a n t e e s t h a t t he
k e r n e l i s a lways invoked to a r b i t r a t e a t t e m p t e d
r e f e r e n c e s . These t a s k s a re eased by t h e f a c t t h a t
the kernel can aid in protecting itself. For
example, descriptive data can be grouped as security
data.

Then a great deal of attention can be paid to
providing a correct implementation of the kernel.
Later, as changes are made to other parts of the
operating system, it is not necessary to revalidate
the kernel. This point is more than a motherhood
call for modularity. It argues that the security
kernal should be isolated at the center of a system;
it is to arbitrate and control al~-~6~vity. In a
hardware ring environment for example, the kernel
alone should occupy the innermost ring. (See [5]
for a discussion of rings.)

One o f t he v a l u e s o f t h i s s e c u r i t y model i s
t h a t i t can h e l p s p e c i f y what i s n e c e s s a r y to i n -
e lude in a k e r n e l . I t i s i n t e n d e d t h a t t h e k e r n e l
o f a computer s y s t e m i n c l u d e e v e r y t h i n g t h a t t h i s
model c o n t a i n s , and n o t h i n g e l s e . Hence t he model
d e f i n e s t h e b o u n d a r i e s o f t h e k e r n e l , and t h e a b i l -
i t y t o u se t h e k e r n e l t o p r o t e c t p a r t s o f i t s e l f
a l l ows one to p r o v i d e c a r e f u l l y c o n t r o l l e d a c c e s s
to the kernel i t s e l f .

The need t o have t he k e r n e l a r b i t r a t e e ve ry
r e f e r e n c e r a i s e s t he i s s u e o f e f f i c i e n c y . S u r e l y
one could c o n s t r u c t a k e r n e l which i s e s s e n t i a l l y
i n t e r p r e t i v e . That i s , each a c c e s s program a [i]
pe r fo rms t h e d e s i r e d o p e r a t i o n f o r t he o b j e c t s t h a t
r e q u e s t i t .

240

As an illustrative example, a system might
require as arguments to the evaluation program
two security objects; a terminal and a j o b , and the
name of an access type. Then an interpretive ver-
sion of write would be invoked by ~ to do that
single op--~-~ion, each time it is attempted.

From a practical viewpoint, t h e overhead of
such an implementation of a security system would
be very high. The current solution to this effi-
ciency problem appears quite satisfactory, and its
spirit seems in retrospect almost obvious. The
hardware is designed so that all accesses must pass
through a few fast registers where hardware checks
on address bounds and the like are performed. An
access program a[i] just sets these registers
and returns control to the job, allowing a whole
class of operations to he performed without further
~ntervention; operations such as reads on any loca-
tion between x and x + k. In the general access
control model, such an implementation can be easily
described by making the segment a security object--
a member of the set O.

It was pointed out that by grouping the tuples
which compose descriptive data and also making each
such group a security object, this model also in-
cludes the ability to protect access to that data
itself, allowing a controlled way of changing ac-
cess decisions. Multics uses this strategy. A
directory contains protection information about
other directories and segments.

In addition to aiding the isolation and speci-
fication of that portion of a system relevant to
sehurity, this model attempts to urge upon system
theoreticians, designers and implementers the fol-
lowing tenets:

(i) security mechanisms can and should be
isolated at the heart of a system;

(2) by doing so, it is possible to t ake
great care toproduce a faithful imple-
mentation of that resulting kernel; and

(3) since the kernel is small and isolated,
its operation can be verified and cer-
tified.

This general access control model is meant as
a first step toward these goals.

ACKNOWLEDGMENTS

Dr. Roger Schell originally motivated the
issues that led to the approach o f this paper.

REFERENCES

i. Conway, R. W., et al., "On the Implementation
of Security Measures in Information Systems,"
Comm. ACM iS, 4 (April 1972), pp. 211-220.

2.

3.

Elspas, B~, K. Levitt, R. Waldinger, and A.
Waksman, "An Assessment of Techniques for
Proving Program Correctness," ACM Computin~
Surve},s 4, 2 (June 1972), pp. 97-147.

Friedman, T., "The Authorization Problem in
Shared Files," IBM S),stems Journal 9, 4 (1970),
pp. 258-280.

4. Graham, G. S., and P. J. Denning9 "Protection--
Principles and Practice," AFIPS Conf. Proc. 40
(SJCC 1972), pp. 417-429.

5. Graham, R. M., "Protection in an Information
Processing Utility," Comm. ACM 11, 5 (May 1968),
pp. 365-369.

6. Hoffman, L., "Computers and Privacy: A Survey,"
Computing Surve),s 1_, 2 (June 1969), pp. 85-103.

7. Hoffman, L. F., "The Formulary Model for Flex-
ible Privacy and Access Controls," AFIPS Conf.
Proc. 39 (FJCC 1971), pp. 587-601.

8. Lawson, B. W., "Dynamic Protection Structures,"
AFIPS Conf. Proc. 35 (FJCC 1969), pp. 27-38.

9. Lampson, B. W., "Protection," Proc. 5th Prince-
ton Conf. on Information Sciences and S),stems
(March 1971), pp. 437-~43.

10. Sche11, R. (Head of Computer Security Branch,
USAF/ESD), private communication, July 1972.

11. Computer Security Technology Planning Study,
ESD-TR-73-51, USAF Hanscom Field, October 1972.

241

