
The Role Graph Model and Conflict of
Interest

MATUNDA NYANCHAMA and SYLVIA OSBORN
The University of Western Ontario

We describe in more detail than before the reference model for role-based access control
introduced by Nyanchama and Osborn, and the role-graph model with its accompanying
algorithms, which is one way of implementing role-role relationships. An alternative role
insertion algorithm is added, and it is shown how the role creation policies of Fernandez et al.
correspond to role addition algorithms in our model. We then use our reference model to
provide a taxonomy for kinds of conflict. We then go on to consider in some detail privilege-
privilege and role-role conflicts in conjunction with the role graph model. We show how
role-role conflicts lead to a partitioning of the role graph into nonconflicting collections that
can together be safely authorized to a given user. Finally, in an appendix, we present the role
graph algorithms with additional logic to disallow roles that contain conflicting privileges.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—
access controls; K.6.5 [Management of Computing and Information Systems]: Security
and Protection; G.2.2 [Discrete Mathematics]: Graph Theory—graph algorithms

General Terms: Algorithms, Management, Security

Additional Key Words and Phrases: role-based security, role graphs, conflict of interest

1. INTRODUCTION
Role-based access control provides a way of managing authorizations to
perform tasks in complex systems with many users and many resources
[Sandhu et al. 1996]. Roles are used to group permissions together in ways
that make sense in the enterprise or the application environment. Individ-
ual users or groups of people can then be assigned to the roles as required.

Roles provide a very natural and powerful way for an enterprise admin-
istrator or security officer to describe the privileges of various job functions.
This paper describes our reference model and how it fits into a system’s
authorization scheme. In our previous work, we also introduced a role

Authors’ addresses: M. Nyanchama, Ernst & Young Tower, 90 Burnamthorpe Road West,
Suite 1100, The University of Western Ontario, Mississauqa, ON L5B-3C3, Canada; email:
matunda.nyanchama@ca.eyi.com; S. Osborn, Department of Computer Science, The Univer-
sity of Western Ontario, London, ON N6A 5B7, Canada; email: sylvia@csd.uwo.ca.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 1094-9224/99/0200–0003 $5.00

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999, Pages 3–33.



graph model, which provides a way of visualizing the interactions among
roles and their seniors and juniors [Nyanchama and Osborn 1994]. We also
introduced algorithms for manipulating these role graphs. Role-based
models provide a way to better manage access rights in a system, and can
be applied in discretionary access control and also be used to simulate a
mandatory access control environment [Nyanchama and Osborn 1995;
Osborn 1997; Sandhu 1996].

In this paper we briefly review our role graph algorithms [Nyanchama
and Osborn 1994], and enhance them with some additional algorithms.
These algorithms have all been implemented in an interactive tool, which
allows roles to be created, deleted, and altered as described below. Since
the algorithms deal with acyclic directed graphs, they all have efficient
runtime complexity. One version of our role-graph system provides an
interface with a relational database [Osborn et al. 1996]. Through this tool,
it is possible to quickly alter the roles and the users assigned to the roles
and have changes conveyed back to the database system.

An additional and important security task in a commercial environment
is to define and deal with conflict of interest. Aside from our reference
model, a key contribution of this paper is to consider conflict of interest
within the model (which indicates five possible types of conflict) and show
how our role graph model can be augmented to deal with privilege-privilege
conflicts and role-role conflicts. The role manipulation algorithms are
enhanced to disallow the creation of any role that would contain a conflict
within itself, and thus not be authorizable to any user or group. We also
show the structures that are induced in the role graph when role-role
conflicts are present.

Roles have been studied in a variety of contexts and environments; we
summarize some of them here. An early reference to roles is found in
Lochovsky and Woo [1988], where roles are defined and arranged in a
generalization hierarchy and agents representing people are assigned to
roles as necessary. Early work by Ting [1988] describes the use of roles to
develop application-dependent security controls. Ting’s work was also in-
corporated into a software design system[Ting et al. 1992; Hu et al. 1994].
Thomsen’s work talks about roles, subroles, and the mandatory enforce-
ment of policies in a role-based environment [Thomsen 1991]. Baldwin’s
Named Protection Domains [Baldwin 1990] are very similar to our roles. In
Baldwin’s model only one Named Protection Domain can be active at one
time. Mohammed and Dilts [1994] discuss the design of a role-based model
for a specific application in an event-dependent, dynamic environment. von
Solms and van der Merwe [1994] give a four-level model where roles form a
layer between users on the one hand and transactions and projects on the
other. There are obvious parallels between this model and our layered
reference model presented in the next section. Fernandez et al. [1994]
discuss user group relationships that have great similarity with our role
graphs, as discussed in some detail below.

Section 2 contains a detailed description of the reference model for
role-based access control (RBAC), introduced in Nyanchama and Osborn

4 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



[1994]. This is followed in Section 3 by a discussion of the role graphs that
we use to implement role-based access control. Section 4 discusses the role
graph administration algorithms that were introduced in Nyanchama and
Osborn [1994], and which are enhanced in this paper. These algorithms
allow for manipulations of the role graph to represent a dynamic role model
for access control. In Section 5, we introduce conflict of interest and show
how our reference model suggests five kinds of conflict of interest, some of
which others have discussed and some that have not received much
attention. Section 6 relates two of these kinds of conflict of interest to our
role graph model. Conclusions are presented in Section 7.

2. DEFINITIONS AND REFERENCE MODEL

The role model presented in this section is a general reference model for
role-based access control. Our reference model considers that there are
three distinct entities to be combined: users, privileges, and roles. In order
to be as general as possible, we use the term group to denote sets of users,
privilege to denote an access mode on an object, and role to denote sets of
privileges.

Access control models are based on some variation of the relationships
between objects, subjects, and access modes. Due to the prominence of
object-oriented modeling, it is appropriate to regard the relationship be-
tween an object and one of its methods or access modes as the basic form of
activity or computation. This is why we regard privilege as the basic unit of
authorization in this reference model.

In the remainder of this section we discuss the interactions among
privileges, roles, and subjects, and authorizations that can be defined for
them, as dictated by different security policies.

2.1 Privileges

A privilege is a pair ~x, m! where x refers to an object, and m is an access
mode for object x. The object referred to by x can be any object in an
object-oriented environment, any system resource, etc. In specifying a
privilege, x can be any name or identifier that uniquely specifies the
associated object. The access mode m, can be any valid operation (or
method) on x. In systems with simple access modes such as read, write,
execute, etc., m is one of these access modes. Where x is an object in an
object-oriented environment, m is the execute mode of one of the methods.
In transactional systems, m is a transaction that facilitates access to x. The
exact nature of x and m is a matter of the application environment and its
associated security policy [Nyanchama and Osborn 1993].

2.2 Roles

A role is a named set of privileges. It is represented by a pair ~rname,
rpset!, where rname is the name of the role and rpset represents the set

The Role Graph Model and Conflict of Interest • 5

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



of privileges of the role. Given a role r, we use r.rname and r.rpset to
refer to the role’s name and privilege set, respectively.

Role-role relationships, typically represented by a role hierarchy [Sandhu
et al. 1996], are especially interesting. Role relationships are based on role
subsetting, which we call the is-junior relationship. We say that role ri

is-junior to rj, iff ri.rpset , rj.rpset.1 We also say that rj is senior to ri. By
specifying that role ri is-junior to rj, one makes available all the privileges
of ri to role rj. The transitivity of the is-junior relationship was discussed in
Nyanchama and Osborn [1994], which also contains a discussion of the
notions of common juniors and common seniors.

2.3 Users and Groups

The underlying motivation for RBAC is to help manage authorization. One
aspect of this management task is that there may be a number of users who
should be given the same authorizations. Our model uses the term group to
refer to a set of users. For example, there could be a group consisting of all
users in a given department, or all users working on a particular project.
Such sets are constructed where necessary in the application environment,
to ease the task of assigning the same authorizations to everyone in the
group at once. This notion is similar to the use of the term “group” in UNIX.

Some role models use the term role to refer to a structure that includes
both users and privileges [Rabitti et al. 1991; Hu et al. 1994; Simon and
Zurko 1997; Sandhu et al. 1996]. Our purpose in separating the discussion
about user sets from the role hierarchy discussion is to provide a frame-
work in which interactions resulting from role-role relationships can be
analyzed separately from those resulting from user-group memberships
and group-group relationships. In any reference model there may be layers
of detail that get blurred in some implementations. No matter how the role
model is constructed, it is ultimately possible to construct an access matrix
[Harrison et al. 1976] by following through on all the implications existing
in the defined structures.

2.4 Authorization

The total management of the authorization of privileges to users takes
place on three planes (see Figure 1). On the plane closest to the objects of
concern are the privileges themselves, without any groupings. Relation-
ships, or perhaps more precisely implications, can exist among privileges.
One cause of these implications results from knowledge of the semantics or
the procedural structure of the operation being authorized. Such implica-
tions are found in the authorization type lattice of Rabitti et al. [1991]. For
example, the privilege which allows a user to update an object might imply
that any such user should also be able to read the object. Another example
is a complex method containing calls to other methods. Depending on the

1This is a strict subsetting relationship; roles with the same privileges are regarded as one
role.

6 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



security policy, any authorization to such a complex method may or may
not imply separate or direct authorization to these called methods.

Object containment is another cause of implications on the privileges
plane. Authorization to read a whole object implies authorization to read
any of its individual parts. Authorization to read a set of objects implies
authorization to read the members of the set. These implications result
from the kinds of information represented in the authorization object
lattice in Rabitti et al. [1991], which deals with the granularity at which a
privilege is specified.

Implications on the privileges plane can also result from inheritance in
an object–oriented system. For example, if one can read the salaries of all
Employees and Professors is a subclass of Employees, then one should also
be allowed to read the salaries of professors.

Roles are considered in the middle plane. In the role plane, the nodes
represent named sets of privileges. Here we examine role-role relationships
in order to provide tools to help manage role-based security. This is the
plane on which role hierarchies such as the role graph model exist [Nyan-
chama and Osborn 1994].

Fig. 1. Three kinds of authorization.

The Role Graph Model and Conflict of Interest • 7

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



User and user group relationships can be modeled in the third plane.
User groups are created to help manage the assignment of users to roles.
For example, all the users in a given project might be put in one group.
This group can then be assigned to roles relevant to the project, whereas
individual users might be assigned to other roles one at a time. The nodes
on the user/group plane represent individual users and groups that were
defined because they are of some use in modelling authorization. Informa-
tion such as the groups a user is assigned to, and which groups are or are
not contained in other groups, and other user-user relationships are
represented here. The implications that are modeled on this plane are the
result of user-group membership or group-group subsetting. If a user is a
member of a group and the group is assigned to a role, then the user is also
authorized to perform the operations available through the role.

As well as the three planes, there are two other places where authoriza-
tion takes place that ultimately determine who is authorized to do what.
One is in the assignment of users/groups to roles, which is called the
User-Role Authorization, and the other is in the assignment of privileges to
roles, which is called the Role-Privilege Authorization (see Figure 1).
Role-role relationships, which are defined within the role plane, are an-
other way that privileges may be assigned to roles. Thus, given a user-
privilege pair, the decision about whether the user is authorized to the
privilege is the result of the implications in the user/group plane, the
assignment of users/groups to roles, the role-role relationships, the assign-
ment of privileges to roles, and the implications in the privilege plane. All
of these implications and layers are intended to provide the necessary
detail for a reference model, which can help compare other models or act as
a model for an implementation. In an implementation based directly on this
model, the layers help reduce the detail with which user-privilege authori-
zation needs to be specified. This approach also makes the management of
authorizations very flexible.

2.5 Policies

We gave some examples of different security policies in the above discus-
sion. Separation of the kinds of authorization into the three planes and the
two interfaces allows different security policies to be modeled and placed
within one framework. An example is the assignment of users to roles. A
user may be assigned to one role at one time, which captures the notion of
logging on as a certain kind of user. An alternative is that users log on with
some or all of their roles active. These are different policies that can be
applied to the assignment of users/groups to roles. Another difference in
policies is whether this assignment is fairly static or varies dynamically
with the activity the user is performing. The model provides a point in the
reference architecture containing the appropriate interface on which to
focus discussions and comparisons of policy.

The assignment of privileges to roles is another example of where
different policies can be modeled. Suppose there is a complex privilege, say

8 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



hiring an employee, where an employee object is created and various
payroll and account objects are modified. This complex privilege involves
the execution of some simpler privileges on the employee, payroll, and
account objects. The policy regarding the assignment of privileges to roles
might be that the privilege of hiring an employee is the only privilege
granted; i.e., that any users assigned to this role will not be allowed to
individually perform the operations on employee, payroll, or account ob-
jects. An alternative policy is that any such complex privilege authorized to
a user means that the user is automatically authorized to any implied
privilege also. (When this is the case in the role graph model, presented in
the next section, the implied privileges must also be explicitly added to the
role in order for the discussions that follow to reflect this policy.) Whether
the implied privileges are directly available is a matter of security policy.
The presence of the interface between the role and the privileges planes in
the model gives a framework within which such policies can be discussed.

3. ROLE GRAPHS

We have developed a particular model for the role-role relationships on the
role plane based on the notion of a role graph [Nyanchama and Osborn
1994]. A role graph is an acyclic, directed graph in which the nodes
represent the roles in a system, and the edges represent the is 2 junior
relationship. In addition to an arbitrary number of user-defined roles,
every role graph has a MaxRole and a MinRole. MaxRole represents the
union of all the privileges of the roles in the role graph. MaxRole does not
need to have any users authorized to it. The role graph is the place to
summarize all of the privileges in the system and to ensure that the
common senior relationship [Nyanchama and Osborn 1994] is always
defined. All roles in the role graph, except for MaxRole, have a common
senior. MaxRole is required for completeness of defined graph properties.
MinRole represents the minimum set of privileges available to all roles.
MinRole. rpset can be empty. Role graphs have the following Role Graph
Properties:

—there is a single MaxRole;

—there is a single MinRole;

—the Role Graph is acyclic;

—there is a path from MinRole to every role ri;

—there is a path from every role ri to MaxRole;

—for any two roles ri and rj, if ri.rpset , rj.rpset, then there must be a
path from ri to rj.

It is typical in role hierarchy models [Sandhu et al. 1996] for an edge in the
role hierarchy, say from role ri to rj, to represent the desire for all of the
privileges of ri to be available to role rj. It is, for example, possible in the

The Role Graph Model and Conflict of Interest • 9

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



role facility of Oracle 7 to assign one role to another for this precise
purpose. Such edges are just a way of specifying the is-junior information
between these two roles. Our model also shows where such edges are
implied by showing at least a path, if not a direct edge, between any two
nodes where a subsetting of the privilege sets exists because of addition or
deletion of privileges to or from roles, or some other operation on the graph.
The meaning of an edge or path in the role graph is that an edge or path
exists from role ri to role rj iff ri is-junior to rj. In analyzing security, it is
useful to see that if all the privileges of role ri are available through role rj,
there is a connection between these two roles in the graph so that when the
user is assigned to rj, the user is also authorized to perform everything in
ri. If it is necessary to have a role with only some of the privileges of ri,
then it is easy, with the algorithms in the next section, to create such a role
separately, without an edge from ri to the new role.

We draw the graphs without redundant edges, i.e., we represent the
(acyclic) graph by its transitive reduction [Aho et al. 1972]. We arrange the
nodes on the page so that all is-junior edges go up the page. In addition, for
every role, we distinguish between its effective privileges and its direct
privileges. The direct privileges of role r are those that are not contained in
the rpset of any of r ’s juniors. As a consequence, a direct privilege appears
only once in a given path in the role graph. The effective privileges of role r
are the union of its direct privileges and the effective privileges of all its
juniors. Note that r.rpset corresponds to the effective privileges of r.
Seeing the graph edges that result from privilege assignment and the
specification of role-role relationships, as well as seeing direct and effective
privileges, helps the person designing the roles to understand the implica-
tions of privilege assignments and role relationships.

Acyclicity is a basic property of the role graph [Nyanchama 1994]. It
requires that any two roles with a directed edge between them are in a
subsetting relationship [Nyanchama and Osborn 1994], and forms the basis
for the is-junior relationship between two roles. Without this restriction,
the union of all privileges in a cycle in the role graph would be available to
every role in the cycle. Acyclicity is required so that roles offer differenti-
ated access to the objects in the system.

Consider the example in Figure 2. The graph contains no redundant
edges, and the privileges shown are the direct privileges. Table I gives both
the direct and effective privileges for each role. Note that the is 2 junior
information can be deduced from the effective privileges and vice versa.

4. ROLE GRAPH ADMINISTRATION ALGORITHMS

Several algorithms are given in Nyanchama and Osborn ]1994] for manip-
ulating role graphs. They represent a beginning in the construction of a
role management tool. The algorithms discussed there are role addition,
role deletion, and two kinds of role partition. The role addition algorithm
takes as input a role graph, a new role represented by a role name, a set of

10 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



direct privileges, the roles that are to be its immediate juniors, and the
roles that are to be its immediate seniors. With that role addition algo-
rithm, the information is given in terms of role-role relationships. The
algorithm uses this information to deduce the resulting effective privileges
for the new role and to check the other role graph properties given above.
The graph edges and the direct privileges of the new role may be modified
as a result.

An alternative way to add a role to a role graph is to just specify its role
name and (effective) privileges, and to have an insertion algorithm deter-
mine its junior and senior roles by comparing privilege sets. In the first role

Fig. 2. A sample role graph.

Table I. Roles and Effective Privileges

Role Name Direct Privileges Effective Privileges

MaxRole f {1,2,3,4,5,6,7,8,9,10,11}
VP1 {9,10} {1,2,3,4,5,6,7,8,9,10}
VP {11} {1,2,3,4,5,6,7,8,11}
L {3,4} {1,3,4}
L2 {4,5} {1,2,4,5}
L {5,6} {1,2,5,6}
L {7,8} {2,7,8}
S {1} {1}
S {2} {2}
MinRole f f

The Role Graph Model and Conflict of Interest • 11

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



addition algorithm, the effective privileges of the new role are determined
by the given direct privileges and the specified junior roles. Here, the
effective privileges are given, and this information is used to determine
juniors, seniors, and the resulting direct privileges. For example, consider
adding a role called President to the example in Figure 2, so that the
President role contains the privileges that do include the direct privileges
of the VP roles, but do not include any privileges of any role junior to the
VP roles. In other words, the effective privileges of this new role should be
precisely {9, 10, 11}. This set of effective privileges is not comparable to any
other set of effective privileges for the roles in the graph (c.f., Table I). The
resulting role graph is shown in Figure 3.

Role deletion described in Nyanchama and Osborn [1994] offers the
option of deleting the direct privileges of the role being deleted (the target
role) from the graph altogether, or of reassigning all of the direct privileges
to the immediate seniors of the target role. Horizontal and vertical parti-
tion do not alter the effective privileges of the graph, but split a role into
two or more roles. In the case of horizontal partition, the new roles share
the juniors and seniors of the original role. With vertical partition, the new
roles replace the original role with a path. All of the algorithms check and
maintain the role graph properties given above.

In addition to the algorithms given in Nyanchama and Osborn [1994],
some simpler ones are also desirable. Two such algorithms would be to add

Fig. 3. Role graph showing President role.

12 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



a (new, direct) privilege to a role or to delete a (direct) privilege from a role.
For example, in Figure 2, privilege 9 might be added to (the direct
privileges of) role L2. This would result in privilege 9 being removed from
the direct privileges of VP1, and will adjust the effective privileges of VP2
(and of L2). The algorithms are given in Appendix A.

The role administration algorithms were implemented in a prototype
[Osborn 1996]. The prototype presents the role graphs via an interactive
graphical user interface, where each role can be clicked on and its users
direct and effective privileges displayed. All the algorithms have runtime
polynomial in the number of roles, edges, and, in some cases, the size of the
privilege set of a given node (see Appendix A). Thus adding temporary
roles, or of roles slightly different from existing ones, is very easy and
efficient.

We now consider the policies GP1, GP2, and GP3 of Fernandez et al.
[1994]. This model uses the term group to refer to a structure that
combines users and privileges. The generalization of several groups in the
Fernandez et al. model refers to a group that is more general than the
groups of which it is to be a generalization. Consider the example in Figure
4. The three secretarial roles involve handling disjoint kinds of confidential
information. A less specific role, the general secretary, would represent in
the object-oriented model, a generalization of these three roles. Policy GP1
[Fernandez 1994] says that the subgroups (the more specific secretarial
roles) inherit all the rights (or privileges) from supergroups. Supergroups
are added to a model by generalization. Policy GP1 then says that the three
original secretarial roles should inherit the rights of the new, general
secretary role. The general secretary’s position in the role graph is below
the three specialized ones (see Figure 5); i.e., it is-junior to the three
specialized roles. In Nyanchama and Osborn [1994], the general secretary’s

Fig. 4. Three secretarial roles.

Fig. 5. Addition of general role.

The Role Graph Model and Conflict of Interest • 13

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



role is inserted into the role graph by making it junior to the three roles
and senior to some others (or MinRole). Thus the GP1 policy is handled by
inserting a new role, a generalization of existing roles, by using the
insertion algorithm already given in Nyanchama and Osborn [1994], with
the specialized roles given as the desired seniors of the target (new) role.

Policy GP2 deals with specifying the rights of a role formed by the
composition of other roles, which is is not completely compatible with
defining a senior role, but it can be regarded as that. In Fernandez et al.
[1994], an example is given where the company consists of three depart-
ments. Someone acting at the company level (or in the company role) has
all the rights of people acting at any of the levels in the company. (In
Fernandez [1994], the example refers to personnel, engineering, and man-
ufacturing.) In terms of the role graph, creating the company role is
equivalent to creating a role senior to the roles corresponding to the
personnel, engineering, and manufacturing departments. Policy GP2,
translated into role graph terminology, says that the company role acquires
all the rights of its junior roles. Thus, creating this composition role is
equivalent to creating a new role (for company) and specifying the compo-
nent roles as its desired juniors. This is accomplished by the role insertion
algorithm in Nyanchama and Osborn [1994] by specifying the juniors and
specifying any appropriate roles as the desired seniors. If there are no such
seniors, MaxRole becomes the (only) senior. For our secretarial example, a
role that represents the “office” where the three secretarial roles are
present, and which would be assigned to an office administrator or depart-
ment head, is shown in Figure 6.

Policy GP3 [Fernandez 1994] involves creating a new role with a newly
defined set of rights. These rights may be available in some other roles
explicitly. The motivation is that a new group is to be created with a subset
of the people assigned from other existing groups. The policy says that the
rights for this group will be given explicitly. This is the kind of role
addition that can be handled by the new role addition algorithm mentioned
above. In Fernandez et al. [1994], the motivation is to create a specific new
role by specifying its effective privileges, and not relating it to any existing
role via a proper subset or proper superset relationship among rights,

Fig. 6. Addition of administrator role.

14 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



whereas here the role will be connected into the role graph to conform to
role graph properties.

5. CONFLICT OF INTEREST

Consideration of various forms of conflict of interest, separation of duty, or
mutual exclusion are often included in discussions of access control models
[Simon and Zurko 1997; Ferraiolo et al. 1995; Sandhu 1988]. In complex
environments where the actions of ill-intentioned users can create financial
or other damage, it is usual to identify combinations of operations that
should not be authorized to a single user. For example, for a wholesale
application, it might be company policy that the same user should not set
the price of a specific item and also be a customer for that item (the
employee can either set an unusually low price or damage the item before
buying it at a reduced price, thus committing fraud). It would not be a
conflict if different items were involved. On the other hand, if the compa-
ny’s conflict policy states that no employee can be a customer of the
company, then the roles for customer and employee would be defined to be
in conflict. Policies for preventing such fraud are called conflict of interest
or separation of duties policies.

We begin this section by enumerating different kinds of conflict of
interest as presented in [Simon and Zurko 1997]. A different taxonomy was
introduced by Kuhn [1997]. After examining these two taxonomies, we
discuss a taxonomy of the kinds of conflict of interest motivated by our
reference model in Section 2.

5.1 Conflict of Interest

Simon and Zurko [1997] have enumerated the different kinds of conflict of
interest/separation of duties, as follows:

(1) Strong exclusion or static separation of duty: Two roles are strongly
exclusive if a single user can never be assigned to both roles.

(2) Weak exclusion or dynamic separation of duty: Two roles are weakly
exclusive if, during a session, a user has activated one of the roles, then
they should not activate the weakly exclusive role at the same time.
This is called Simple Dynamic Separation of Duty in Simon and Zurko
[1997].

(3) Object-based separation of duty: A user may perform two different
operations on different objects, but may not perform these two opera-
tions on the same object.

Simon and Zurko’s enumeration of kinds of conflict of interest also includes
four more kinds, all having to do with complex tasks involving several
interrelated steps, say in a workflow management system. It is common in
business transactions to require two signatures before a check is issued, or
some like measure to avoid fraud. Such a model is considered, along with

The Role Graph Model and Conflict of Interest • 15

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



an RBAC system, in Bertino et al. [1997] and Thomas and Sandhu [1997].
It is also addressed by the safety condition in Kuhn [1997]. We deal with
this to some extent in the discussion of separation of duties in Nyanchama
[1994]. Such discussions, while very important, require a model of complex
tasks in conjunction with the RBAC model. Such a task model is not
presented in this paper, so we cannot discuss parallels to the Operational
Separation of Duty, History-based Separation of Duty, Order-dependent
Separation of Duty, and Order-independent Separation of Duty defined in
Simon and Zurko [1997].

Kuhn’s taxonomy [Kuhn 1997] has two axes: the time the exclusion is
introduced and the degree to which two roles conflict. As far as time is
concerned, mutual exclusion can be defined at role authorization time or at
runtime. As Kuhn observes, these correspond to static and dynamic sepa-
ration of duties, respectively. Kuhn also distinguishes between complete
and partial mutual exclusion of roles. Complete exclusion is the same as
role-role conflicts in our model, and partial exclusion corresponds to our
privilege-privilege conflicts.

5.2 Conflicts of Interest in Our Reference Model

Using our reference model from Section 2, we propose here a different
taxonomy for considering different kinds of conflict of interest. The main
categories are suggested by the three planes in Figure 1; the last two are
given by the interfaces between the planes. The reference model suggests
the following kinds of conflicts:

(1) user-user/group-group/user-group conflicts;

(2) role-role conflicts;

(3) privilege-privilege conflicts;

(4) user-role assignment conflicts; and

(5) role-privilege assignment conflicts.

User-user/group-group conflicts arise if two users are never assigned to
something together, be it to the same group or to the same role, or two
groups must not be made a subset of the same group, etc. There is nothing
in Simon and Zurko’s list that corresponds to user-user or group-group
conflicts.

Role-role conflict means that two roles must never be together. This only
makes sense in the assignment of these two roles to a user/group, and
corresponds exactly to Static Separation of Duty. (We discuss such conflicts
in great detail with respect to our role graph model, below.)

Privilege-privilege conflict means that two privileges must not appear
together. This means that these two privileges should never be in the same
role. Object-based separation of duty as described above falls into this
category. We say this is static object-based separation of duty (dynamic
object-based separation of duty will be defined shortly). There might be

16 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



other static privilege conflicts not based on objects; e.g., a conflict between
performing the same operation on two different objects. An example is
disallowing performance of two full-time jobs to appear together in a role
(and subsequently be assigned to a user).

On the other hand, there may be two functions that can be performed by
a user, but with restrictions that the roles associated with the functions
cannot be held by the same user simultaneously. This may necessitate the
definition of sessions, with specific roles associated with particular func-
tions; a user will be allowed to execute only one function in a given session.
It will require the user to terminate the session before executing the other
function.

The user-role assignment interface of our reference model is the place
where both static and dynamic issues of user-role assignment are dis-
cussed, i.e., if there is a difference between the roles to which a user is
authorized and the roles that are active during a session, then there is both
a static and a dynamic mapping that takes place at this interface. Simi-
larly, in user-role assignment, there can be a static and a dynamic conflict.
Dynamic separation of duty, as defined in Simon and Zurko [1997], is
modeled by the dynamic aspects of user-role assignment, and therefore is
modeled by dynamic user-role conflicts. Static user-role conflicts state that
a user should never be assigned to a role (perhaps because of lack of
qualifications or clearance), and are not present in Simon and Zurko’s list.

Similarly, a role-privilege assignment can deal with static or dynamic
issues. A static conflict says that a certain privilege should never be
assigned to a certain role. (Someone acting in the clerk role should never be
allowed to fire the president.) This is just good role design. Dynamic
role-privilege assignment deals with whether or not a privilege should be
assigned to a role, given that other privileges are already in the role. A
conflict here models (dynamic) object-based separation of duty [Simon and
Zurko 1997], and possibly some task-based constraints concerning two
operations on the same object. Since our RBAC reference model defines
privileges at the instance level (i.e., in terms of objects), dynamic role-
privilege conflicts could specify that two operations on the same object
must not appear in one role, but might appear in separate roles.

With a flexible role definition facility, enough roles could be defined,
based on individual objects, to handle object-based separation of duty by
just having a great many roles. One disadvantage of reference models is
that, although they may provide a way of succinctly defining components
and distinguishing between things, implementing them directly is not the
most efficient thing to do. We prefer that object-based separation of duty be
handled by a task management system [Bertino 1997], or by specifying
privileges in terms of object types, with constraints based on instances.

In conclusion, Static Separation of Duty is modeled by role-role conflicts;
Dynamic Separation of Duty by dynamic user-role conflicts; and Object-
based Separation of Duty by dynamic role-privilege conflicts. The other
types of conflicts in Simon and Zurko [1997] of interest here should not be
discussed without a model for complex tasks. Although the above conflicts

The Role Graph Model and Conflict of Interest • 17

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



are the most important, we have also identified user-user conflicts, other
privilege-privilege conflicts, static user-role conflicts, and possibly static
role-privilege conflicts as worthy of some consideration.

6. CONFLICT OF INTEREST IN THE ROLE GRAPH MODEL

Of all the types of conflict of interest above, the ones that relate most
closely to our role graph model are privilege-privilege conflict and role-role
conflict. In this section we discuss these two kinds of conflict as they relate
to our role-graph model and its current implementation.

6.1 Conflicting Privileges

Privilege-privilege conflicts, as discussed above, indicate that, for whatever
reason, the two privileges declared to be in conflict should never appear
together. The reason for this might be object-based or based on the access
mode, or just on the totality of the two privileges.Whether or not these two
privileges appear together in a role, whether they are added directly one at
a time, or result in being there because of the relationships between roles
that contain the conflicting privileges should be taken into account in our
role graph model. The problem role might be a common senior of two roles
that separately contain the conflicting privileges. This conflict must be
considered whenever a role changes. A role that contains conflicting privi-
leges should not be allowed in the role graph because such a role cannot be
assigned to any user. The only exception is MaxRole, which must contain
all privileges in the system. When there are privilege-privilege conflicts,
MaxRole should not be assigned to any user. The rejection of other roles
that contain privilege-privilege conflicts should not cause a problem in role
design because the flexibility in defining roles with only slight differences,
using the role graph algorithms, makes it possible to define assignable
roles free of such conflicts to any level of detail consistent with the
conflicts.

If two such privileges should never appear together, then they must
ultimately not be assigned to a single user. Thus, privilege-privilege
conflicts must also be taken into account when user-role assignments
are made. Suppose we have two roles, r1 and r2, r1 contains only privilege
p1, and r2 contains only privilege p2, their only common senior is MaxRole,
and p1 and p2 conflict. We must not allow a user to be assigned to both r1

and r2.
As with all policy issues, the statement of the actual conflict is given by

the role system administrators.
We denote conflicting privileges as follows: two privileges, p1 and p2,

which have been defined to conflict, are denoted by p1 , . p2. As noted
above, no role should contain conflicting privileges because that role could
never be authorized to any user. This is captured by the first constraint:

18 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



Privilege Conflict of Interest Constraint: No role (except MaxRole) may
contain two privileges that have been defined to conflict.

In order to maintain this constraint within our role management system,
we need to assume the existence of a set of pairs of conflicting privileges,
which we call P 2 Conflicts. P-Conflicts must be checked when the
following role maintenance operations are executed:

(1) when a privilege is added to an existing role (the conflict might arise
within the specified role or in a senior role when the effective privileges
of such senior roles are adjusted);

(2) when a new role is created (existence of conflicting privileges could
result from the given direct privileges, exist in the new role from the
formation of the effective privileges from the new role’s specified junior
roles, or might result in a senior of the new role);

(3) when an edge is inserted (the role at the head of the new edge or one of
the seniors of this role might inherit new privileges as the result of the
new edge, which might result in a conflict.)

As with all operations on the role graph, if any inconsistency is discovered
in performing the operation, the user is told of the problem, and the role
graph is left unchanged. In the algorithms in Appendix A, P 2
Conflicts is considered wherever appropriate.

6.2 Role-Role Conflicts

A statement by the role system administrator that two roles conflict is a
very powerful statement. If it is really the case that only some parts of the
two roles conflict, then this should be represented by privilege-privilege
conflicts or the roles should be redesigned, so that only the minimal sets of
privileges that need to be declared as conflicting roles are actually defined
in the conflicting roles. An example from Figure 2 is found in Roles L1 and
L4. Suppose the system administrator wants to declare that these two roles
conflict, but really it is only privilege {3} that conflicts with all the
privileges in L4. Then L1 can be expanded into L5, with direct privilege {3},
and L1 with direct privilege {4}. The graph is altered to have edges from S1
to L5, and L5 to L1, L1 has the same effective privileges as before, and the
conflict can be declared to be between L5 and L4.

Two roles, r1 and r2, which have been defined to conflict, are denoted
r1 , , . . r2.

A role-role conflict means that the two roles should never appear to-
gether. This implies they should never be assigned to a single user, which
is checked on user-role assignment. This gives us the following constraint:

User-Role Conflict of Interest Constraint: No user should be authorized to
two roles that have been declared to conflict.

In the remainder of this section we use the role graph to characterize
other properties arising from role-role conflicts. To realize this goal, we
must discuss what a role-role conflict means. Since it is also possible to give

The Role Graph Model and Conflict of Interest • 19

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



privilege-privilege conflicts or to define other roles with fewer privileges,
when two roles are declared to be in conflict, any user authorized to one of
the roles is not allowed to perform any of the privileges of the conflicting
role. If this is not the case, then the roles need to be redefined with a finer
granularity. We formalize this into the following principle, which is a
fundamental assumption underlying what follows:

Role Conflict of Interest Principle: If two roles are declared to conflict,
then a user authorized to one of the roles must not be authorized to any of
the privileges of the other role.

Consider the example from Figure 2 again. The roles L1 and L3 have
disjoint direct privileges, but their effective privileges include {1} because
both roles have role S1 as a junior. Thus, roles L1 and L3 cannot be
declared to be in conflict because anyone authorized to one of them would
be able to perform at least one of the privileges of the other.

In fact, this example points out a more subtle aspect of role conflicts; but
to discuss this, we need to look more closely at the user-role authorization
mapping. Authorizing a user to role L1 makes privileges {1, 3, 4} available
to this user. This, by default, authorizes the user to role S1, since all of its
privileges are authorized when L1 is authorized. Suppose that roles S1 and
S2 are declared to conflict. Authorizing a user to L2 means that this user is
authorized, indirectly or by default, to S1 and S2. These have been been
declared to be in conflict. Thus, declaring roles to be in conflict with one
another has consequences for their common seniors: it makes any common
seniors unauthorizable. As with the privileges conflict case, any role that,
due to the conflict of interest policy, is unauthorizable will not be allowed
in the role graph. Thus we analyze these situations and disallow any
role-role conflicts that have any common seniors other than MaxRole.

The following results formalize the above discussion. Note that Theo-
rems1 and 2 were discovered independently by Kuhn [1997].

Definition 1. Role Independence: Two roles ri and rj are independent if
their only common junior is MinRole.

THEOREM 1. Conflicting roles must be independent.

PROOF 1. Suppose two roles ri and rj conflict but are not independent.
That is, there is a role rk not equal to MinRole that is a common junior to ri

and rj. The role rk must contain some privilege common to ri.rpset and
rj.rpset. This means that a user authorized to ri is also authorized to part
of the privileges of rj. This violates the role conflicts of interest
principle. e

THEOREM 2. Conflicting roles must have no, seniors other than MaxRole.

PROOF 2. Suppose such a situation were allowed, i.e., there are two roles
ri and rj declared to conflict that have a common senior rk not equal to
MaxRole. rk contains privileges from both ri and rj, and by the role conflict

20 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



of interest principle, cannot be authorized to any user. Thus conflicting
roles must have no, seniors other than MaxRole. e

Definition 2. Conflict-Consistent: A role graph is said to be consistent
with respect to conflict of interest if for every pair of roles ri and rj such
that ri , , . . rj, ri and rj have no, junior other than MinRole and no,
senior other than MaxRole.

6.3 A Role Graph with Role-Role Conflicts

In this section we characterize some allowable role graph structures for
conflict-consistent role graphs.

By the above two theorems, conflicting roles must be on independent
paths from MinRole to MaxRole. In a conflict-consistent role graph, roles
that are on the same path from MinRole to MaxRole may be assigned to the
same user, and are not in conflict with each other. The conflict relationship
induces a partitioning of the roles in the role graph into collections of roles
that can be authorized together. Collections of roles that can be assigned to
a user without causing conflict are termed nonconflicting role collections.
Specifically:

Definition 3. Nonconflicting role collections: Two roles ri and rj belong
to a nonconflicting collection if there are no conflicting privileges in
ri.rpset and rj.rpset, and ri does not conflict with rj.

Consider the example in Figure 7. Company policy forbids anyone with
warehouse privileges from buying anything from the company. People in
the personnel department have no warehouse privileges. The conflict then
is between the roles Customer and Warehouse. All roles on any path from
MinRole to MaxRole through Warehouse are also in conflict with Customer.
Thus, if we look at Figure 8, we get two disjoint vertical regions of the
graph for each role-role conflict. Each role involved in a conflict creates a
vertical region, including all of its juniors and seniors, within the graph.
Each role not belonging to any of these regions must not be in is-junior or
is-senior relationships with any role in one of the vertical regions. In a
sense, these noninvolved roles form another vertical region of their own.

Nonconflict, on the other hand, tells us which regions of the graph can be
authorized to the same user. Roles in our example, like the Personnel/
Payroll role, that are not involved in any conflict relationship could be
assigned with Customer or with Warehouse, but not with both for a single
user, since a single user cannot be assigned both a warehouse role and a
customer role. Figure 9 shows what regions a single user’s authorizations
may be in.

We can compute the nonconflicting role collections in the following way.
Construct an n x n matrix, C, where n is the number of roles not including
MinRole or MaxRole. In this matrix, ci, j is 1 if there is a conflict between ri

and rj, and 0 otherwise. For each role conflict defined by the policy, indicate
the conflict in the matrix. For each such conflict ri , , . . rj, for each

The Role Graph Model and Conflict of Interest • 21

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



junior and senior of rj, call it rk, there is also a conflict between ri and rk, so
ci, k is also set to 1. This matrix then represents all the role-role conflicts
when juniors and seniors of the original role conflicts are taken into
account. Table II contains the conflict matrix for the example in Figure 8.

Now take the dual of this matrix; i.e., substitute 0’s for 1’s and vice versa.
Call this matrix N. This matrix has a 1 whenever the two roles can be
assigned together, and 0 otherwise. This can be considered an undirected
graph. Any clique [Bondy and Murty 1976] of this graph is a nonconflicting
collection; i.e., any clique represents a set of roles such that, for every pair
of roles in the set, the two roles can be assigned together to a single user
without violating the conflict of interest information defined in the policy.
This matrix appears in Table III. Figure 9 shows this information graphi-
cally, by indicating the regions in which roles can be assigned together,
superimposed on the original graph.

The conflict relationship between roles is not transitive. Consider the
example in Figure 10 where the warehouse and payroll roles conflict and
distribution and payroll roles conflict, but the warehouse and distribution
roles do not conflict with each other. This represents a company where the
same person cannot decide what to pay him or herself, unless given the
payroll job, but one person might be a part-time driver (i.e. be in distribu-
tion) and work in the warehouse part time. For each of these divisions of

Fig. 7. Role graph with conflicting roles.

22 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



Fig. 8. Vertical regions defined by a conflict.

Table II. Role-Role Conflict Matrix

Customer VPPers Payroll VPS Sales-Rep Warehse VPPurch Buyer

Customer 0 0 0 1 1 1 1 1
VPPersonnel 0 0 0 0 0 0 0 0
Payroll 0 0 0 0 0 0 0 0
VPSales 1 0 0 0 0 0 0 0
Sales-Rep 1 0 0 0 0 0 0 0
warehouse 1 0 0 0 0 0 0 0
VPPurchasing 1 0 0 0 0 0 0 0
Buyer 1 0 0 0 0 0 0 0

Table III. Dual of Conflict Matrix

Customer VPPer Payroll VP Sales-Rep Warehse VPPurch Buyer

Customer 1 1 1 0 0 0 0 0
VPPersonnel 1 1 1 1 1 1 1 1
Payroll 1 1 1 1 1 1 1 1
VPSales 0 1 1 1 1 1 1 1
Sales-Rep 0 1 1 1 1 1 1 1
warehouse 0 1 1 1 1 1 1 1
VPPurchasing 0 1 1 1 1 1 1 1
Buyer 0 1 1 1 1 1 1 1

The Role Graph Model and Conflict of Interest • 23

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



the company, just two roles are shown, and they are called top and bottom,
thus giving us WT and WB for warehouse top and warehouse bottom, etc.

The conflict between WB and PB and between PB and DB induce the
vertical conflict collections shown in Figure 11. The above algorithm for
constructing the nonconflicting role collections produces the collections
shown in Figure 12. Note that in Figure 12, the roles are rearranged on the
page to allow the collections to be drawn.

6.4 Privilege versus Role Conflicts

In the above discussion of role conflicts, we assumed that when two roles ri

and rj are defined to conflict, there is a privilege conflict between every
privilege in ri and every privilege in rj. Thus we could easily convert from a
statement of conflict of interest given in terms of a role-role conflict to a set
of privilege conflicts. However, when the conflict of interest information is
given in terms of privilege conflicts, there might be two roles ri and rj, such
that some privilege in ri conflicts with some, but not all, of the privileges of
rj. In this case there is no direct mapping from a conflict of interest

Fig. 9. Regions of the graph that can be assigned to a single user.

24 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



statement in terms of privilege conflicts into a role-role statement of
conflict of interest.

The main difference between the two kinds of knowledge comes when a
user is to be assigned to a new role. If the conflict information is in terms of
privilege conflicts, then the total privileges of all roles currently authorized
to the user must be constructed and compared with the total privileges of

Fig. 10. Nontransitivity of conflict.

Fig. 11. Vertical regions.

The Role Graph Model and Conflict of Interest • 25

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



the desired role. These two sets must be compared with the information
held in P-Conflicts to see if the desired role is allowed.

For role conflicts, when a user is to be authorized to a role, the
nonconflicting role collection information could be used to see if the desired
role is within the same collection as one that contains all of the user’s
current roles. Alternately, the role conflict information can be mapped into
privilege conflict information, and the method for privilege conflict check-
ing can be used.

It would seem, then, that although we can produce elegant information
about nonconflicting role collections when conflicts are described as role-
role conflicts, specifying conflicts in terms of privilege-privilege conflicts
allows for a finer granularity. In both cases we can build the required
safeguards to make sure that a single user cannot be authorized to do
things that violate the given conflict of interest policy.

7. CONCLUSIONS

We have described in some detail the reference model for role-based access
control, introduced in Nyanchama and Osborn [1994]. We have also used
the reference model to provide a taxonomy of conflict of interest types that
may occur. Two of the identified conflict types—privilege-privilege conflicts
and role-role conflicts—were developed further for our role graph model for
RBAC. When role-role conflicts are present, the role graph can be divided
into collections of roles that can be assigned together to a single user. This
provides a very elegant way of showing the consequences of conflict of
interest considerations in role-based access control. Privilege-privilege con-

Fig. 12. Nonconflicting collections.

26 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



flicts allow a finer granularity for expressing conflicting activities but do
not yield such elegant results on the properties of the role graph.

APPENDIX

APPENDIX A. ALGORITHMS

In this section we present algorithms for both versions of role addition, role
deletion, privilege insertion and deletion, and edge insertion and deletion.
Details of fixing the graph after a change, to make it conform to role graph
properties, are omitted. In some cases, a complex adjustment of direct and
effective privileges in roles senior to the place of change is required. Role
splitting, discussed in Nyanchama and Osborn [1994], can be accomplished
by a sequence of role deletions and insertions.

It is important to note that all of these algorithms have runtime polyno-
mial in the number of nodes and edges in the role graph. Some of the
algorithms indicate that a cycle-detecting algorithm must be run. Detecting
cycles can be done by depth-first traversal, which is polynomial in the size
of the graph. Reestablishing role graph properties involves seeing if new
edges are implied, adding them, and then running the transitive reduction
algorithm, which is polynomial in the size of the graph [Aho et al. 1972].
Other parts of the algorithms involve examining all the nodes to adjust the
direct and effective privilege sets, which is polynomial in the number of
nodes and the size of the privilege sets. The algorithms have all been
implemented in an interactive tool, which allows very flexible management
of role graphs.

We include the logic necessary to cope with privilege conflicts as ex-
pressed as pairs in a set called P-Conflicts.

Algorithm 1: RoleAddition1(RG, n, Seniors, Juniors, P-Conflicts).

Input: RG 5 ^5, 3& (the role graph),
n, /*the new role to be added (role name along with its proposed

direct privilege set) */
Seniors, /* proposed immediate Seniors for n */
Juniors, /* proposed immediate Juniors for n */
P-Conflicts. /* set of pairs of conflicting privileges */

Output: The role graph with n added and role graph properties
intact, or RG unchanged if an error is detected.

Method:
Var r, ri, rj, rs: role;
Begin

5 :5 5 ø {n}; /* Add new node to RG */
For all rs [ Seniors Do add the edge n 3 rs; /* Add given edges
to RG */
For all rj [ Juniors Do add the edge rj 3 n;
If RG has any cycles /* Detect cycles */

then abort (message: Graph is not acyclic);

The Role Graph Model and Conflict of Interest • 27

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



/* Reestablish role graph properties */
/* Adjust Direct and Effective of affected roles */
For all ri, rj [ 5 Do /* Detect duplicate roles */

If Effective(ri) 5 Effective(rj)
Then abort (message: Duplicate roles have been created.

Give role names of ri and rj.)
/* Conflict of Interest Detection */

For every role r [ $n% ø 5 - MaxRole Do
If Effective(r) contains a pair of privileges which is in P-Conflicts

Then abort (message: Role addition creates a conflict);
end.

Algorithm 2: RoleAddition2(RG, n, P-Conflicts).

begin Input: RG 5 ^5, 3& (the role graph),
n, /*the new role to be added (role name along with its proposed

effective privilege set) */
P-Conflicts. /* set of pairs of conflicting privileges */

Output: The role graph with n added and role graph properties
intact, or RG unchanged if an error is detected.

Method:
Var r: role;
Begin

For all r [ 5 Do /* Check if node is already there */
If Effective(n) 5 Effective(r)

Then abort (message: this role is already in the graph);
5 :5 5 ø {n}; /* Add new node to RG */
For all r [ 5 Do /* Create edges to seniors */

If Effective(n) , Effective(r)
Then add the edge n 3 r;

For all r [ 5 Do /* Create edges from juniors */
If Effective(r) , Effective(n)

Then add the edge r 3 n;
/* Reestablish role graph properties */
/* Adjust Direct and Effective of affected roles, including n */

/* Conflict of Interest Detection */
For every role r [ $n% ø 5 - MaxRole Do

If Effective(r) contains a pair of privileges which is in
P-Conflicts
Then abort (message: Role addition creates a conflict);

end.

Algorithm 3: PrivilegeAddition(RG, n, p, P-Conflicts).

Input: RG 5 ^5, 3& (the role graph),
n, /* the role to which a privilege is to be added */
p, /* the privilege to be added to role r */

28 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



P-Conflicts. /* set of pairs of conflicting privileges */
Output: The role graph with privilege p added to role r, and the role

graph properties intact, or RG unchanged if an error was
detected.

Method:
Var r: role;
Begin

If p [ Effective( n) /* p is already in n -- do nothing */
Then return;

Direct(n):5 Direct(n) ø $p%; /* add p to Direct privileges of n */
Effective(n):5 Effective(n) ø $p%; /* and to Effective of n */
/* Reestablish role graph properties */
/* Adjust Direct and Effective of affected roles */
If RG has any cycles /* Detect cycles */

then abort (message: Graph is not acyclic);
/* Conflict of Interest Detection */

For every role r [ $n% ø 5 - MaxRole Do
If Effective(r) contains a pair of privileges which is in

P-Conflicts
Then abort (message: Privilege addition creates a conflict);

end.

Algorithm 4: RoleDeletion(RG, n, inv, P-Conflicts).

Input: RG 5 ^5, 3& (the role graph),
n, /* The role to be deleted */
inv, /* Boolean, if true then n ’s privileges are to be kept in the role
graph */
P-Conflicts. /* set of pairs of conflicting privileges */

Output: The role graph with n deleted and role graph properties
intact, or RG unchanged if an error was detected.

Method:
Var 6, ): set of roles;

rj, rs: role;
6:5 FindImmediateSeniors(RG, n); /* Find immediate seniors */
):5 FindImmediateJuniors(RG, n); /* Find immediate juniors*/
For all rj [ ) Do /* Connect juniors to seniors */

For all rs [ 6 Do
add edge rj 3 rs;

For all rs [ 6 Do /* Remove edges adjacent to n */
remove edge n 3 rs;

For all rj [ ) Do
remove edge rj 3 n;

If inv /* Transfer privileges to seniors */
Then For all rs [ 6 Do

Direct(rs):5 Direct(rs) ø Direct(n)

The Role Graph Model and Conflict of Interest • 29

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



/* Adjust Direct and Effective of affected roles */
/* Reestablish role graph properties */
remove n from 5; /* Remove the role from the graph */

/*Conflict of interest consideration:
this operation cannot create any new conflicts */
end.

Algorithm 5: PrivilegeDeletion(RG, n, p, P-Conflicts).

Input: RG 5 ^5, 3& (the role graph),
n, /* The role containing the privilege to be deleted */
p, /* The privilege to be deleted from role n */
P-Conflicts. /* set of pairs of conflicting privileges */

Output: The role graph with p deleted from n and role graph
properties intact, or RG unchanged if an error was detected.

Begin
If p [/ Direct(n) /* p must be a direct privilege of n */

Then return (message: p not a direct privilege of n);
Direct(n):5 Direct(n) - $ p%; /* Delete p from role n */
Effective(n):5 Effective(n) - $ p%;
For all r [ 5 Do /* Check for duplicate roles */

If Effective(r) 5 Effective(n)
Then abort (message: Duplicate roles have been created.

Give role names of r and n.)
/* Reestablish role graph properties */
/* Adjust Direct and Effective of affected roles */

/*Conflict of interest consideration:
this operation cannot create any new conflicts */
end.

Algorithm 6: EdgeInsertion(RG, r1 3 r2, P-Conflicts).

Input: RG 5 ^5, 3& (the role graph),
r1 3 r2, /* the edge to be added to RG */
P-Conflicts. /* set of pairs of conflicting privileges */

Output: The role graph with edge r1 3 r2 added, and role graph
properties intact, or RG unchanged if an error was detected.

Method:
Var ri, rj: role;
Begin

IF there is a path from r1 to r2 /* See if edge already there*/
Then return; /* or can be inferred */

Add edge r1 3 r2 to RG;
Direct(r2):5 Direct(r2) - Effective(r1); /* Adjust privileges */
Effective(r2):5 Effective(r2) ø Effective(r1);
/* Reestablish role graph properties */
/* Adjust Direct and Effective of affected roles */

30 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



For all ri, rj [ 5 Do /* Detect duplicate roles *
If Effective(ri) 5 Effective(rj)

Then abort (message: Duplicate roles have been created.
Give role names of ri and rj.)

/* Conflict of Interest Detection */
For every role ri [ 5 - MaxRole Do

If Effective(ri) contains a pair of privileges which is in
P-Conflicts
Then abort (message: Edge insertion creates a conflict);

end.

Algorithm 7: EdgeDeletion(RG, r1 3 r2, P-Conflicts).

Input: RG 5 ^5, 3& (the role graph),
r1 3 r2, /* the edge to be deleted from RG */
P-Conflicts. /* set of pairs of conflicting privileges */

Output: The role graph with edge r1 3 r2 deleted, and role graph
properties intact, or RG unchanged if an error was detected.

Method:
Var ri, rj: role;
Begin

If there is no edge r1 3 r2 /* See if valid input */
Then return;

If r1 , r2 is MinRole or MaxRole /* Do not delete edges adjacent */
Then return; /* to MaxRole or MinRole */

Delete edge r1 3 r2 from RG;
/* Reestablish role graph properties */
/* Adjust Direct and Effective of affected roles */
For all ri, rj [ 5 Do /* Detect duplicate roles */

If Effective( ri) 5 Effective( rj)
Then abort (message: Duplicate roles have been created.

Give role names of ri and rj.)
/*Conflict of interest consideration:

this operation cannot create any new conflicts */
end.

ACKNOWLEDGMENTS

We thank Chi Zhang for a very careful implementation of the algorithms.
T.C. Ting asked a good question that led to the inclusion of the second role
addition algorithm. This research was supported by the Natural Sciences
and Engineering Research Council of Canada.

REFERENCES

AHO, A. V., GAREY, M. R., AND ULLMAN, J. D. 1972. The transitive reduction of a directed
graph. SIAM J. Comput. 1, 2 (June), 131–137.

The Role Graph Model and Conflict of Interest • 31

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



BALDWIN, R. 1990. Naming and grouping privileges to simplify security management in large
databases. In Proceedings of the IEEE Symposium on Research in Security and Privacy
(Oakland, CA). IEEE Computer Society Press, Los Alamitos, CA, 116–132.

BERTINO, E., FERRARI, E., AND ALTURI, V. 1997. A flexible model for the specification and
enforcement of role-based authorizations in a workflow management system. In Proceed-
ings of the 2nd ACM Workshop on Role-Based Access Control (Fairfax, VA, Nov. 6-7). ACM
Press, New York, NY, 1–12.

BONDY, J. A. AND MURTY, U. S. R. 1976. Graph Theory with Applications. Macmillan Press
Ltd., Basingstoke, UK.

FERNANDEZ, E. G., WU, J., AND FERNANDEZ, M. H. 1994. User group structures in object-
oriented database authorization. In Proceedings of the IFIP Working Group 11.3 Working
Conference on Database Security. Elsevier North-Holland, Inc., Amsterdam, The Nether-
lands, 57–76.

FERRAIOLO, D., CUGINI, J., AND KUHN, D. R. 1995. Role based access control: Features and
motivations. In Proceedings of the 11th Annual Conference on Computer Security
Applications. IEEE Computer Society Press, Los Alamitos, CA, 241–248.

HARRISON, M., RUZZO, W., AND ULLMAN, J. 1976. Protection in operating systems. Commun.
ACM 19, 8.

HU, M.-Y., DEMURJIAN, S. A., AND TING, T. C. 1994. Unifying structural and security modeling
and analyses in the ADAM object-oriented design environment. In Proceedings of the IFIP
Working Group 11.3 Working Conference on Database Security. Elsevier North-Holland,
Inc., Amsterdam, The Netherlands.

KUHN, D. R. 1997. Mutual exclusion as a means of implementing separation of duty
requirements in role-based access control systems. In Proceedings of the 2nd ACM
Workshop on Role-Based Access Control (Fairfax, VA, Nov. 6-7). ACM Press, New York, NY,
23–30.

LOCHOVSKY, F. H. AND WOO, C. C. 1988. Role-based security in data base management
systems. In Database Security: Status and Prospects (Annapolis, MD, Oct. 1987), C. E.
Landwehr, Ed. North-Holland Publishing Co., Amsterdam, The Netherlands, 209–222.

MOHAMMED, I. AND DILTS, D. 1994. Design for dynamic user-role-based security. Comput.
Secur. 13, 8, 661–671.

NYANCHAMA, M. 1994. Commercial integrity, roles and object orientation. Ph.D.
Dissertation. University of Western Ontario, London, Canada.

NYANCHAMA, M. AND OSBORN, S. 1993. Role-based security, object oriented databases and
separation of duty. SIGMOD Rec. 22, 4 (Dec. 1993), 45–51.

NYANCHAMA, M. AND OSBORN, S. L. 1994. Access rights administration in role-based security
systems. In Proceedings of the IFIP Working Group 11.3 Working Conference on Database
Security. Elsevier North-Holland, Inc., Amsterdam, The Netherlands.

NYANCHAMA, M. AND OSBORN, S. L 1995. Modeling mandatory access control in role-based
security systems. In Proceedings of the IFIP WG 11.3 Ninth Annual Working Conference on
Database Security, D. Spooner, S. Demurjian, and J. Dobson, Eds. Chapman & Hall,
London, UK.

OSBORN, S. 1997. Mandatory access control and role-based access control revisited. In
Proceedings of the 2nd ACM Workshop on Role-Based Access Control (Fairfax, VA, Nov.
6-7). ACM Press, New York, NY, 31–40.

OSBORN, S., REID, L., AND WESSON, G. 1996. On the interaction between role based access
control and relational databases. In Proceedings of the Tenth Annual IFIP WG 11.3 Working
Conference on Database Security (Aug.), P. Samarati and R. Sandhu, Eds. Chapman & Hall,
London, UK.

RABITTI, F., BERTINO, E., KIM, W., AND WOELK, D. 1991. A model of authorization for
next-generation database systems. ACM Trans. Database Syst. 16, 1 (Mar. 1991), 88–131.

SANDHU, R. 1996. Role hierarchies and constraints for lattice-based access controls. In
Proceedings of the Conference on Computer Security (ESORICS 96, Rome, Italy), E. Bertino,
H. Kurth, G. Martella, and E. Montolivo, Eds. Springer-Verlag, New York, NY, 65–79.

SANDHU, R., COYNE, E., FEINSTEIN, H., AND YOUMAN, C. 1996. Role-based access control
models. Computer 29, 38–47.

32 • M. Nyanchama and S. Osborn

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.



SANDHU, R. S. 1988. Transaction control expressions for separation of duties. In Proceedings
of the 4th Annual Conference on Computer Security Application (Orlando, FL,
Dec.). 282–286.

SIMON, R. AND ZURKO, M. E. 1997. Separation of duty in role based access control
environments. In Proceedings of the 10th IEEE Workshop on Computer Security Founda-
tions (Rockport, MA, June 10-12). IEEE Computer Society Press, Los Alamitos, CA,
183–194.

THOMAS, R. AND SANDHU, R. 1997. Task-based authorization controls (TBAC): Models for
active and enterprise-oriented authorization management. In Database Security XI: Status
and Prospects (Lake Tahoe, CA), T. Y. Lin and X. Qian, Eds. Chapman & Hall, London, UK,
136–151.

THOMSEN, D. 1991. Role-based application design and enforcement. In Database Security IV,
Status and Prospects, S. Jajodia and C. Landwehr, Eds. Elsevier North-Holland, Inc., New
York, NY, 151–168.

TING, T. 1988. A user-role based data security approach. In Database Security: Status and
Prospects, C. Landwehr, Ed. Elsevier North-Holland, Inc., New York, NY, 187–208.

TING, T., DEMURJIAN, S., AND HU, M.-Y. 1992. Requirements, capabilities and functionalities
of user-role based security for an object-oriented design model. In Database Security V,
Status and Prospects, C. Landwehr and S. Jajodia, Eds. Elsevier North-Holland, Inc., New
York, NY.

VON SOLMS, S. H. AND VAN DER MERVE, I. 1994. The management of computer security profiles
using a role-oriented approach. Comput. Secur. 13, 8, 673–680.

Received: October 1997; revised: June 1998; accepted: October 1998

The Role Graph Model and Conflict of Interest • 33

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.


