A Reference Monitor for Workflow Systems
with Constrained Task Execution

Jason Crampton

Information Security Group, Royal Holloway, University of London

ABSTRACT

We describe a model, independent of any underlying access
control paradigm, for specifying authorization constraints
such as separation of duty and cardinality constraints in
workflow systems. We present a number of results enabling
us to simplify the set of authorization constraints. These re-
sults form the theoretical foundation for an algorithm that
can be used to determine whether a given constrained work-
flow can be satisfied: that is, does there exist an assignment
of authorized users to workflow tasks that satisfies the au-
thorization constraints? We show that this algorithm can be
incorporated into a workflow reference monitor that guaran-
tees that every workflow instance can complete. We derive
the computational complexity of our algorithm and compare
its performance to comparable work in the literature.

Categoriesand Subject Descriptors

H.2.7 [Database Management]: Database Admin-
istration—=Security, integrity and protection; K.6.5
[Management of Computing and Information

Systems]: Security and Protection

General Terms
Security, Theory

Keywords

workflow system, reference monitor, entailment constraint,
authorization constraint

1. INTRODUCTION

A workflow is a representation of an organizational or
business process and is typically specified as a set of tasks
and a set of dependencies between the tasks. The depen-
dencies fall into two broad categories: those determined by
the application logic of the workflow such as the order of
execution of the tasks [9], and those determined by security

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

SACMAT 05, June 1-3, 2005, Stockholm, Sweden.

Copyright 2005 ACM 1-59593-045-0/05/0006 ...$5.00.

38

requirements. In this paper we concentrate on the second of
these categories, which includes authorization constraints,
such as separation of duty requirements, where two differ-
ent users must execute two different tasks, and binding of
duty constraints, in which the same user is required to per-
form two different tasks. Cardinality constraints, which re-
quire that certain tasks are performed a certain number of
times, have also been considered in the context of authoriza-
tion [2]. There are at least four questions that are of interest
when considering workflow systems with authorization con-
straints: How do we specify constraints? How do we ensure
that a workflow specification with constraints is satisfiable?
How do we design a reference monitor that ensures the con-
straints are satisfied? How do we ensure that granting a
request to a particular user does not prevent a workflow in-
stance from completing? There exist several specification
schemes in the literature for authorization constraints [1, 2,
3, 4, 8, 11] in computerized workflow systems, but less work
has been done on satisfiability [2, 10].

Arguably the most sophisticated approach to these ques-
tions is due to Bertino, Ferrari and Atluri [2], henceforth
referred to as the BFA model, which describes the specifica-
tion and enforcement of authorization constraints in work-
flow management systems. The BFA model defines a work-
flow role specification to be a list of task role specifications.
A task role specification identifies a task, specifies the roles
authorized to perform the task, and the maximum number
of activations of the task that are permitted in an instance
of the workflow.

Let us consider a simple workflow forming part of a pur-
chase ordering and financial system. There are six tasks
involved in ordering and paying for goods:

e the creation of a purchase order requesting goods from
a supplier (crtP0);

e the approval of the purchase order prior to despatch
to the supplier (apprP0);

e the acknowledgement of delivery of the goods by sign-
ing a goods received note (signGRN);

e the acknowledgement of delivery by countersigning the
goods received note (ctrsignGRN);

e the creation of a payment file on receipt of the sup-
plier’s invoice for the goods (crtPay);

e the approval of the payment to the supplier (subject
to receipt of goods) (apprPay).

By defining a workflow role specification to be a list, the
BFA model imposes a unique order on the execution of the
tasks in the workflow. We believe this is a limitation of
the BFA model. In the example above, for example, it is
not necessary for the crtPay task to follow the signGRN
task. Indeed, in many cases, the goods and invoice are
dispatched separately by the supplier; the finance depart-
ment processes the invoice, while the recipient of the goods
handles the goods received note (GRN). Nevertheless, the
payment should not be approved until the goods have been
signed for. Hence we obtain a workflow in which the or-
der of execution of certain tasks is not fixed, as depicted in
Figure 1(a). An edge (¢,t') in the diagram indicates that
task ¢ should be performed before ¢’ in each instance of the
workflow. This ordering on the execution of tasks defines
what are sometimes called control-flow dependencies [9]. In
the diagram, crtP0 must precede apprP0, for example, but
the order of execution of signGRN and crtPay, for example,
is not pre-determined.

We also note that neither the BFA model, nor any other
workflow authorization model to our knowledge, models the
conditional execution of workflow tasks. In the purchase
order system, for example, we may only require that the
purchase order is approved if the order value exceeds $10000,
or that a GRN only requires a countersignature if the order
value exceeds $10000.' Finally, we observe that the BFA
model and other similar workflow authorization models [1,
3, 4, 8, 11] confine their attention to separation of duty
constraints, binding of duty constraints and constraints on
the number of executions of a task. However, we might,
for example, additionally require that a purchase order is
approved by someone more senior than and belonging to
the same department as the user who created the purchase
order. To our knowledge, existing constraint specification
schemes do not include such constraints.

Most authorization schemes for workflows are based on
a particular computational model: examples include logic
programs [2, 11], active databases [4] and petri nets [1]. We
introduced a simple specification scheme for authorization
constraints that is independent of an underlying computa-
tional model and showed that it could be used to articu-
late inter alia separation of duty constraints and binding of
duty constraints [6]. In this model, the execution of tasks in
a workflow instance may complete in a variety of different
ways (unlike the BFA model), providing the partial order-
ing on the tasks is respected. However, this model did not
include cardinality constraints. In this paper we present
some new results that provide the theoretical basis for a
reference monitor with considerably lower complexity than
other proposals in the literature. By treating a workflow as
an acyclic, labelled directed graph, we extend our model to
include cardinality constraints on the execution of tasks and
conditional execution of tasks.

In the next section we review our original model for spec-
ifying authorization constraints in workflow systems [6].
In Section 3 we describe an algorithm that can establish
whether a constrained workflow specification is satisfiable.
We show that the algorithm can also be used as the basis
for a reference monitor in workflow management systems. In
Section 4 we extend our model to include cardinality con-

IThere exist workflow models that consider such behaviour,
often called value dependencies [9], but such models do not
consider authorization constraints.

39

straints and conditional execution of tasks, and present a
modified algorithm for this extended model. In the penul-
timate section we compare our approach to the BFA model
and explain why we do not include role-based constraints
in our model. Finally, we summarize our contribution and
discuss future work.

2. A SIMPLE MODEL FOR CON-
STRAINED WORKFLOW SYSTEMS

Let U be a set of users and let Rel(U) denote the set of
all binary relations on U. In other words, Rel(U) is the
powerset of U x U. Given p € Rel(U), let p = {(v,u) :
(u,v) € p}. Note that if p is symmetric, then p = p. If
(X,<) is a partially ordered set, then we write = || y if
L yand y € x. We may write z > y whenever y < x.

DEFINITION 1. A workflow specification is a partially or-
dered set of tasks T. A workflow authorization schema is a
pair (T, A), where A C T x U; u is authorized to perform
(or execute) t iff (t,u) € A.

If t < t' then t must be performed before t' in any in-
stance of the workflow. Generally, task-user pairs will not
be explicitly defined. Instead, A will be inferred from other
access control data structures, such as user-role assignment
and task-role assignment relations [7], or access control lists.
The second approach is analogous to associating a list of
users with transformation procedures (tasks) in the Clark-
Wilson framework [5]. We believe that separating the con-
straint model from the access control mechanism lends our
model greater generality and potentially wider applicability.
In Section 3 we give an example in which role-based access
control data structures are used to generate A.

DEFINITION 2. An entailment constraint has the form
(D, (t,t'),p), where D C U, p € Rel(U) and t 2 t'. D
is the domain of the constraint; t is the antecedent task;
and t' is the consequent task. If users u and u’' perform t
and t', respectively, and u € D, then constraint (D, (t,t), p)
is satisfied iff (u,u’) € p.

Intuitively, an entailment constraint places some restric-
tion on the users who can perform t’ given that u € D has
performed t. Hence a separation of duty constraint that
prevents any user from performing both t and t’ can be ex-
pressed as (U, (t,t'),#), and a binding of duty constraint
that requires t and t' be performed by the same user can
be expressed as (U, (t,t'),=). We specify a domain in order
to handle “weak” separation of duty constraints of the form
“if user bob performed task ti, then bob is not permitted to
perform task t2” [2]. Such a constraint can be expressed as
({pob}, (t1,t2),#). D can also have the form U(r), which is
interpreted as the set of users assigned to role r.

In fact, any binary relation between users can be used
(including those that can be derived from contextual infor-
mation). Hence it is possible to articulate constraints of
the form “tasks t and t' must be performed by two different
users in the same department”. If we assume the existence
of group-based or role-based authorization structures, then
it is possible to induce an ordering (binary relation) on the
set of users determined by the relative seniority of the roles
to which each user is assigned. We anticipate that this sort
of relation will prove particularly important, because it is

natural to implement access control in workflow systems us-
ing role-based techniques [7].

The relation < will be used to denote an order relation
on the set of users, which may be derived, depending on
context, from role information, organizational information
or the user groups to which users belong. In particular, <
can be defined in terms of A in the following way: u < '
iff {t: (t,u) € A} C {t: (t,u’) € A}. Notice that < is a
pre-order (not a partial order, since we may have two users
u# v with u < v’ and u 3= v’). We define u ~ v’ iff u < v’
and u = u’; we say v’ is more senior than v and write u < v’
if u < v and w2 . A constraint of the form (U, (t,t’), <)
requires that t’ is performed by a user more senior than the
one who performed t. Figure 1(b) gives some examples of
entailment constraints that could be defined for the purchase
order workflow. Note that a logical consequence of ¢z and
c3 is that the same person cannot execute the signGRN and
crtPay tasks.

We can also express more complicated security require-
ments within our scheme. Consider the following security
requirement in our purchase order system (assuming the use
of a role-based access control mechanism): “a purchase order
must be approved by a user who is more senior than the user
that created the purchase order, except when the purchase
order is raised by someone who is assigned to the poOfficer
(Purchasing Officer) role, in which case someone assigned to
the fin0fficer (Financial Officer) role must approve the or-
der”. Let UA be the user-role assignment relation. Then we
can express this requirement as the entailment constraint
(U, (crtPO, apprP0), p), where

p={(u,v) 1u <v}U
{(u,v) : (u,po0fficer), (v,fin0fficer) € UA)}.

DEFINITION 3. A constrained workflow authorization
schema is a triple (T, A, C), where C is a set of entailment
constraints. A constrained workflow authorization schema
(T,A,C) is well-formed if ((ti,tj),p) € C and t; || t; im-
plies ((tj,t:),p) € C.

Note that if t; || t;, then the order of execution of t and
t’ is not fixed. Hence we would expect that for a constraint
of the form (D, (t;, t;), p), the relation p will be symmetric,
in which case p = p. For example, p could be # (to spec-
ify separation of duty) or = (to specify binding of duty).
However, we would not expect p to be <, for example, as
the asymmetry of the relation < implies some ordering on t;
and t;. (Of course, the definition of a well-formed workflow
authorization schema does not prohibit the use of < when
t; || tj, but if we were to use it, we must also define the
constraint (D, (t;,t:),>).)

2.1 Linear extensions and execution assign-
ments

Let (X, <) be a partially ordered set. A linear extension
of X is a total ordering of the elements of X that respects
the ordering of the elements in X. In other words, a linear
extension of (X, <) can be interpreted as a list [z1, ..., 2],
where X = {z1,...,2n} and z; < z; in X implies that z;
precedes x; in the list. We denote the set of linear extensions
of X by L(X).

Linear extensions are important in the context of work-
flows because they “linearize” a partially ordered set of

40

tasks.? In other words, a linear extension of T represents
a possible sequence of execution of the tasks in a workflow.
The linear extensions of the workflow in Figure 1(a) are

[crtPO, apprP0, crtPay, signGRN, ctrsignGRN, apprPay],
[crtPO, apprP0, signGRN, crtPay, ctrsignGRN, apprPay],
[crtPO, apprP0, signGRN, ctrsignGRN, crtPay, apprPay].

DEFINITION 4. Let W = (T, A, C) be a constrained work-
flow authorization schema. An execution assignment for W
is a pair (L,a), where L € L(T) and a : T — U is an
assignment of tasks to users. We say (L,) is a valid exe-
cution assignment iff for allt € T, (t,a(t)) € A and for all
(D, (t,t'),p) € C, if u € D then (a(t),alt)) € p.

Generally we will prefer to write L as a list of tasks
[t1,...,tn] and an execution assignment as a list of task-user
pairs [(t1,u1), . . ., (tn, un)] with the understanding that task
t; is performed by wu;. In other words, [(t1,u1),..., (tn, un)]
is a valid execution assignment if (t;,u;) € A, and
(ui,uj) € p whenever ((t;,t;),p) € C and u € D.

2.2 Manipulating entailment constraints

The following three results are all derived using basic set
operations and first appeared in our earlier paper [6].

PROPOSITION 5. LetW = (T, A, {(D1, (t,t"), p), (D2, (t,t'),0)})

be a constrained workflow authorization schema. Then
(L, @) is a valid execution assignment for W iff (L, o) is a
valid execution assignment for (T, A,{D1 U Da, (t,t'), p}).

PRrROPOSITION 6. Let W = (T, A, {(D,(t,t),p)}) be a
constrained workflow authorization schema and define o =
(U\ D) x U. Then (L,a) is a valid ezecution assign-
ment for W iff (L,«) is a valid ezecution assignment for

(T, AU, (t,t), pU0)}).

PROPOSITION 7. LetW = (T, A, {((t,t"), p1), ((t,t'), p2)})
be a constrained workflow authorization schema. Then
(L, @) is a valid execution assignment for W iff (L,) is a
valid execution assignment for (T, A, {((t,t'), p1 N p2)}).

In other words, we can assume that the domain of every
constraint is U (by Proposition 6), and that for each pair of
tasks (t,t') there is a single constraint (by Proposition 7).
Henceforth, therefore, we will write entailment constraints
in the form ((t,t'), p).

At the moment we only consider entailment constraints
to be specifications of security policy requirements such
as separation of duty. However, we can view the autho-
rization information as a set of entailment constraints on
the execution of tasks. In particular, let T = {ti,... ,tn}
and define a;; = U(t;) x U(t;), where U(t) = {u € U :
(t,u) € A}. Then the entailment constraint ((ti,t;),ai;),
is only satisfied if two appropriately authorized users per-
form tasks t; and t;. If there exists an entailment constraint
of the form ((t;,t;), pi;;) then we form the new constraint
((ti,t), pij Naij). More formally, we have the following re-
sult. The proof of this result follows immediately from the
definition of a valid execution assignment and is omitted.

2We note that in certain circumstances, it will be possible
for certain tasks in a workflow to execute in parallel. Specif-
ically, if t and t’ are tasks with t || t' and neither t nor t'
appears in any constraint, then they may be executed in
parallel. Such situations are outside the scope of this paper.

signGRN

e

ctrsignGRN

crtPO apprP0

crtPay apprPay

(a) A purchase order workflow specification

Constraint

Informal semantics

¢1 = (U, (crtP0, apprP0), <)

The user that approves a purchase order must be more senior
than the user that creates it

¢z = (U, (crtP0, signGRN), =)

The user that creates a purchase order must sign for the goods

cs = (U, (signGRN, ctrsignGRN), #)

The user that countersigns the GRN must be different from the
user that signed the GRN

ca = (U, (crtPO, crtPay), #)

The user that creates the purchase order cannot create the
payment for those goods

¢s = (U, (crtPay, apprPay), <)

The user that approves the payment must be more senior than
the user that creates the payment

(b) Entailment constraints

Figure 1: A constrained workflow system for purchase order processing

PROPOSITION 8. Let W = (T, A, {((t,t'),p)}) be a con-
strained workflow authorization schema. Then (L,a) is
a wvalid execution assignment for W iff (L,a) s a wvalid
execution assignment for (T, T x U, {((t,t'),pNa)}), where
o= {(u,u) : (t,u), (¢10) € A},

In other words, we can express all the information required
to make an authorization decision in terms of entailment
constraints. Hence it is sufficient from a theoretical point
of view to consider workflow schemata of the form (T,C),
although, from a practical perspective, it is clearly more
natural to include authorization information. In fact, this
result was the inspiration for the algorithm described in the
next section that forms the basis for our reference monitor.

3. CONSTRUCTING A REFERENCE
MONITOR

Determining whether a request to execute a workflow task
should proceed is typically made by considering the identity
of the requester and the permissions associated with that
person. However, in the case of constrained workflows, it is
important that granting the request should not violate any
constraints. Furthermore, we wish to guarantee that grant-
ing the request does not prevent some other subsequent task
from completing because certain constraints have been ren-
dered unsatisfiable. As a trivial example, consider a work-
flow with only two tasks t; and t2, in which t2 can only be
performed by a particular user u, and we have the require-
ment that the same user must not execute both tasks. Then
any request by u to execute t1 should be denied (even if
she is authorized to execute the task) because no authorized
user can subsequently perform task t2. The BFA model in-
cludes a method for determining whether requests should be

41

permitted. Unfortunately, the procedure is exponential in
the number of tasks. We now show how to create a refer-
ence monitor which runs in time polynomial in the number
of tasks and users.

In general, given a request by u to execute task t in a
partially completed instance of a workflow, there are three
questions a reference monitor could consider:

e Is u authorized to perform t?

e Are all constraints in which t is the consequent task
satisfied for this instance if v performs t?

e Can the workflow complete if u performs t?

The reference monitor must certainly guarantee that the
answers to the first two questions are yes. It is up to the de-
signers of the reference monitor to decide whether the third
question should always have an affirmative answer. Indeed,
researchers have considered overriding (that is, not enforc-
ing) constraints in the event that a workflow cannot com-
plete because of previous task executions and the existence
of constraints [11]. We say a reference monitor is enforce-
ment compliant if it guarantees (for all requests) that the
answers to the first two questions are yes and completion
compliant if it guarantees that the answer to each of the
three questions is yes. We say a constrained workflow autho-
rization schema is satisfiable if there exists a valid execution
assignment (and unsatisfiable otherwise).

LEMMA 9. Let W = (T,A,C) be a well-formed
constrained workflow authorization schema, and let
[(t1,u1), ..., (tn,un)] be a walid execution assignment
for W. Then for any permutation 7 of the integers
{1,...,n} such that [tz(1),...,tz(n)] is a linear extension

of T, [(ta(1)sUn(1)),---» (ta(n)s Un(n))] s a valid execution
assignment for W.

Proof. Consider Ur (i) and Ur(;) and assume without loss of
generality that (i) < 7(j). There are two cases:

e 1< j
In this case the ordering of the tasks t; and t; within

L are preserved in L’. Hence (Un(i), Un(s)) € Pr(i)n(s)
since (ui,u;) € pij-
e i>7

In this case the ordering of the tasks t; and t; within
L is not preserved in L’. Since both L and L’ are
linear extensions, we have t; || t;. Since t; pre-
cedes t; in L, we have (uj,u;) € pji. Moreover, W
is well-formed; by definition, (u;,u;) € pi;. Hence
(Ur (i), Un(s)) € Pr(iym(s)- n

3.1 Establishing workflow satisfiability

A constrained workflow authorization schema is satisfi-
able if there exists a valid execution assignment. The result
of Lemma 9 means that we only need to consider a single
linear extension to check whether a workflow specification
is satisfiable. This enables us to improve on the algorithm
presented in [6]. In particular, given a constrained workflow
authorization schema W = (T, A, C), we specify a single
linear extension [ti,...,tn], called the canonical linear ex-
tension of T.

Figure 2 illustrates an algorithm (written in pseudo-code)
that determines whether a workflow specification has a valid
execution assignment. The algorithm computes V (i, 7) for
each pair (t;,t;), where V(4,7) is the set of users that can
execute t; and t; (in that order) given the authorization in-
formation and the entailment constraints in the schema that
apply to t; and t;. It assumes the existence of a canonical
linear extension in which the tasks are indexed by an integer
between 1 and n = |T|. The basic strategy is to initialize
each V(t) to the set of users that are authorized to perform
t (line 02) and to apply all possible constraints defined for
each pair of tasks, including those derived from authoriza-
tion information (lines 06-07). Essentially, the algorithm
is applying Proposition 8 and computing a new relation for
each entailment constraint. If one of these relations is empty,
then the algorithm terminates prematurely (line 07), since
there does not exist a pair of authorized users that com-
ply with the entailment constraints, and by Lemma 9 there
cannot exist a valid execution assignment for the workflow.
Finally, for each task t we (re-)compute the set of users that
can perform t (lines 09-10).

The overall time complexity of the algorithm is
O(|T|?|U|*), since the number of constraints is O(|T|?) and
the comparison in line 06 is O(|U|*) in the worst case. Note
that the computational complexity of the comparison in line
06 dominates the complexity of the computations required
in lines 09 and 10, which are O(|U|?). Note also that if
rel is # or =, then the computation in line 06 is a simple
comparison of V(i) and V(j) and hence has time complex-
ity O(|U[*). In other words, if we restrict our attention to
separation of duty and binding of duty constraints, then the
overall complexity reduces to O(|T|*|U|?).

42

3.2 A completion compliant referencemonitor

We will write W to denote an instance of the work-
flow W = (T,A,C) and ¢ to denote an instance of task
t € T. An instance W is defined by a list of task-user pairs
[(t1,u1),..., (tk,ur)], where [t1,...,tx] is a prefix of some
linear extension of T and denotes the tasks that have been
completed in W.

We now make the crucial observation that a partially com-
pleted instance of a workflow can be regarded as a workflow
specification in which completed tasks are assigned to a sin-
gle user, namely the user that executed the task. Hence the
algorithm in Figure 2 can be incorporated into a comple-
tion compliant reference monitor to test whether allowing a
request to complete would render the workflow instance un-
satisfiable. For example, given a request to execute the first
task t1 by user u, we set V(1) = {u} and run the algorithm
to determine whether there exists a valid execution schedule
for the remaining tasks.

In general, given an instance of the workflow
W = [(t1,u1),. .., (tk,ur)] and a request from user u to exe-
cute task ¢, we run the algorithm on the workflow (T, A, C),
where A" = {(t,u), (t1,u1),..., (tk,ur) U {(t,u) € A:t' ¢
{t, t1,... ,tk}}.

Consider the workflow W shown in Figure 3(a). A solid
edge (t,t') indicates that t < t’; the broken edge indicates
the existence of a constraint between to and t3. Labelled
edges indicate a constraint exists on the execution of the
two tasks; ts must be performed by a user who is more se-
nior than the user that performed ts, for example. In this
example we assume the use of role-based access control and
assign users and tasks to roles. In other words, the set of au-
thorization information A is not explicitly stored and has to
be derived from other access control data structures. In or-
der to compute V' (t;), the set of users authorized to execute
t, we execute a simple select query on the join of the task-
role assignment and user-role assignment relations. Recall
that we define u < o’ if {t: (t,u) € A} C {t: (t,u’) € A}.
Hence we can deduce that d < b < a and ¢ < b < a from the
user-role assignment relation and the role hierarchy, which
can be expressed as the set {(d,b), (d,a), (¢,b), (¢,a), (b,a)}.

We now illustrate how the algorithm in Figure 2 can be
used in a completion compliant reference monitor. Suppose
that a attempts to execute t;. We set V(1) = {a} and ini-
tialize V' (7), 2 <4 < 5. Now V(1,2) =), since V(2) = {a},
V(1) x V(2) = {(a,a)} and ((t1,t2),#) € C. Hence the
workflow cannot complete if a performs t1. (This is obvious
from a cursory examination of the workflow because a is the
only user authorized to perform ts.)

Now suppose that d has performed t; and consider an
attempt by b to execute t3. Note that any one of t2, t3 and
ta could be performed after t;. In this case, V(1) = {d},
since the task has already been performed, and V' (3) is set
to {b}. Then running the algorithm we obtain

The problem here is the requirement that ts be performed by

Inputs: canonical linear extension [ti,...,tn]
user authorization information
set of constraints C
01 for i =1ton
02 let V(i) = set of users authorized to perform task i
03 for i =1 ton
04 for j =1iton
05 if ((i,j),rel) € C
06 let V(i,j) = (V(i) x V(i) N rel
07 if V(i,j) = 0 then return false
08 let V(i) = set of users in first position of V(i,j)
09 let V(j) = set of users in second position of V(i,j)
10 return true

Figure 2: An algorithm for determining whether a valid execution assignment exists

a more senior user that the one who performed t3, coupled
with the fact that there is only one user assigned to the most
senior role. (In actual fact, given the user-role assignment
relation in Figure 3(d), t3 can never be performed by either
a or b, irrespective of who performs t;.) However, if we
assign a second user e to r1, then a is permitted to perform
t1 (since e can perform tz), and b is permitted to perform
ts (since both a and e are more senior than b). All valid
execution assignments for W are shown in Fig 3(e).

In certain cases, the algorithm will deduce that a partic-
ular task can only be completed by a certain user or a small
number of users. It would make sense to cache this informa-
tion to facilitate quicker processing of requests to perform
that task. Given a user request, the reference monitor first
checks the cache to see whether any information is avail-
able for the task. If not, the algorithm is used to determine
whether the request should be granted.

4. EXTENDING THE MODEL

We replace the partially ordered set of tasks with a di-
rected graph in which an edge between t and t’ denotes that
t’ must follow t in every instance of the workflow. We also la-
bel each task with a set of integers, which defines the number
of occurrences of the task that are permitted in an instance
of the workflow. We extend the definitions of entailment
constraint, workflow authorization schema and constrained
workflow authorization schema in the natural way.

More formally, a workflow specification is an acyclic, la-
belled directed graph (T, E,¢), where T is a set of tasks,
E C TxTis aset of edges and ¢ : T — 2% Let
E* C T x T denote the transitive closure of E. In other
words, (t,t') € E* iff there exists a path between t and t'
in the graph (T, FE). We require that if (t,t') € E*, then
t must be executed before t’ in every instance of the work-
flow. To complete the specification of the workflow, we de-
fine a function ¢ : T — 2%, where $(t) is either of the form
[m,n] ={m,m+1,...,n—1,n} or [m,o0) = {m,m+1,...}
and m > 0. We require that if t is performed k times in an
instance of the workflow, then k € ¢(t). If, for example,
¢(t) = [0, 1], then t must be performed at most once in ev-
ery workflow instance. Alternatively, if ¢(t) = [1,00), then
t must be performed at least once and can be repeated ar-
bitrarily often.

Clearly, the simple model described in Section 2 is a spe-
cial case of the model described above in which ¢(t) = [1,1]
for all t € T. In addition, we can model cardinality con-
straints of the form “task t must be performed twice” by set-
ting ¢(t) = [2,2]. We can also model constraints of the form

“task t must be performed twice by different users” [2] by
additionally specifying the entailment constraint ((t,t), #).

We can modify our running example so that signGRN
may be performed several times, catering for the possibil-
ity that the entire order may not be received in a single
delivery. Similarly, the company may issue several invoices
for the same order, so the crtPay task may be performed
more than once. We also have the possibility that one
or more of the tasks apprPO and ctrsignGRN are not ex-
ecuted in an instance of the workflow. Omne possible ap-
plication scenario is that apprP0O is not executed if the
order value is less than some threshold value. In other
words, we define ¢(signGRN) = ¢(crtPay) = [1,00) and
¢(apprP0) = ¢(ctrsignGRN) = [0, 1].

DEFINITION 10. A workflow authorization schema is a 4-
tuple (T,E, ¢, A), where A C T x U and (t,u) € A means
that u is authorized to perform (or execute) t. An entail-
ment constraint has the form ((t,t'), p), where p € Rel(U)
and (t',t) ¢ E*. A constrained workflow authorization
schema is a 5-tuple (T, E, ¢, A,C), where C is a set of en-
tailment constraints.

For convenience, we will write [t] for the maximum num-
ber of permitted occurrences of t in any workflow instance
and |t] for the minimum number. We write t* to denote
the ith execution of task t. We will generally write t rather
than t) if t is only executed once. We will also write k(t)
to denote the number of occurrences of t in a workflow in-
stance.

DEFINITION 11. Let W = (T, E, ¢, A, C) be a constrained
workflow authorization schema. An execution schedule for
W is a sequence of tasks L = [t1,...,tn] such that for all
i< j, (t,t) € B, and [t] < k(1) < [€].

In other words, the execution schedule does not violate
any paths in the workflow specification, and the number of
times each task is executed lies within the bounds defined
for the task.

DEFINITION 12. An execution assignment for W is a
pair (L,), where L is an execution schedule for W and
a: L — U is an assignment of tasks to users. We say (L, «)
is a valid execution assignment for W if (t,a(t)) € A and
for all ((t,¥),p) € C, (@(tD),a(t'V)) € p, [t] < i < [t],
'] <j <[t

t2

£
r1
t1 ts
ti to ts3 tg1 ts
b a ¢ a b
d a ¢ a b
ta T2 r3
d a ¢ b b
(a) W (b) Role hierarchy b a ¢ ¢ b
d a ¢ ¢ b
b a d a b
Task | Role d a d a b
t T3 User | Role d a d b b
to 71 a r1 b a d ¢ b
ts ro b re d a d ¢ b
t3 73 b r3 . . .
(e) Valid execution assignments
ta T2 c T2
ts T2 d r3
ts T3

(¢) Task-role assignment

(d) User-role assignment

Figure 3: An example of a constrained workflow

4.1 A reference monitor

DEFINITION 13. Let W = (T, E, ¢, A, C) be a constrained
workflow authorization schema. A minimal execution sched-
ule is an execution schedule such that k(t) = max{1, [t]}. A
canonical ezecution schedule is a minimal execution schedule
L such that for allt € T, t RO s o sub-list of L.

In other words, a minimal execution schedule includes ev-
ery task at least once and no task occurs more than the
minimum number of required times, and all executions of
a particular task occur consecutively in a canonical execu-
tion schedule. For illustrative purposes, we simplify our
running example by omitting the ctrsignGRN task, set-
ting ¢(signGRN) = [2,2], and introducing the constraint
((signGRN, signGRN), <). In other words, for any purchase
order, we assume there is a single GRN that must be signed
twice, the second time by a more senior user. Then we ob-
tain the following canonical execution schedules:

[apprPO, crtPO, signGRN'"), signGRN'® | crtPay, apprPay],

)

apprP0, crtP0, crtPay, si nGRN" ,si nGRN(z),a rPay|.
192 Y, 81§ g pprray

Of course, there may exist several execution schedules in
which the occurrences of a particular task are not consecu-
tive. Nevertheless, using Lemma 9, it is sufficient to consider
a canonical execution schedule when checking satisfiability.

Figure 4 shows a revised algorithm for determining
whether there exists a valid execution assignment for a work-
flow specification containing both entailment constraints
and cardinality constraints. Notice that lines 09 and 11
replace the check in our previous algorithm that established
whether there exists a user authorized to perform each task.

Instead, we check that there exists a sufficient number of
authorized users to perform the minimum number of exe-
cutions of each task. Clearly, the algorithm has the same
computational complexity as our original algorithm: that
is to say O(|T|*|U|*) in the general case, and O(|T|*|U|?)
if we only consider separation of duty and binding of duty
constraints.
Let k € Z and t be a task. Define

[0,n — k] if ¢(t) = [m,n] and m < k < n,

[m—k,n—k] if ¢(t) =[m,n] and m > k,
P(t)—k = 4 [0, 00) if ¢(t) = [m, 00) and m < k,

[m — k, 00) if ¢(t) = [m, 00) and m > k,

0 otherwise.

To construct a completion compliant reference moni-
tor, we select a particular canonical execution schedule
for each workflow specification. Then, given an instance
[(t1,u1),...,(tj,u;)] of the workflow (T, E,¢,A,C) and a
request from user u to execute task ¢, we run the algorithm
on the workflow (T, E, ¢’, A’, C), where

ox) —k(x)—1 ifx=t,
d(z) — k(z)
A ={(t,u), (t1,u1),..., (t;,u) Y U{{,u) € A: ¢'(t') # 0}.

Note that we make the assumption that the workflow man-
agement system will check that it is valid to try to execute
the task. More specifically, we assume that if an optional
task t is not executed, then any attempt to subsequently

¢'(x) =

otherwise;

Inputs: canonical linear extension [ti,...,tn]
user-authorization information
set of constraints C
function ¢
01 for i =1 ton
02 let V(i) = set of users authorized to perform task i
03 for i =1 ton
04 for j =1 ton
05 if ((i,j),rel) € C
06 let V(i,j) = (Vi) x V(j)) N rel
07 let V(i) = set of users in first position of V(i,j)
08 if |V(i)| < |i] then return false
09 let V(j) = set of users in second position of V(i,j)
10 if |V(j)| < |j] then return false
11 return true

Figure 4: An algorithm for determining whether a valid execution assignment exists

execute t will be prevented by the workflow management
system if a task t’ such that (t,t’) € E* has already been
executed. In our example, if we perform the crtPay task, we
do not subsequently allow an attempt to execute the apprP0
task. Note that this assumption does not affect the correct
operation of our algorithm, since |[t| = 0 for any optional
task t.

5. DISCUSSION

5.1 Computational complexity

We have presented a model for specifying constraints and
given an algorithm that will establish both the satisfiabil-
ity of a workflow specification and form the basis for the
implementation of completion compliant reference moni-
tor. Such a reference monitor has computational complexity
O(|TI?|U[*) in the general case, and O(|T|*|U|?) if we only
allow separation of duty and binding of duty constraints.
In contrast, Bertino et al describe a reference monitor for
the BFA model that works by computing all possible as-
signments of roles to tasks and all possible assignments of
users to tasks. Essentially, all valid execution assignments
are encoded in the user-assignment graph. Naturally, these
two procedures are exponential in the number of tasks in the
workflow.? In short, the lower complexity of our algorithm
is attributable to the different emphasis of the respective al-
gorithms: the BFA model pre-computes all valid execution
assignments, whereas our algorithm essentially tests for the
existence of a valid execution assignment.

Table 1 illustrates how the number of valid execution as-
signments varies with the number of users and the num-
ber of constraints defined on the workflow. The figures
were computed for the workflow specification in Figure 3(a).
We successively added constraints ((t1,tz2),#), ((t2,t3), #),
((t1,ta),#), ((t2,t5),#) and ((t3,t5), <). In other words,
when the number of constraints is 3, for example, the set
of constraints is {((tlv t2)7 #)7 ((t27t3)7 7&)7 ((t17 t4)7 #)} We
successively doubled the number of users simply by replicat-
ing (and then renaming) the existing user population and
their respective user-role assignments. Hence, 8 of the 32
users are assigned to role ri, for example.

3The authors also describe a heuristic that can be used to
reduce the number of users that need to be considered in
the user-assignment graph, but the algorithm remains ex-
ponential. We believe that similar heuristics could be used
to reduce the running time of our algorithm.

45

The table illustrates the exponential growth of the number
of valid execution assignments (VEAS), as expected, but also
shows that the ratio of valid VEAs to execution assignments
(EAs) increases as the user population increases. This is
also to be expected, as more users provide more ways of
satisfying a separation of duty constraint. Nevertheless, it
reinforces the belief that computing all VEAs is unlikely to
be a scalable solution, and that our approach of establishing
whether the workflow specification determined by a partially
completed instance is satisfiable is likely to be more useful in
practice. Notice also the dramatic effect of constraints such
as ((ts, t5), <) on the number of valid execution assignments.

Users | Constraints | VEAs EAs | %VEAs
1 96 66.67

2 72 50.00

4 3 60 144 41.67
4 45 31.25

5 10 6.94

1 3840 83.33

2 3360 72.92

8 3 3024 4608 65.63
4 2646 57.42

5 756 16.41

1 135168 91.67

2 126720 85.94

16 3| 120000 147456 81.38
4 112500 76.29

5 34000 23.06

1| 4521984 95.83

2 | 4380672 92.84

32 3 | 4261632 | 4718592 90.32
4 | 4128456 87.49

5| 1271616 26.95

Table 1: How the number of valid execution assign-
ments varies with users and constraints

We also note that the BFA model stores and updates a
copy of the user-assignment graph for each instance of the
workflow. The legitimacy of a request to execute a task is
determined by querying this graph. Clearly, this requires

considerable storage and computational effort. In contrast,
our algorithm only requires information about which users
have already executed tasks in the workflow instance, user
authorization information and a canonical linear extension.
The last two of these inputs are fixed for each instance of a
workflow.

5.2 Role-based constraints

Two aspects of our specification scheme deserve further
comment. Unlike most other specification schemes, our
scheme does not rely on the use of role-based access con-
trol, nor do we use role-based entailment constraints.

We have deliberately avoided linking our specification and
enforcement model to a particular access control mechanism.
Provided we can generate the set of users that are assigned
to a task, a straightforward exercise using role-based tech-
niques or access control lists, our algorithm for checking sat-
isfiability will work. This means our algorithm for checking
completion compliance can be incorporated into a variety of
different access control mechanisms.

Constraints of the form “ta must be performed by a role
that is more senior than the role that performed t,”, for
example, have received attention in the literature [1, 2].
It seems superficially attractive to extend the specification
scheme for entailment constraints to include role-based ones
of the form (9, {t,t'}, p), where S C R. However, we believe
that such constraints are inappropriate in the wider context
of role-based access control. More specifically, it is difficult
to interpret the phrase “must be performed by a role”. We
note that tasks are performed by users acting in roles: in
order for a user u to perform task ¢, u must be assigned
to some role r and the task must be assigned to some role
r’ such that ' < r. Hence, there are two possible answers
to the question “which role performed task t”: either r be-
cause this role implicitly assigns w to r’, the role that is
assigned to t; or v’ because it is the role to which ¢ is ex-
plicitly assigned. Nevertheless, both of these interpretations
have their problems. In the first case, what happens if u is
assigned to two roles r1 and r2 that are both greater than
7" and r; and ry are not comparable in the role hierarchy?
Which of 1 and 73 is considered to be the role that per-
formed t? In the second case, what happens if ¢ is assigned
to two roles ri and r5 that are both less than r? Which
of i and 7% is considered to be the role that performed t?
In order to address these problems, we might consider two
simplifying assumptions.

o FEvery task is assigned to precisely one role

Therefore, we can assume that the role that performed
the task is the role to which it is explicitly assigned.
This means that any role-based constraints can be
checked statically. For example, to enforce an entail-
ment constraint of the form (R, {t,t'}, <), it is suffi-
cient to check that t and t’ are assigned to roles r and
r’, respectively, with r < r’.

o Fvery user is assigned to precisely one role

‘We then assume that the role that performed a task is
the role to which the user who performed the task is
assigned. In this case, it is not possible to check role-
based constraints statically, but the rich role-based ac-
cess control paradigm is reduced to one that is no more
powerful than Unix groups.

46

Moreover, we believe that constraints of the form “ts must
be performed by a role that is more senior than the role that
performed t;” should either be expressed as constraints on
the relative seniority of users or within the authorization
schema itself. This constraint, for example, could be re-
formulated as “for every role to which task t; is assigned,
there must be a more senior role to which t is assigned”. An
advantage of this approach is that such constraints can be
encoded in the authorization schema, rather than enforced
in each instance of the workflow.

In short, we do not believe it is necessary to assume the
underlying access control mechanism is role-based, nor is
it desirable, because of the aforementioned problems of in-
terpretation, to specify and dynamically check role-based
entailment constraints.

5.3 A limitation of our model

A consequence of the definition of constraint satisfac-
tion in our extended model is that an entailment constraint
((t,t'), p) is enforced on each pair of users that perform t
and t’. We now discuss some practical consequences of this
definition.

We note that in our earlier example, every instance of the
signGRN task is performed by the same user (namely the
user that raised the corresponding purchase order). This
means that there is no ambiguity in the specification of the
constraint ((signGRN, ctrsignGRN), <). However, if we re-
move the constraint ((crtP0,signGRN),=), then any user
can sign for the goods. In our example, the ctrsignGRN
task is performed at most once and has the effect of coun-
tersigning any GRNs that were signed in the execution one
or more signGRN tasks. Realistically, however, the busi-
ness requirements would be that each particular GRN is
countersigned by a more senior user. This cannot be mod-
elled within our scheme (although we do not believe that it
is not possible in any other workflow authorization scheme
that we are aware of). This is because our interpretation
of constraints is that any user who performs ctrsignGRN
must be more senior than any user who performed signGRN.
One possible solution is to admit the possibility of nested
workflow specifications. In particular, the purchase order
workflow might itself contain a simple workflow comprising
the tasks signGRN and ctrsignGRN with a single constraint
((signGRN, ctrsignGRN), <); an instance of this nested work-
flow is created when signGRN is executed. Hence each in-
stance of signGRN is associated with a single ctrsignGRN
task. This is outside the scope of our work in this paper,
but would be certainly interesting to pursue in future work.

6. CONCLUDING REMARKS

We have provided a simple yet expressive method for spec-
ifying authorization constraints in workflow systems. In par-
ticular, we can define separation of duty constraints, weak
separation of duty constraints, binding of duty constraints,
constraints on the relative seniority of users who perform
different tasks, and constraints determined by contextual
user-based information. To the best of our knowledge, this
provides a far greater range of constraints than any exist-
ing model. Our model is independent of any computational
model or access control mechanism.

Moreover, we have provided an algorithm that can estab-
lish the satisfiability of a constrained workflow authorization
schema. This algorithm can be used to determine whether

granting a request in a given instance of a workflow schema
would prevent the workflow from completing. Assuming this
is a desirable property, we can incorporate this algorithm
into a reference monitor for workflow management systems.
Since our model is independent of any computational or ac-
cess control paradigm, we expect that it could be employed
in a variety of different contexts. The algorithm runs in
time polynomial in the number of users and tasks, unlike
the equivalent procedure in the BFA model.

Nevertheless, there are opportunities for further research,
one of which was discussed in the last section. Another im-
portant question is how to handle changes to authorization
data over the lifetime of a workflow instance. Changes to
such data may have unintended side effects on the behaviour
of the proposed reference monitor. Obviously, a simple solu-
tion is to take a “snapshot” of the authorization data when
the workflow instance is created and to use that data for
that instance of the workflow. Nevertheless, more elegant
methods might be available. The work of Bertino et al on
temporal models for database authorization and role-based
access control may provide some guidance here.

Our approach, in common with related work on specifying
and enforcing authorization constraints in workflow systems,
adopts a relatively simple model for workflows. A task is re-
garded as an atomic component within these models: that
is, a task has either been executed or it has not. Researchers
in information systems have defined more complex workflow
models in which tasks are associated with one or more prim-
itive operations, such as begin, abort, and commit, and each
task is associated with a state that is dependent on the prim-
itive operations that have been performed on that task [9].
The focus in such work has been on enforcing dependencies
between tasks defined in terms of their respective states and
determined by the business logic, rather than access control
and the enforcement of a security policy defined by a set of
authorization constraints. We believe it is important to de-
velop a unified workflow model that incorporates both task
dependencies, such as control flow dependencies and value
dependencies [9], and security dependencies such as separa-
tion of duty constraints and other entailment constraints.
We anticipate that, under the simplifying assumption that
all primitive operations within a task are executed by the
same user, such a model is achievable.

Acknowledgements. The author would like to thank the
anonymous reviewers for their constructive comments and
suggestions.

47

7. REFERENCES

[1] ATLURI, V., AND HUANG, W. An authorization model
for workflows. In Proceedings of the 4th FEuropean
Symposium on Research in Computer Security (1996),
pp. 44-64.

[2] BERTINO, E., FERRARI, E., AND ATLURI, V. The
specification and enforcement of authorization
constraints in workflow management systems. ACM
Transactions on Information and System Security 2, 1
(1999), 65-104.

[3] BoTHA, R., AND ELOFF, J. Separation of duties for
access control enforcement in workflow environments.
IBM Systems Journal 40, 3 (2001), 666—682.

[4] CasaTl, F., CASTANO, S., AND FucINi, M. Managing
workflow authorization constraints through active
database technology. Information Systems Frontiers 3,
3 (2001), 319-338. Also available as Technical Report
HPL-2000-156, Hewlett Packard Laboratories.

[5] CLARK, D., AND WILSON, D. A comparison of
commercial and military computer security policies. In
Proceedings of 1987 IEEE Symposium on Security and
Privacy (1987), pp. 184-194.

[6] CRAMPTON, J. An algebraic approach to the analysis
of constrained workflow systems. In Proceedings of 3rd
Workshop on Foundations of Computer Security
(2004), pp. 61-74.

[7] KANDALA, S., AND SANDHU, R. Secure role-based
workflow models. In Database Security XV: Status and
Prospects (2002), pp. 45-58.

[8] KNORR, K., AND STORMER, H. Modeling and
analyzing separation of duties in workflow
environments. In Trusted Information: The New
Decade Challenge, IFIP TC11 Sixzteenth Annual
Working Conference on Information Security (2001),
pp- 199-212.

[9] RUSINKIEWICZ, M., AND SHETH, A. Specification and

execution of transactional workflows. In Modern

Database Systems: The Object Model, Interoperability,

and Beyond. Addison-Wesley, 1995, pp. 592-620.

Tan, K., CRAMPTON, J., AND GUNTER, C. The

consistency of task-based authorization constraints in

workflow systems. In Proceedings of 17th IEEE

Computer Security Foundations Workshop (2004),

pp. 155-169.

WAINER, J., BARTHELMESS, P., AND KUMAR, A.

W-RBAC — A workflow security model incorporating

controlled overriding of constraints. International

Journal of Cooperative Information Systems 12, 4

(2003), 455—-486.

(10]

(11]

