
Role Based Access Control on
MLS Systems without Kernel

Changes

D. Richard Kuhn
National Institute of Standards and Technology

Gaithersburg, Maryland 20899

Abstract

Role based access control (RBAC) is attracting increas-
ing attention as a security mechanism for both commer-
cial and many military systems. This paper shows how
RBAC can be implemented using the mechanisms avail-
able on traditional multi-level security systems that im-
plement information flow policies. The construction from
MLS to RBAC systems is significant because it shows that
the enormous investment in MLS systems can be lever-
aged to produce RBAC systems. The method requires no
changes to the existing MLS system kernel and allows im-
plementation of hierarchical RBAC entirely through site
configuration options. A single trusted process is used to
map privileges of RBAC roles to MLS labels. Access is
then mediated by the MLS kernel. Where C is the num-
ber of categories and d the depth of the role hierarchy, the
number of roles that can be controlled is approximately

C/d d

() C/2d .

1 Introduction

Role based access control (RBAC) is an alternative to
traditional discretionary (DAC) and mandatory access
control (MAC) policies that is attracting increasing at-
tention [l], particularly for commercial applications. The
principle motivation behind RBAC is the desire specify
and enforce enterprise-specific security policies in a way
that maps naturally to an organization’s structure. Tra-
ditionally, managing security has required mapping an
organization’s security policy to a relatively low-level set
of controls, typically access control lists.

With RBAC, security is managed at a level that cor-
responds closely to the organization’s structure. Each
user is assigned one or more roles, and each role is as-
signed one or more privileges that are permitted to users
in that role.

3rd ACM Workshop on Role-Based Access Fairfax \!A
1998 I-581 13-I 13-5/98/10

For example, roles in a bank may include the role
of teller or accountant. Each of these roles has a set of
privileges or transactions that they can perform, includ-
ing some privileges that are available to both roles. Roles
can be hierarchical. For example, some roles in a hospital
may be health care provider, nurse, and doctor. The doc-
tor role may include all privileges available to the nurse
role, which in turn includes all the privileges available to
the health care provider role.

Roles have been used in a variety of forms for com-
puter system security for at least 20 years, and several
proposals for incorporating roles into existing access con-
trol mechanisms have been published [2], [3], [4]. More
recently, formal definitions for general-purpose RBAC no-
tions have been proposed [5], [S], [7].

This paper shows how RBAC can be implemented
using the controls available on traditional lattice-based
multi-level secure systems. This approach presents a
number of advantages:

0

.

.

2

Many firms have spent hundreds of millions of dol-
lars building, testing, and maintaining MLS systems.
By implementing RBAC using a single trusted pro-
cess, this investment can be leveraged to produce new
systems that have great commercial value without re-
quiring a similarly large investment to build entirely
new RBAC systems.

The assurance process for trusted systems is lengthy
and expensive. By confining RBAC to a single
trusted process that sits above the MLS kernel,
the assurance process should be much less expen-
sive than that required for an entirely new system.
Since RBAC is implemented through configuration
options, a system can provide RBAC while retaining
the same high assurance level.

Operating RBAC and MLS security simultaneously
on a system may be much easier to analyze for assur-
ance purposes. By using only combinations of cat-
egory labels to implement RBAC, information flow
can be protected using the conventional sets of secu-
rity levels and categories.

Implementing RBAC on Multi-
level Secure Systems

RBAC can be implemented directly on multi-level secure
(MLS) systems that support the traditional lattice based
controls. This is significant because it means the enor-
mous investment in MLS systems can be applied to im-
plementing RBAC systems. The method described here

can handle approximately RBAC privileges,

where C is the number of’categories supported on the
MLS system. and d the depth of the role hierarchy.

25

2.1 MLS Access Controls

MLS access controls make use of a set of labels attached
to subjects and objects. The labels define a set of se-
curity levels, such as CONFIDENTIAL, SECRET, TOP
SECRET, and a set of categories, such as NATO, NO-
FORN. Conventional MLS systems implement the mil-
itary security policy defined by the Bell and LaPadula
model [8].

We assume a standard set of features and functions
for an MLS system, such as those described in [9] or [lo].
The MLS system is assumed to maintain the following
sets:

/Z = an ordered set of security clearance levels I;
C = a set of category names C.

Each subject s has a set of category names c, authorized
for use by subject s, and each object o has a set of cat-
egory names c, associated with the object. Levels and
categories define labels for subjects s and objects o, des-
ignated X(s) and X(o) respectively. The labels form a
lattice where X(i) >_ X(j) iff li 2 Zj and ci > cj

For read and activate access, the mandatory ac-
cess control rules require the simple security property:
X(s) > X(o). F or write access, the +-property controls
access. The traditional, or liberal k-property requires
that X(o) > X(s). Th e strict *-property, designed to
prevent integrity problems as a result of “write-up”, re-
quires X(o) = X(s). A variation on the *-property, the
trusted liberal k-property, introduced by Bell [ll], desig-
nates separate labels for read and write, X, and X, re-
spectively. The simple security rule is applied for X, and
the k-property for X,.

categories to RBAC privileges. This approach is used in
the Data General DG/UX B2 Secure System [12]. For
small numbers of privileges, this is an efficient solution.
DG/UX supports up to 128 separate roles. Users can
simply be assigned a set of categories that correspond to
the privileges of their roles, then access is handled by the
MLS system.

Unfortunately, most MLS systems support a rela-
tively small number of categories and levels, typically 64
to 128 of each. Obviously, if the MLS system were testing
that 1, > I, A c, = c,, rather than I, 2 I, A c, c c,, then
we could simply use subsets of categories to map to priv-
ileges, giving a total of 2’ mappings. But since we want
to be able to control access to RBAC privileges simul-
taneously with MLS access control without changing the
MLS system, we need a method that can uniquely rep-
resent a large number of privileges using MLS categories
and levels.

One alternative is to establish a mapping between
RBAC privileges and pairs of MLS categories. This ap-
proach would support a total of (r~” - n)/2 privilege map-
pings. If 64 categories are available on the MLS system,
then 2,016 privileges could be mapped to MLS categories.
This is a more reasonable number, but large organiza-
tions may require many more individual privileges to be
controlled. Also, in some applications only a very small
number of categories may be available. If only 10 cat-
egories were available, then only 45 privileges could be
controlled in this manner.

A more generalized approach is to use combinations
of categories. For c categories, the largest number of priv-
ileges that can be distinguished is

2.2 MLS to RBAC Mapping

A role can be thought of as a set of permissions on priv-
ileges. RBAC can then be implemented on an MLS sys-
tem by establishing a relationship between privilege sets
within the RBAC system and category sets within the
MLS system.

To implement RBAC, a trusted interface function is
developed to ensure that the assignment of levels and cat-
egories to users is controlled according to the RBAC rules.
No modifications to the MLS system are necessary. Roles
and their associated privilege sets must be mapped by
the interface function to sets of categories. The trusted
interface operates according to the rules given in Section
2.1. Each time a user establishes a session, the interface
presents the user’s role options, then checks to ensure that
the user is authorized for the requested role. The trusted
interface then sets the subject’s categories according to a
mapping function that determines a unique combination
of categories for the role requested. (See Figure 1.)

A problem arises in the choice of the mapping func-
tion. One possibility is the one-to-one assignment of MLS

C (> 4

With 64 categories, this would be 1.83 x 1017.

2.3 Construction of Category Sets

This section describes a method of implementing RBAC
by mapping from roles to categories at system initializa-
tion time. Only category sets are used; security levels are
not needed to control access to RBAC-protected objects.
This makes it possible to use RBAC simultaneously with
the information-flow policies supported on MLS systems.

2.3.1 Roles and Privilege Sets

Let R be a tree of roles and associated privileges, where
the root Ii0 represents one or more privileges that are
available to all roles in the system. Child nodes repre-
sent more specialized privilege sets. A child node Rj can
access all privileges associated with role Rj and any as-
sociated with roles &, where l& are any ancestor nodes
of Rj. The privilege sets are assumed to be disjoint. If
roles exist with overlapping privilege sets, then new roles

26

can be created with the common privileges and existing
roles can inherit from them. For example, if & and Rj
have privilege sets P(R) and P(Rj) that overlap, then

1. create a new role Rk with privilege set P(R) fl

p(Rj)
2. remove privileges in P(R) n P(Rj) from Ri and

-Rj
3. modify the role hierarchy so that role Ri and Rj

inherit from .I&, and .t& inherits from the role that I&
and Rj previously inherited from.

Let
C = total number of categories on the MLS system

to be used to implement RBAC.
d = maximum depth of child nodes from the root,

where the root is level 0. This is equivalent to the maxi-
mum level of the leaf nodes.

The categories from C will be assigned to roles and
privilege sets. If the tree is relatively balanced, then C/d
categories are available at each level for representing priv-
ilege sets. To distinguish between privilege sets, combi-
nations of categories are used. At each level in the tree,
where n is the number of categories available for repre-
senting roles at that level, the number of privilege sets

that can be distinguished is n
(> n/2 ’

Using C/d cate-

gories at each of d levels, the total number of privilege sets
in the tree is therefore (depending on how well balanced

the tree is) approximately

2.3.2 Assignment of Categories to Privilege Sets

Privilege sets are associated with categories as follows:
1. A role at the root of the tree, with privileges avail-

able to all users, is associated with a randomly selected
category. This category is removed from the set of cate-
gories available to designate roles.

2. Roles at level 1 of the tree, where nl indicates the
number of nodes at level I, are associated with unique sets
of categories drawn from the set of remaining categories.
The number of categories needed for level 1 is the smallest

number c such that n1 5
C

(> c/2 *
Choose c categories

from the remaining set of categories. Remove these c
categories from the set of categories available to designate
roles.

3. From the set of c categories chosen in step 2, assign
a unique set of categories to each privilege set at level 1.
Step 2 ensures that there are enough categories to make
all the sets different.

One way of implementing this step is to generate a
list Lr of numbers from 1 to 2’- 1, then extract from this
list a second list Lz containing all numbers whose binary
representation contains c/2 bits. Each bit is associated

with a category. Assign to each privilege set at level 1 a
different number from La. Then label each privilege in
a privilege set with category i if and only if bit i in the
binary representation is a 1. For example, the mapping
from bits to categories in Table 1 shows how the proce-
dure works for c = 3 categories. Extracting all sets of
2 categories from the list gives (~2, cl), {car cl}, {cs, ~2).
(These are highlighted with brackets in Table 1. It would
also be possible to have three distinct sets of one category
each; two are used simply to demonstrate the procedure.)
Because all of the numbers associated with privilege sets
have c/2 bits, each privilege set will be labeled with a
different set of categories.

4. Repeat steps 2 and 3 until all privilege sets have
been assigned a set of categories.

2.3.3 bssignment of Categories to Roles

Ll

1..23 - 1
1
2
3
4
5
6
7

Lz:binary
23a2al

001
010

{Olll
100

ii:;;
111
Table

Categories
C* = Ujl. .=I Cj

Cl
c2

(C2,Cl 1

c3

{ C3rCl 1

{ C3rC2)

c3,c21 Cl

.

Each role must be able to access all privileges associated
with its privilege set and all privilege sets associated with
roles that it inherits, i.e., roles that are represented by an-
cestor nodes in the role hierarchy. Categories are assigned
to roles as follows:

1. Assign to role & the set of categories assigned to
its privilege set.

2. For each ancestor role Rj from which role R; inher-
its privileges, add to the labels for role & the categories
associated with the privilege set for Rj.

2.4 Analysis of MLS to RBAC Mapping

MLS systems typically provide 64 to 128 categories for la-
beling privileges. The construction described in the pre-
vious section will provide a capability for approximately

C/d d

() C/2d
roles. Tables 2 and 3 show the number of

roles that can be controlled for various combinations of
depth and breadth (branching factor) of role hierarchies.

Depth 1 Max. Branching Factor 1 Max. Roles
5 1 924 1 6 x 1014
10 20 1 x 101s
15 6 4.7 x 1010
20 3 3.4 x 109

Table 2. Number of Roles Supported with 64
Categories

27

Depth) Max. Branching Factor) Max. Roles
5 I 5.200.300 1 3.8 x 1O33
10 924 4.5 x 1o2g
15 70 4.7 x 1o27
20 20 1.0 x 10zs
25 10 1.0 x 1o25
30 6 2.2 x 1oz3
40 3 1 1.2 x 1019]

Table 3. Number of Roles Supported with 128
Categories

2.5 Example of MLS to RBAC Mapping

Figure 2 shows an example of category labeling for a hi-
erarchical privilege set defining 36 roles. The tree has a
depth of 2 and a maximum branching factor of 6. A total
of 9 categories are needed. The privilege sets assigned to
a role are those labeling the role’s node in the tree, plus
the labels of any ancestor nodes. For example, role R33
has categories a, b, d, g, and i.

Consider roles Ro, RI, and RIO. Privileges authorized
for role Ro are assigned category a. Privileges authorized
for role RI are assigned categories a, b and c (a from
role R. and b and c from role RI). Privileges authorized
for role R2o are assigned categories a, b, c, g, and h. (a
from role Ro; b and c from role RI and g and h from role
R20). A user who establishes a session at role RI will be
assigned categories a, b and c. Note that this user can
access the privileges assigned to role Ro because the user
has category a. A user who establishes a session at role
R20 will be assigned categories a, b, c, g, and h. This
user can access all inherited privileges, but not any other
privilege sets because all others have at least one category
not assigned to role RIO.

Figure 3 shows a portion of Figure 2, with privilege
sets associated with various roles. Each of the privileges,
Pr and P2 associated with role Ro is labeled with category
a. Therefore any user authorized for role Ro, or any role
that inherits privileges from Ro (e.g. RI, R7, etc.), can
access privileges PI or P2. Note that a user authorized
only for Ro cannot access privileges such as Ps, Ps, P7,
because these are labeled with categories a, b, and c, but
RO has only category a. A user authorized for role RI,
or any role that inherits from RI can access Ps, PC, P7,
because RI has categories a, b, and C.

3 Discussion and Future Direc-
t ions

Several authors have discussed the relationship between
MLS lattice based systems and RBAC. Nyanchama and
Osborn [13] and Sandhu [14] presented methods for sim-
ulating lattice based MLS systems in RBAC. Osborn [15]

where r-level is the maximum security level of any object
readable by processes in role R, and w-level is the min-
imum security level of any object writable by processes
in role R. Since a role might require read and write ac-
cess to objects at a broad range of security levels, this
constraint could theoretically present a problem in im-

investigated the interaction between RBAC and manda- plementing RBAC with MAC. However, practical appli-
tory access control rules, showing that significant con- cations provide a way around this limitation. In practice,

straints exist on the ability to assign roles to subjects
without violating MAC rules.

One advantage of the approach described in this pa-
per is that it allows RBAC to be operated simultaneously
with MAC. Because the roles-to-categories construction
allows the implementation of a large role hierarchy with a
relatively small number of categories, the remaining cat-
egories can be used to implement the traditional multi-
level security model. If the RBAC system does not embed
data accesses in processes or roles, then one set of cate-
gories can be used to implement RBAC, with the remain-
ing categories available for implementing MAC. If the pro-
cesses or transactions available to users are labeled with
a level of system-low and with categories according to the
construction of Section 2, then system users can activate
any process available to their role, and apply the process
to any data for which they are cleared by virtue of MAC
clearance level and categories. This architecture may be
particularly advantageous in a military system that must
support both roles and MAC security. For example, a
system for satellite photo analysts could provide a role
structure to control access to photos that are classified
into different clearance levels and categories.

One possible limitation of the construction in Section
2 is that the role to category mapping must be regener-
ated if changes are made in the role structure. In practice,
however, role structures change relatively slowly, and the
mapping can be regenerated automatically without im-
pacting users. Another potential problem is that the hi-
erarchy created by the algorithm must be a tree, rather
than a lattice hierarchy. This should not be a serious
limitation because, to our knowledge, existing role based
systems use tree hierarchies. Note that the data objects
controlled by MAC rules can still be organized into a lat-
tice. The MAC system will use both levels and categories,
while the RBAC system uses only a set of categories with
all processes labeled at system-low.

An MLS system designed using the “traditional” *-
property would encounter constraints on assigning roles
to subjects [15]. In particular, a role R is assignable to
an untrusted subject only if all of the following hold:

l w-level of R > r-level of R

0 X(s) 1 T-levelof R

l A(s) < w-level of R

28

the traditional +-property is relaxed to allow write ac-
cess if the data written does not depend on the data read
[lo], reducing constraints on role assignment depending
on the degree to which there is independence between
read and write data in “typical” applications. Another
approach worth investigating is the use of Bell’s “liberal
*-property” [111. It would be interesting to investigate ex-
isting systems that have a need for both roles and MAC to
evaluate the practical implementation of RBAC on real-
world MLS system applications.

4 Conclusions

Because of both cost and trust considerations, it is desir-
able to build RBAC systems on a proven MLS operating
system. From a cost standpoint, it will normally be much
easier to build RBAC as a single trusted process, then rely
on the MLS to control access to objects, than to modify
the kernel of a secure system or build a new one from
the ground up. Trust and assurance may be even more
important considerations. The assurance process for a
secure computing system is lengthy and expensive. MLS
systems on the market today have had extensive evalu-
ations and years of use in the field, largely by military
organizations. The addition of RBAC to these systems
can make them much more useful for commercial appli-
cations. The method described in this paper will make
it possible to leverage the large investment in these sys-
tems to produce RBAC systems that are in demand for
commercial use.

For further information on this or other NIST RBAC
research, contact the NIST Office of Technology Partner-
ships.

5 Acknowledgments

I am grateful to Sylvia Osborn for many helpful comments
and suggestions.

References

[l] R. Sandhu, E.J. Coyne, and C.E. Youman, editors.
Proceedings of the First ACM Workshop on Role
Based Access Control. ACM, 1996.

[2] R.W. Baldwin. Naming and grouping privileges to
simplify security management in large databases. In
Proceedings, IEEE Computer Society Symposium on
Research in Security and Privacy. IEEE Computer
Society, 1990.

[3] D.J. Thomsen. Role-based application design and
enforcement. In Database Security IV: Status and

Prospects. North-Holland, 1991.

[4] D.F. Sterne. A TCB subset for integrity and role-
based access control. In 15th National Computer Se-
curity Conference. NIST/NSA, 1992.

[5] D. Ferraiolo and D.R. Kuhn. Role based access con-
trol. In 15th National Computer Security Confer-
ence. NIST/NSA, 1992.

[6] D. Ferraiolo, J. Cugini, and D.R. Kuhn. Role based
access control: Features and motivations. In Annual
Computer Security Applications Conference. IEEE
Computer Society Press, 1995.

[7] R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E.
Youman. Role based access control models. IEEE
Computer, 29(2), February 1996.

[8] D. Bell and L. LaPadula. Secure computer systems:
Mathematical foundations and model. Technical Re-
port M74-244, Mitre Corp., 1973.

[9] M. Gasser. Building a Secure Computer System. Van
Nostrand Reinhold, 1988.

[lo] C. Pfleeger. Security in Computing. Prentice Hall,
1989.

[ll] D.E. Bell. S ecure computer systems. In Proceedings,

3rd annual computer security application conference,
1987.

[12] W.J. Meyers. RBAC emulation on trusted DG/UX.
In Proceedings of the Second ACM Workshop on Role
Based Access Control. ACM, 1997.

[13] M. Nyanchama and S. Osborn. Modeling mandatory
access control in role-based security systems. In Pro-
ceedings of the IFIP WG 11.3 ninth annual working
conference on database security. Chapman and Hall,
1995.

[14] R. Sandhu. Role hierarchies and constraints for
lattice-based access controls. In Computer Security

- ESORICS 96, pp. 65-79. Springer Verlag, 1996.

[15] S. Osborn. Mandatory access control and role-based
access control revisited. In Proceedings of the Sec-
ond ACM Workshop on Role Based Access Control.
ACM, 1997.

29

Subject

I {categories}

Figure 1: RBAC/MLS Interface

30

I I

/ I I
I I I

n RO a

abcgi

Figure 3: Roles and Privilege Sets with Category Labels

32

