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ABSTRACT
Many healthcare organizations have transited from their old
and disparate business models based on ink and paper to a
new, consolidated ones based on electronic patient records.
There are significant demands on secure mechanisms for col-
laboration and data sharing among clinicians, patients and
researchers through clinical information systems. In order to
fulfil the high demands of data protection in such systems,
we believe that access control policies play an important role
to reduce the risks to confidentiality, integrity, and availabil-
ity of medical data. In this paper, we attempt to formally
specify access control policies in clinical information systems
which are highly dynamic and complex environments. We
leverage characteristics of temporal linear first-order logic to
cope with dynamic access control policies in clinical infor-
mation systems.

Categories and Subject Descriptors
H.2.7 [Information Systems]: Database Administration—
Security, Integrity, and Protection

Keywords
Authorisation constraints, LTL, healthcare environments
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The widespread use of clinical information systems and
specifically the introduction of electronic patient records
(EPRs) have brought about concerns about the confidential-
ity, integrity, and availability of medical data. In EU coun-
tries there are strong data protection laws that are based
upon the principle of patient consent [6]. Access to patient
data is only allowed if the patient has given his consent be-
fore. In paper-based systems the main threat was that an
adversary breaks into a physician’s office and fetches the pa-
tient records. With the advent of the EPR, this situation
changed: the adversary could conveniently obtain the EPR
starting his attack from a distant computer that need not
even belong to the hospital at all. Nevertheless, it is im-
portant to note that the attacker might be rather an insider
than a hacker from the outside.

Lack of privacy can be damaging to both the patient and
the organisation concerned. This situation may be even
worse when smartcards containing information about drug
prescriptions or parts of the EPR will be introduced as in-
tended by the German government [9]. Specifically, in this
case there should be adequate measures to prevent unautho-
rised persons (like health insurers or employers) from read-
ing certain patient data.

As argued elsewhere [23, 7] role-based access control (RBAC)
is a promising technology for managing and enforcing se-
curity in large-scale distributed systems. Most clinical in-
formation systems now support RBAC concepts, but these
mechanisms are mostly rudimentary such that advanced con-
cepts like role hierarchies and authorisation constraints are
still missing.

Moreover, often a centralised approach for data sharing
is implemented where a security officer has the responsibil-
ity to manage sharing of sensitive information. However,
a decentralised approach is more suitable where each clini-
cian decides on her own to share her data with other clin-
icians without directly involving the security officer. Thus
delegation of access rights is an important concept in the
healthcare domain. As a consequence, we must deal with
highly dynamic security policies for access control in clinical
information systems.

In [25] a role-based architecture for delegation in clini-
cal information systems has been described. Other forms of
authorisation constraints relevant to the healthcare domain
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are context constraints [11], temporal constraints [3] and
workflow constraints [4]. Through the combination of differ-
ent constraints, complex security policies can be formulated,
specifically when dynamic security policies are considered.
Often it is not clear what the consequences of these policies
are. Hence the topic of this paper is the formal specification
of dynamic security policies for clinical information systems.
Based on these specifications, a formal verification of certain
properties of these policies can be done later.

The authors consider first-order linear temporal logic (LTL)
[14] a good formalism for specifying dynamic behaviour of
security policies consisting of delegation constraints or con-
straints which mandate a certain order of task execution
as needed for workflows. Furthermore, first-order LTL has
been intensively studied in the literature [17, 14] and comes
with standard tools like the Stanford prover [16].

The paper is organised as follows: Section 2 gives a short
overview of RBAC and first-order LTL. In section 3 typical
authorisation constraints for clinical information systems are
discussed and formally specified in first-order LTL. Section
4 presents two example security policies for typical clinical
business processes specified in first-order LTL and Section 5
summarises and gives an outlook on future work.

2. RBAC AND FIRST-ORDER LTL
We first describe role-based access control (RBAC) as a

promising technology to efficiently deal with access control,
introduce first-order LTL and show subsequently how RBAC
security policies can be elegantly specified in first-order LTL.

2.1 RBAC
RBAC has received considerable attention as an alterna-

tive to traditional discretionary and mandatory access con-
trol. The explicit representation of roles greatly simplifies
the security management and makes possible to use well-
known security principles like separation of duty and least
privilege [23]. Furthermore, an RBAC standard has been
proposed [8], which is based on the RBAC96 model intro-
duced by Sandhu et al. [23].

The RBAC96 model has the following basic components:

• Users, Roles, P, S (sets of users, roles, permissions,
activated sessions)

• UA ⊆ Users × Roles (user assignment)

• PA ⊆ Roles × P (permission assignment)

Users may activate a subset of the roles they are assigned
to in a session. P is the set of ordered pairs of operations
and objects. In the context of security and access control
all resources accessible in an IT-system (e.g., files, database
tables, etc.) are named by the notion object. An operation
is an active process applicable to objects (e.g., read, write,
append, etc.). The relation PA assigns to each role a subset
of P . So PA determines for each role the operation(s) it
may execute and the object(s) to which the operation in
question is applicable for the given role. Thus any user
having assumed this role can apply an operation to an object
if the corresponding ordered pair is an element of the subset
assigned by PA to the role.

2.2 Specification of RBAC in First-order LTL
We now introduce temporal RBAC as a formalism that

combines RBAC with states [18]. This allows for talking

spec TemporalRBAC =
sorts Users, Sessions, Roles, Operations, Objects
rigid op user : Sessions → Users;
flexible preds UA : Users × Roles;

PA : Operations × Objects × Roles;
active in : Roles × Sessions;

exec : Sessions × Operations × Objects

forall r : Roles; s : Sessions; op : Operations; obj :
Objects

• (3r active in s) ⇒ UA(user(s), r)
• �(exec(s, op, obj ) ⇒

∃r : Roles . r active in s ∧ PA(op, obj , r))
• �(auth(u, op, obj ) ⇒

∃s : Sessions; r : Roles . user(s) = u ∧
r active in s ∧ PA(op, obj , r))

end

spec RichTemporalRBAC = TemporalRBAC then
flexible preds active for : Roles × Users;

exec : Users × Operations × Objects

forall r : Roles; u : Users; op : Operations; obj :
Objects

• �(r active for u ⇔
∃s : Sessions . user(s) = u ∧ r active in s)

• �(exec(u, op, obj ) ⇔
∃s : Sessions . user(s) = u ∧ exec(s, op, obj ))

end

Figure 1: Temporal-logic RBAC, formalized within

temporal first-order logic.

about things such as the execution history or order of exe-
cutions, as in [13], while still being much simpler than [13].
Temporal-logic RBAC is based on temporal first-order logic,
a logic that has been intensively studied in the literature [17,
14].

A temporal first-order signature consists of a set of sorts,
a set of function symbols and a set of predicate symbols
(each symbol coming with a string of argument sorts and,
for function symbols, a result sort). Function and predicate
symbols are partitioned into rigid and flexible symbols: the
former do not change over time, while the latter may vary.

Sentences are the usual first-order sentences built from
equations, predicate applications and logical connectives and
quantifiers ∀, ∃. Additionally, we have the modalities � (al-
ways in the future), 3 (sometimes in the future) and , (in
the next step). The corresponding past modalities are �- , 3-

and ,- .
We now specify RBAC in first-order LTL (see Figure 1).

The function user is rigid (i.e., do not depend on the state),
while the predicates UA, PA, active in and exec are flex-
ible (i.e., do depend on the state). Hence, exec traces the
operations performed: exec(s, op, obj) means that session s

executes operation op on object obj in the present (implicit)
state. UA has been defined as a flexible predicate in order to
express delegation constraints (cf. section 3.2). auth means
that a user u may be permitted to execute operation op on
object o.

3. AUTHORISATION CONSTRAINTS FOR
CLINICAL INFORMATION SYSTEMS

In the following, we discuss and then formally specify au-
thorisation constraints that can be seen as the foundation
of a security policy for clinical information systems such as
context constraints, constraints for delegation, grant con-
straints, and order-based workflow constraints. The focus
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of this section lies on delegation concepts which make pos-
sible possible information sharing as often required in the
healthcare domain.

3.1 Context Constraints
Role-based systems usually treat roles as static attributes

or at least attributes that change infrequently. That is, we
might not allow the following scenario: A hospital employee
works as a doctor in the morning, as a billing clerk in the
afternoon, and then as a doctor again the next day. As a
result, roles are usually defined with a fixed set of permis-
sions. Unfortunately, in a healthcare setting, permissions
assigned to a role are not always static. Sometimes the
permissions assigned to a role should be given depending
on what the member of the role is currently doing, or the
security-related contexts. For example, suppose a hospitals
privacy policy grants access to sensitive patient information
only to the patient’s Primary Care Physician (PCP). What
permissions should be assigned to the role of PCP? It is in-
appropriate to grant the permission to all patients’ records
to PCP. A doctor should be granted the permissions as-
signed to the PCP of a patient only when the patient has
designated him as the PCP. Therefore, we need to dynami-
cally assign a set of permissions to a role at run-time. This
dynamic permission assignment is achieved by applying an-
chored context constraints during the role activation pro-
cess in a session. Traditional RBAC permission activation
has three steps. At first, a user presents suitable credentials
to complete the identification and authentication procedure;
then the user has to select a subset of roles from the assigned
role set for activating in current session; finally, a particular
set of permissions assigned to the subset of roles is granted
to the user. In order to apply context constraints, we pro-
pose to change the traditional permission activation process
as follows. After successful authentication, the user selects
a subset of roles for activating in current session. The an-
chored context constraints from the user are retrieved and
applied at role activation; after successful role activation,
the anchored context constraints further are applied to per-
missions of the activated roles; finally a particular set of
permissions is granted to the user.

In order to conveniently formulate context constraints for
clinical information systems, we introduce additional pred-
icates and sorts (cf. Figure 2). The meaning of these sorts
and predicates is as follows:

• Patients – a sort that represents patients

• Locations – a sort that represents locations (like a
department of a hospital)

• location(r, l) – true if l is the current location of role r

(e.g., role Clinician belongs to department Radiology)

• patient(r, p) – true if p is the patient of role r (e.g.,
role ReadEPR refers to patient (Mary))

• patient(u, p) – true if p is the patient of clinician u

• location(o, l) – true if l is the current location of ob-
ject o (e.g., EPR currently belongs to department
Radiology)

• patient(o, p) – true if p is the patient of object o (e.g.,
EPR is the electronic patient record belonging to Mary)

spec ContextTemporalRBAC=RichTemporalRBAC

sorts Patients, Locations;
flexible preds location : Objects × Locations;

location : Roles × Locations;
location : Users × Locations;
patient : Users × Locations;

rigid pred patient : Objects × Patients;
patient : Roles × Patients;
isEPR : Objects;
isClinician : Roles;

end

Figure 2: Sorts and predicates for context con-

straints.

• location(u, l) – true if l is the location of user u

We could also have replaced the predicate location(u, l) by
defining a location-specific role that indicates that user u is
currently on department l. The user could then activate that
role when she is on this department. However, for reasons
of simplicity we use the predicate location(u, l) extensively
in the subsequent example security policies. The auxiliary
predicates isClinician() and isEPR() in Figure 2 are only
introduced due to technical reasons, i.e., to indicate that
some roles and objects are of certain additional types (in
this case, Clinician and EPR).

The actual context constraints can be expressed by the
location and patient predicates. Note the location predi-
cates and the patient(u, p) predicate are defined as flexible,
whereas the other patient predicates are not. The reason for
this decision is that the former predicates can change over
time (for example, if a user moves to a different department
or if a different clinician is now responsible for the patient).
Since patient data (like those of the EPR) always belong to
the same patient, the other patient predicates are defined
rigid.

With help of the aforementioned predicates we can for-
mulate context constraints relevant to clinical information
systems. Consider, for example, the dynamic permission as-
signment described above. The formal specification of this
rule is as follows:

forall u : Users, o : Objects, op : Operations,

r : Roles, p : Patients;
2[UA(u, r) ⇒ (PA(o, op, r) ∧ patient(o, p)
⇒ r active for u ∧ patient(u, p))]1

A further security policy rule, which could be implemented
in a clinical information system, is ”Clinicians may only read
EPRs which belong to their department.” This rule can be
formally specified in a way similar to the aforementioned
example, using the dynamic auth predicate and the context
predicates:

forall u : Users, dep : Locations, epr : Objects;
auth(u, read, epr) ∧ isEPR(epr) ⇒ (location(epr, dep)
⇒ location(u, dep))

3.2 Delegation
Delegation is an important factor to accommodate afore-

mentioned requirements for secure distributed computing
environment. There are many definitions of delegation in
the literature [2, 12, 10]. In general, it is referred to as one
active entity in a system delegates its authority to another
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entity to carry out some functions on behalf of the former.
Over the years, researchers have proposed a variety of dis-
tributed access control mechanisms. Delegation has been
recognised as one of mechanisms to support access manage-
ment in a distributed computing environment [1].

Zhang et al. [25] introduced RDM2000 (role-based dele-
gation model 2000) for user-to-user delegation in role-based
systems. We use RDM2000 model to specify role-based dele-
gation policies in clinical information systems. It formalises
the relationship between two user assignments that form a
delegation relation (DLGT). It also includes sets of three
elements: original user assignments UAO, delegated user
assignment UAD, and constraints. The motivation behind
this relation is to address the relationships among differ-
ent components involved in a delegation. In a user-to-user
delegation, there are four components: a delegating user, a
delegating role, a delegated user, and a delegated role. A
delegation relation is one-to-many relationship on user as-
signments. It consists of original user delegation (ODLGT)
and delegated user delegation (DDLGT). We assume each
delegation relation may have a duration constraint associ-
ated with it. If the duration is not explicitly specified, we
consider the delegation as permanent unless another user
revokes it.

In some cases, we may need to define whether or not each
delegation can be further delegated and for how many times,
or up to the maximum delegation depth. We introduce two
types of delegation: single-step delegation and multi-step
delegation. Single-step delegation does not allow the del-
egated role to be further delegated; multi-step delegation
allows multiple delegations until it reaches the maximum
delegation depth. The maximum delegation depth is a nat-
ural number defined to impose restriction on the delegation.

Another characteristic of delegation according to Barka
and Sandhu [2] is monotonicity. Monotonicity refers to the
state of authorisation that the delegating role member pos-
sesses after delegation. Monotone delegation means that
upon delegation the role member maintains the power of his
or her role. On the other hand, with a non-monotone del-
egation, the delegating role member loses the power of the
delegated role (at least for the duration of the delegation).

As can be concluded from the above discussion, delegation
is a central concept for information sharing. However, due
to the strict privacy rules to be enforced in clinical informa-
tion systems, information sharing should only be possible
under certain conditions and should hence be restricted by
appropriate authorisation constraints.

Subsequently, we formalise several basic variants of dele-
gation relevant to clinical information systems in first-order
LTL. In particular, we use the UAO, UAD, and UA predi-
cates following the terminology mentioned above. The rela-
tionship between UAO, UAD, and UA is presented in Fig-
ure 3. Authorisation constraints are represented by addi-
tional predicates (conditions).

First, we formally specify non-monotone delegation in LTL,
i.e., user u delegates role r to user u1 and loses at the same
time the power of the delegated role r:

forall u, u1 : Users, r, r1 : Roles;
delegateNonMon(u, r, u1, r1, ...) ⇔
[UAO(u, r) ∧©UA(u1, r1) ∧ ¬UA(u1, r) ∧ cond

⇒ ©(UAD(u1, r) ∧ ¬UA(u, r))]

¬UA(u1, r) is required here because it is not useful to dele-

gate role r to a user u1 who has already been assigned to this
role. Moreover, u must obviously belong to r before/during
delegation. However, often u1 should hold the power of a
certain role r1 on the delegation process 2, and there some-
times also exist additional conditions (e.g., temporal con-
straints, constraints concerning the delegation depth) which
are to be satisfied to enable the delegation process. These
conditions are represented by the cond statement3, which is
a first-order LTL formula. The ellipsis ... in the parameter
list denotes further parameters which depend on cond. Sev-
eral examples of additional conditions can be found below
(cf. sections 4.1 and 4.2).

Following the RDM2000 model, we have specified the ODLGT
variant of non-monotone delegation. The DDLGT variant
can easily be defined by using the UAD relation instead of
UAO for the delegating user. Of course, similar remarks
apply to the delegation predicates defined below.

Non-monotone delegation is required for clinical informa-
tion systems when a patient is transferred from one hospi-
tal department to another. In this case, the EPR must be
passed on to a different clinician while the former clinician
loses this responsibility at the same time.

However, monotone delegation is another relevant concept
for clinical security policies, for example, when a physician
consults a specialist. Here, the former physician still holds
the power of the PCP role, but simultaneously delegates
at least a part of her PCP access rights to the consulting
specialist.

Monotone delegation can now formally be specified in the
following way:

forall u, u1 : Users, r, r1 : Roles;
delegateMon(u, r, u1, r1, ...) ⇔
[UAO(u, r) ∧©UA(u1, r1) ∧ ¬UA(u1, r) ∧ cond

⇒ ©(UAD(u1, r) ∧ UAO(u, r))]
In the sections above we have specified delegation policies.
Strictly speaking, delegation as defined above holds only for
one step. Hence, it is also necessary to formulate a rule for
maintaining delegation. This can be done as follows:

forall u : Users, r : Roles;
maintain(u, r, ...) ⇔ [UAD(u, r) ∧ cond ⇒ ©UAD(u, r)]

Delegation is maintained as long as some condition cond is
satisfied. For example, a user must be assigned to a certain
prerequisite role, otherwise the power of the delegated role
would be lost. cond could also be a duration restriction
constraint, and in case of permanent delegation (no duration
restriction) cond could clearly be set to true.

3.3 Revocation
Several different semantics are possible for user revoca-

tion. Hagström and others [15] categorised revocations into
three dimensions in the context of owner-based approach:
global and local (propagation), strong and weak (dominance),
and deletion or negative (resilience). Barka and Sandhu [2]
further identified user grant-dependent and grant-independent
revocation (grant-dependency). We articulate user revoca-

2More precisely, ”on the delegation process” means here
”immediately after the delegation step” as expressed by
©UA(u1, r1). This formulation will be used several times
in the following specifications and examples.
3Clearly, the cond statement is somewhat semi-formal and
has been introduced for the sake of readability.
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spec DelegateTemporalRBAC=ContextTemporalRBAC

flexible preds location : Objects × Locations;
UA : Users × Roles;
UAD : Users × Roles;
UAO : Users × Roles;
... further predicates such as delegateNonMon

forall u : Users; r : Roles
• UAD(u, r) ∨ UAO(u, r) ⇔ UA(u, r)
• ¬(UAD(u, r) ∧ UAO(u, r))
• ... see text

end

Figure 3: Predicates for delegation.

tion in the following dimensions: grant-dependency, propa-
gation, and dominance. Grant-dependency refers to the le-
gitimacy of a user who can revoke a delegated role. Grant-
dependent revocation means only the delegating user can
revoke the delegated user from the delegated role member-
ship. Grant-independent revocation means any original user
of the delegating role can revoke the user from the delegated
role. Dominance refers to the effect of a revocation on im-
plicit/explicit role memberships of a user. A strong revoca-
tion of a user from a role requires that the user be removed
not only from the explicit membership but also from the im-
plicit memberships of the delegated role. A weak revocation
only removes the user from the delegated role (explicit mem-
bership) and leaves other roles intact. Strong revocation is
theoretically equivalent to a series of weak revocations. To
perform strong revocation, the implied weak revocations are
authorised based on revocation policies. However, a strong
revocation may have no effect if any upward weak revoca-
tion in the role hierarchy fails [22]. Propagation refers to the
extent of the revocation to other delegated users. A cascad-
ing revocation directly revokes a delegated user assignment
in a delegation relation and also indirectly revokes a set of
subsequent propagated user assignments. A non-cascading
revocation only revokes a delegated user assignment.

Revocation is an essential element of security policies in
the healthcare domain. For example, a specialist should
be revoked from the role ReadERP after the consultation
has been done. When a patient leaves the hospital, we also
need revocation such that all the clinicians who treated the
patient should lose the power to read patient data (at least,
after a certain while).

A formal specification of a simple revocation rule is given
below:

forall u : Users, r : Roles;
revoke(u, r, ...) ⇔ [UAD(u, r) ∧ cond ⇒ ©¬UAD(u, r)]
The abbreviation cond means in this context if an appro-

priate condition holds, the role r is revoked from user u.
For example, in order to read a patient’s EPR, the clinician
must belong to the same department as that of the patient,
otherwise the power of this role is lost.

3.4 Grant Constraints
In clinical information systems there often arises the situ-

ation that a user u grants a role r to a user u1, while u does
not necessarily hold the role herself. Compare this with the
aforementioned delegation policies where it is a prerequisite
that the delegator holds the role to be delegated.

One example of this situation is the admission of a pa-

tient at the hospital reception. The receptionist passes the
patient’s EPR to the department where the patient should
be treated. On the other hand, the receptionist is certainly
allowed to enter clerical patient data, but cannot see any
medical data. Another example is the health card (”Gesund-
heitskarte”), which will be introduced by the German gov-
ernment: The patient may grant the right to read certain
patient data to a doctor he trusts. On the other hand, the
patient is not permitted to read his own patient data with-
out authorisation by a doctor (this shall, for example, pre-
vent the patient from doing any harm to himself in case he
misunderstands his patient/diagnosis data).

The formal specification of this grant constraint is given
below:

forall u, u1 : Users, r, r1, ar : Roles;
grant(u, ar, u1, r1, r, ...) ⇔
[UA(u, ar) ∧©UA(u1, r1) ∧ ¬UA(u1, r) ∧ u 6= u1 ∧ cond

⇒ ©UA(u1, r)]

In this case, u does not necessarily belong to r, but to
an administrative role ar. Of course, other security poli-
cies based upon administrative models (e.g., ARBAC97 [22],
URA02 and PRA02 [21]) can also be elegantly formulated
by first-order LTL because this calculus is well-suited to de-
scribing dynamic behaviour like that inherent in the admin-
istrative security policies. Roles obtained via the granting
mechanism can also be revoked in a way similar to the revo-
cation of delegated roles (refer to section 3.3). For reasons
of brevity, the formal specification of this kind of revocation
is left out here.

3.5 Order-based workflow Constraints
First-order LTL was employed in [18] in order to formally

specify separation of duty (SoD) security policies where ac-
cess history matters, e.g., dynamic object-based SoD, as pro-
posed by Nash and Poland [19], and history-based SoD [24].
In particular, an exec predicate was introduced which holds
if the operation op is being executed on the object o at
present (cf. section 2.2). Certainly, the exec predicate can
be used to express workflow security policies where tasks are
to be executed by WFMSs (workflow management systems)
[4] in a certain order. In the example workflow given in sec-
tion 4.1 the exec predicate is used several times to specify a
security policy for the workflow of a diagnostic finding.

4. CASE STUDIES
Having enumerated authorisation constraints’ character-

istics of clinical information systems, we now discuss two
examples of security policies for typical clinical business pro-
cesses.4

The first example is a workflow for a diagnostic finding,
and the second deals with passing on the EPR between dif-
ferent hospital departments.

4.1 Diagnostic Finding
The workflow for the diagnostic finding is presented in

Figure 4. The tasks the workflow consists of, and the autho-
risation constraints of the single steps are informally defined
in the following way:

4However, it should be stressed that there might be different
security policies in other hospitals.
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1. A clinician responsible for the patient (PCP) requests
a diagnostic finding from a clinician of a different de-
partment (in our case here, radiology).

2. After the patient has been examined, the clinician re-
sponsible for the finding writes the finding down. In
addition, having the right to write down the finding
also implies the right to read the finding.

3. The chief physician of the radiology department must
sign this finding.

4. The finding is sent back to the requesting PCP (cf.
step 1) and at the same time the clinician responsible
for the finding loses the power of writing the finding
down (since this should be done when the requesting
clinician wants to read the finding).

Notice that the tasks have to be performed in the order
given in the aforementioned enumeration (order-based con-
straint).

The security policy (consisting of several rules with autho-
risation constraints) for this workflow is depicted in Figure
5. As explained above, the auxiliary predicates isEPR(),
isF inding(), etc. are only introduced to indicate that some
roles and objects are of certain additional types (like PCPs,
findings, EPRs). In addition, the first rule expresses the
permission assignment for the finding-related roles. The

grant WriteFinding role

delegate ReadFinding role

revoke WriteFinding role

Role: Radiologist

Role: PCP

Role: PCP

Role: WriteFinding

Role: ChiefPhysician

write finding

sign finding

Figure 4: The diagnostic finding workflow.

other rules are the formal pendants of the authorisation con-
straints which have been informally described above. Thus,
the second rule states that a user who possesses the power
of writing down the diagnostic finding at the same time is
permitted to read this finding. In the third rule we rather
employ the concept of granting a role than that of delega-
tion, since the requesting clinician (PCP) is in most cases
not competent to perform the diagnostic finding herself. The
radiologist may only write down the finding if she has ob-
tained the power for the appropriate role (WriteF inding)
from the patient’s PCP before. Furthermore, several con-
text constraints are required for this granting process which
serve as preconditions. These context constraints are in par-
ticular used to indicate that it is patient p’s PCP and that
p resides actually on the same department as the PCP 5.

5Observe that ”p’s current department” is expressed by

Finally, ,- false means that there are no preceding worlds,
i.e., we consider here the start of the workflow (cf. step 1).

The fourth rule expresses the fact that the chief physician
(of the radiology department) can only sign the finding if
there exists a user who must have written down the find-
ing one step before. The fifth rule means that a radiologist
can only delegate the role ReadF inding to the requesting
clinician (cf. exist part of this rule) after the finding has
been signed by the chief physician of the radiology depart-
ment. We have decided to apply monotone delegation here
because the radiologist should also have the right to read
the finding after the delegation process (at least for a certain
while). The last rule states that the finding physician loses
the power of the WriteF inding role when the ReadF inding

role is being delegated back to the requesting clinician.
To sum up, the security policy emphasises the relevance

of compositional constraints within the healthcare domain:
The grant predicate is only true if the granting user is pa-
tient p’s PCP and the PCP is on the same department as p

(context constraints). In addition, the WriteF inding role
may only be delegated back to a user u if u is p’s PCP, u is
on the same department as p and the finding has been signed
one step before (context and order-based constraints). As a
consequence, we must cope with a quite complex dynamic
policy where the UA relation changes over time and where
the policy is composed of different types of constraints.

In the next section, we give another example for a business
process relevant to clinical information systems, namely, pass-
ing on the EPR from one hospital department to another.

4.2 Passing on the EPR
In several clinical information systems the EPR has been

or will be introduced soon. Owing to the fact that patients
are often transferred from one department (say, a urological
department) to another (say, intensive care unit) the EPR
must also be passed on to the patient’s new department.
Several conditions (authorisation constraints) must be ful-
filled in order to imitate the paper-based patient record. We
now give the following constraints involved in the process of
passing on a patient’s EPR:

• A parameterised role respEPR (with the patient as
the parameter) is defined, which includes delegate rights
for the EPR as well as read and append rights. respEPR

expresses the responsibility for a certain EPR, which
belongs to a unique patient. Hence, the role respEPR

and the object epr must be parameterised by the same
unique patient (context constraint).

• The receptionist of the hospital is responsible for pass-
ing on the EPR to the department where the patient
shall be treated. However, the receptionist must not
be assigned to the respEPR role. Thus, we can for-
mulate this with the grant predicate:

forall u, u1 : Users, respEPR, clinician : Roles,

dep : Locations;
grant(u,Receptionist, u1, clinician, respEPR,dep) ⇔
[UA(u, Receptionist) ∧©UA(u1, clinician) ∧ u 6= u1∧
¬(UA(u1, respEPR))∧ cond ⇒ ©UA(u1, respEPR)]

In addition, the following condition must be satisfied:

location(epr, dep), assuming that the EPR is always on the
same department as p.
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spec DiagnosticFindingWorkflow = DelegateTemporalRBAC
rigid ops read , write, sign : Operations;

ReadFinding , WriteFinding , ChiefPhysician, Radiologist : Roles;

rigid preds isFinding : Objects; isPCP : Roles;

flexible preds delegateMon : Users × Roles × Users × Roles × Objects × Locations × Patients;
grant : Users × Roles × Users × Roles × Roles × Objects × Locations × Patients × Objects;
revoke : Users × Roles × Users × Roles × Roles × Objects × Locations × Patients;

forall u, u1 , u2 : Users; p : Patients; pcp : Roles; epr , finding : Objects; dep : Locations;
• ((PA(write, finding , WriteFinding) ⇔ isFinding(finding)) ∧ ((PA(read , finding ,ReadFinding) ⇔ isFinding(finding))

∧ ((PA(sign, finding ,ChiefPhysician) ⇔ isFinding(finding))

• UA(u, WriteFinding) ⇒ UA(u, ReadFinding)

• grant(u, pcp, u1 , Radiologist , WriteFinding , finding , dep, p, epr) ⇔
(UA(u, pcp) ∧©UA(u1 , Radiologist) ∧ ¬UA(u1 , WriteFinding) ∧ u 6= u1 ∧ cond ⇒ ©UA(u1 , WriteFinding))
with
cond = isEPR(epr) ∧ isPCP(pcp) ∧ isFinding(finding) ∧ patient(epr , p) ∧ patient(pcp, p) ∧ patient(finding , p) ∧
©(location(epr , dep) ∧ location(pcp, dep)) ∧ ,- false

• auth(u2 , sign,finding) ⇒ ∃u′ : Users. ,- exec(u′
, write,finding)

• delegateMon(u1 , ReadFinding , u, pcp, finding , epr , dep, p) ⇔
(UAO(u1 , ReadFinding) ∧©UA(u, pcp) ∧ ¬UA(u, ReadFinding) ∧ cond
⇒ ©(UAD(u, ReadFinding) ∧ UAO(u1 , ReadFinding)))
with
cond = isEPR(epr) ∧ isPCP(pcp) ∧ isFinding(finding) ∧ patient(epr , p) ∧ patient(pcp, p) ∧ patient(finding , p) ∧
©(location(epr , dep) ∧ location(pcp, dep)) ∧ ∃u′ : Users. ,- (exec(u′

, sign, finding) ∧ UA(u′
, ChiefPhysician))

• revoke(u1 , WriteFinding , pcp, finding , epr , dep, p) ⇔ (UA(u1 , WriteFinding) ∧ cond ⇒ ©¬UA(u1 , WriteFinding))
with
cond = ¬(isEPR(epr) ∧ isFinding(finding) ∧ isPCP(pcp) ∧ patient(pcp, p) ∧ patient(finding , p) ∧ patient(epr , p) ∧
© (location(epr , dep) ∧ location(pcp, dep)) ∧ ∃u′ : Users.delegateMon(u1 , ReadFinding , u′

, pcp, finding , epr , dep, p))
end

Figure 5: Security policy for the diagnostic finding workflow, formalised within temporal first-order logic.

cond = ,- false ∧ isRespEPR(respEPR)∧
isClinician(clinician) ∧©location(u1, dep)∧
∀u′ : Users.¬UA(u′, respEPR).

Here again, ,- false means we have no further worlds
before, i.e., we consider the moment of patient admis-
sion. Furthermore, ∀u′ : Users.¬UA(u′, respEPR)
means that no user is assigned to the role respEPR

at the beginning. This in particular holds for the re-
ceptionist.

The constraints enumerated below could be formally
specified in a similar way. However, due to space limi-
tations the formal specifications are left out from now
on.

• The receptionist may pass a patient’s EPR (i.e., grant
the role respEPR) at most to one clinician.

• The EPR is passed on from one department to another
if the patient is transferred to a different department.
At the same time, the clinician of the former depart-
ment who was responsible for the EPR loses the role
respEPR while a clinician of the latter department
gains this power (non-monotone delegation).

• Monotone delegation is allowed, but only if a clinician
wants to delegate the role respEPR within her own
department.

The formalisation of the authorisation constraints can be
helpful for the implementation of clinical information sys-
tems in two ways. Firstly, the calculus can be used for pol-

icy analysis, i.e., to deduce certain properties of the security
policies (statically). For example, we could try to prove
the lemma ”If the role respEPR is assigned or delegated
to different users, they must necessarily belong to the same
department”. The correctness of this proof can then be as-
sured by employing a theorem prover such as Isabelle [20].
First work in this direction has been presented in [5] where
first-order LTL has been embedded into Isabelle. Verifying
healthcare security policies remains future work.

Secondly, the formal specifications can be used as a recipe
for the implementation of security mechanisms for clinical
information systems. For example, the rules/constraints
presented above give a blueprint of how a patient’s EPR
can be passed on between different hospital departments or
between the hospital archive and the departments. Note,
since the receptionist may only see cerical data or pass on
the EPR, this grant rule is even more strict than the pen-
dant for the paper-based business process. In the paper-
based variant, clearly the receptionist has the opportunity
to look into the patient record, violating the principle of
least privilege.

5. CONCLUSION AND OUTLOOK
We formally specified authorisation constraints character-

istic of clinical information systems, in particular, delega-
tion, revocation, order-based and context constraints. We
further demonstrated with the help of two example busi-
ness processes how first-order LTL can be employed to ele-
gantly specify more complex security policies which consist

338



of different types of authorisation constraints. First-order
LTL is specifically well-suited to expressing highly dynamic
policies like delegation where the UA relation changes over
time. The authors hope that the specification of such secu-
rity policies helps in providing a recipe for the implemen-
tation of dynamic access mechanisms required for clinical
information systems.

In the future we could consider more complex and realis-
tic security policies, e.g., how the health card, which will be
introduced in Germany, might be integrated with the EPR.
In addition, we could identify new types of authorisation
constraints relevant to the healthcare domain in order to
define an encompassing security policy for clinical informa-
tion systems. Last but not least, it could be systematically
analysed which kind of properties of security policies can be
deduced statically and employ the theorem prover Isabelle
for this verification purpose.
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