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Fig. 1. Model Driven Architecture.

1. INTRODUCTION

Model building is standard practice in software engineering. The construction
of models during requirements analysis and system design can improve the
quality of the resulting systems by providing a foundation for early analysis and
fault detection. The models also serve as specifications for the later development
phases and, when the models are sufficiently formal, they can provide a basis
for refinement down to code.

Model building is also carried out in security modeling and policy specifica-
tion. However, its integration into the overall development process is problem-
atic and suffers from two gaps. First, security models and system design models
are typically disjoint and expressed in different ways (e.g., security models as
structured text versus graphical design models in languages like UML). In
general, the integration of system design models with security models is poorly
understood and inadequately supported by modern software development pro-
cesses and tools. Second, although security requirements and threats are often
considered during the early development phases (requirements analysis), and
security mechanisms are later employed in the final development phases (sys-
tem integration and test), there is a gap in the middle. As a result, security
is typically integrated into systems in a post hoc manner, which degrades the
security and maintainability of the resulting systems.

In this article, we take up the challenge of providing languages, methods, and
tools for bridging these gaps. Our starting point is the concept of Model Driven
Architecture (MDA) [Frankel 2003], which has been proposed as a means for
supporting the software development process by employing a model-centric and
generative approach. As Figure 1 suggests, the MDA approach has three parts:
developers create (1) system models in high level modeling languages like UML;
tools are used to perform (2) automatic model transformation; and the result
is (3) a target (system) architecture. Whereas the generation of simple kinds
of code skeletons by CASE-tools is now standard (e.g., generating class hier-
archies from class diagrams), Model Driven Architecture is more ambitious
and aims at generating nontrivial kinds of system infrastructure from models.
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Fig. 2. Model Driven Security.

Examples include the generation of distributable components from class dia-
grams, including database access and transaction management, or the gener-
ation of controllers from state machine models.

Our main contribution is to show how the Model Driven Architecture ap-
proach can be specialized to what we call Model Driven Security. In this ap-
proach, general purpose modeling languages and transformation functions are
extended by modeling primitives and generation rules for integrating secu-
rity into the development process. These measures are used to specify security
properties of the target system and to generate corresponding security mech-
anisms. We illustrate the principles of Model Driven Security on the example
of access control, namely role-based access control. As suggested by Figure 2,
we specialize the three parts of MDA to model access control requirements
and generate access control infrastructures. The most difficult part of this spe-
cialization concerns the first part, and here we propose a general schema for
integrating access control requirements into system design models. The main
idea is to define security modeling languages that are general in that they leave
open the nature of the protected resources, whether these resources are data,
business objects, processes, states in a controller, and so on. Such a security
modeling language can then be combined with a system design modeling lan-
guage by defining a dialect, which identifies elements of the design language as
the protected resources of the security language. In this way, we can define fam-
ilies of languages that flexibly combine design modeling languages and security
modeling languages, and are capable of formulating system designs along with
their access control requirements.

To show the feasibility of this approach and to illustrate some of the design
issues, we present several detailed examples. First, we specify a security mod-
eling language for modeling access control requirements that generalizes Role-
Based Access Control (RBAC) [Ferraiolo et al. 2001]. To support visual mod-
eling, we embed this language within an extension of UML and hence we call
the result SecureUML. Afterwards, we give two examples of design modeling
languages, one based on class diagrams and the other based on statecharts. We
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then combine each of these with SecureUML by defining dialects that identify
particular elements of each design modeling language as protected SecureUML
resources.

In each case, we define model transformations for the combined modeling lan-
guage by augmenting model transformations for the UML-based modeling lan-
guages with the additional functionality necessary for translating our security
modeling constructs. The first combination results in a language for modeling
access control requirements for component-based systems; we define transfor-
mation functions that produce access control infrastructures for distributed sys-
tems conforming to the Enterprise JavaBeans (EJB) standard or, alternatively,
the Microsoft Enterprise Services for NET. The second combination provides a
language for modeling access control requirements for controllers for multi-tier
architectures and the transformation function generates access control infras-
tructures for web applications. These translations are based on a set-theoretic
semantics for our SecureUML extensions that maps, essentially, our extensions
into a relational structure with constraints. Given a SecureUML dialect, this
semantic information is then translated into an access control infrastructure;
for instance, the relational structure is mapped into a configuration for declar-
ative access control.

As a proof of concept, within the MDA-tool ArcStyler [Hubert 2001] we have
built a prototypical generator that implements the above mentioned transfor-
mation functions for both dialects. We report on this, as well as on experience
with our approach. Overall, we view the result as a large step towards inte-
grating security engineering into a model-driven software development process.
This bridges the gap between security analysis and the integration of access
control mechanisms into end systems. Moreover, it integrates security models
with system design models and thus yields a new kind of model, security design
models.

The Model Driven Security approach that we propose offers additional ad-
vantages. First, it naturally gives rise to models that are technology indepen-
dent, reusable, and evolvable. As the technology-specific details (e.g., applica-
tion programming interfaces) are specified by the transformation functions,
instead of by the models, architectures can be generated for (or evolved to) new
technologies simply by changing these transformation functions. We illustrate
this by giving two different transformation functions that translate models de-
fined in the SecureUML dialect for distributed object systems to either EJB
or .NET technology. Second, by integrating security and system design mod-
els, it is possible to model and generate “security aware” applications that only
present options to the user that are consistent with the formalized security
policy. Third, UML is a widely used language that developers are familiar with
and many tools are available for processing UML models. Since our approach
is based on UML-notation, both for defining modeling languages as well as for
defining models, we expect a low acceptance barrier for our approach. Finally,
we have focused on security and design modeling languages that can be given a
formal semantics, both alone and in combination. This means that it is possible
to formally analyze both the models and the transformation process. Although
we do not investigate this here, it should be possible to carry out automatic
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property checking of security design models to detect and correct design errors
and even to verify the correctness of the model transformation process itself.

The remainder of the article is organized as follows. In Section 2 we introduce
the running example used in this article and provide background on the Unified
Modeling Language, Model Driven Architecture, Role-Based Access Control,
and the security architectures of Enterprise JavaBeans, Enterprise Services
for .NET, and Java Servlets. In Section 3 we give an overview of Model Driven
Security and in Section 4 we present the syntax and semantics of SecureUML,
our security modeling language for access control. We show how to combine
SecureUML with a design modeling language for component-oriented systems
in Section 5, and how to generate Enterprise JavaBeans access control infras-
tructures in Section 6 and .NET infrastructures in Section 7. To demonstrate
the general applicability of our approach, in Section 8 we give a second exam-
ple of integrating SecureUML with a design modeling language, this time for
modeling the control flow of applications and generating a Java Servlet access
control architecture. In Section 9 we discuss practical experience with our ap-
proach, evaluate its generality, and review related work. In Section 10 we draw
conclusions and discuss future work.

2. BACKGROUND

We first introduce a design problem along with its security requirements that
will serve as a running example throughout this article. Afterwards, we intro-
duce the modeling and technological foundations that we build upon: the Uni-
fied Modeling Language, Model Driven Architecture, Role-based Access Con-
trol, and several security architectures.

2.1 A Design Problem

As a running example, we will consider developing a simplified version of a
system for administrating meetings. The system should maintain a list of users
(we will ignore issues such as user administration) and records of meetings. A
meeting has an owner, a list of participants, a time, and a place. Users may
carry out standard operations on meetings, such as creating, reading, editing,
and deleting them. A user may also cancel a meeting, which deletes the meeting
and notifies all participants by email.

As the article proceeds, we will see how to formalize a design model for this
system along with the following (here informally given) security policy.

(1) All users of the system are allowed to create new meetings and read all
meeting entries.

(2) Only the owner of a meeting is allowed to change meeting data and cancel
or delete the meeting.

(3) A supervisor is allowed to cancel any meeting.

We will later build models for this problem that will be automatically trans-
formed into a system design for a multi-tier scheduling application along with
a complete access control infrastructure.
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Fig. 3. Scheduler application class diagram.

2.2 The Unified Modeling Language

The Unified Modeling Language (UML) [Rumbaugh et al. 1998] is a widely
used graphical language for modeling object-oriented systems. The language
specification differentiates between abstract syntax and notation (also called
concrete syntax). The abstract syntax defines the language primitives used to
build models, whereas the notation defines the graphical representation of these
primitives as icons, strings, or figures. UML supports the description of the
structure and behavior of systems using different model element types and
corresponding diagram types. In this article, we focus on the model element
types comprising class and statechart diagrams.

The structural aspects of systems are defined using classes, each class formal-
izing a set of objects with common services, properties, and behavior. Services
are described by methods, and properties are described by attributes and asso-
ciations. Every class participating in an association is connected to the associa-
tion by an association end, which may also specify the role name of the class and
its cardinality in the association. The behavior of a class can be characterized
by other UML elements, such as a state machine that is attached to the class.

Classes are depicted in class diagrams as shown in Figure 3. This diagram
shows the structure of our scheduling application. The model consists of three
classes: Meeting, Person, and Room. A Meeting has attributes for storing the
start date and the planned duration. The owner, participants, and the location
of the meeting are specified using the association ends owner, participants, and
location. The method notify notifies the participants of changes to the schedule.
The method cancel cancels the meeting, which includes notifying the partici-
pants and canceling the room reservation.

In contrast, state machines describe the behavior of a system or a class in
terms of states and events that cause a transition between states. A state
machine is graphically represented by a statechart diagram. The rectangles
and circles represent states and the arrows represent transitions. Transitions
may be labeled with the name of the triggering event and (separated by a slash)
the name of the action that is executed during the state transition.

Figure 4 shows the statechart diagram for our scheduling application. In the
state ListMeetings, a user can browse the scheduled meetings and can initiate
(e.g., by clicking a button in a graphical user interface) the editing, creation,
deletion, and cancellation of meetings. An event of type edit causes a transi-
tion to the state EditMeeting, where the currently selected meeting (stored in
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Fig. 4. Scheduler application statechart.
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ListMeetings) is edited. An event of type create causes a transition to the state
CreateMeeting, where a new meeting is created from data entered by the user.
An event of type delete in the state ListMeetings triggers a transition that exe-
cutes the action deleteMeeting, where the currently selected meeting is deleted
from the database. Similarly, an event of type cancel causes the execution of
cancelMeeting, which calls the method cancel on the selected meeting.

UML also provides a specification language, called the Object Constraint
Language (OCL), which is based on first-order logic. OCL expressions are used
to formalize invariants for classes, preconditions and postconditions for meth-
ods, and guards for enabling transitions in state machines. As an example, we
can add the following OCL constraint to the class Meeting in Figure 3.

context Meeting inv:
self.participants->includes(self.owner)

The constraint names a class, here Meeting, and defines an invariant of the class
stating that the owner of a meeting must be contained in the set of participants.
Each OCL expression is evaluated in the context of an instance of the named
class, and the reserved symbol self refers to that instance. In our example,
self represents an instance of the class Meeting. The attributes, association
ends, and methods of an instance can be accessed either using “dot-notation” or
using “arrow-notation” (in the case of operations on collections, as above). In the
example, participants and owner denote the respective association ends of the
meeting, and includes is a generic operation defined for arbitrary collections.

UML can serve as a foundation for building domain-specific languages.
Stereotypes are used to introduce new language primitives by subtyping core
UML types, and tagged values, which are pairs of tags and values, to formal-
ize properties of these new primitives. Model elements are assigned to such
types by labeling them with the corresponding stereotype. Additional restric-
tions on the syntax of the domain-specific language can be defined using OCL
constraints. A set of such definitions constitutes a UML profile.

2.3 Model Driven Architecture

Model Driven Architecture (MDA) has been proposed as an approach to spec-
ifying and developing applications where systems are represented as models
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and transformation functions are used to map between models as well as to au-
tomatically generate executable code [Frankel 2003]. Of course, the completely
automatic synthesis of complex systems from high level descriptions is un-
obtainable in its full generality. We cannot, in general, automatically generate
the functions implementing a specification of a system’s functional behavior: its
“business logic.” But what is possible, is to automate the generation of platform-
specific support for different kinds of nonfunctional system concerns, such as
support for persistence, logging, and the like. These concerns are examples
of system aspects, in the aspect-oriented programming sense [Kiczales et al.
1997], that cut across different system components. Our work shows that secu-
rity, in particular access control, is one such aspect that can be automatically
generated and that this brings with it many advantages.

The use of domain-specific languages is at the heart of MDA, for example,
modeling languages capable of formalizing different business domains (like
health care), system aspects (such as security), or concrete technologies (like
Enterprise JavaBeans). In the context of UML modeling, there are three al-
ternatives for defining such languages, which we discuss briefly here. First,
domain-specific languages can be defined directly in UML in a lightweight way,
using stereotypes and tagged values, as just explained in Section 2.2. Second,
the Meta-Object Facility (MOF) [Object Management Group 2002] can be used
to directly extend the UML metamodel (e.g., Frankel [2003]). MOF is essen-
tially a subset of UML that is used to formalize metamodels! using standard
object-oriented concepts like class and inheritance. A drawback of this approach
is that the customized metamodel is then based on the entire UML metamodel,
which is quite complex. Moreover, such a heavyweight extension may require
one to extend the CASE-tool itself, in particular storage components (the repos-
itory) and the visualization components. The third alternative is to define new
modeling languages directly using MOF, which focus on a particular problem
or domain without any dependency on UML. The resulting language defini-
tions usually have an intuitive domain-specific vocabulary that is much more
concise than the vocabulary of UML-based languages. Moreover, the interfaces
for querying and manipulating the metadata are simpler than a heavyweight
UML interface. The concrete syntax of these modeling languages is then spec-
ified using a UML profile.

We have taken the third alternative, which turned out to work very well with
our approach. MOF provides a more expressive formalism for defining modeling
languages than lightweight UML extensions or conventional language defini-
tion techniques like the Backus-Naur Form (BNF). For example, in MOF, we
can directly formalize relations between model primitives, which is one of the
key ideas we use when combining modeling languages (e.g., see the discus-
sion on subtyping in 5.1). MOF also offers advantages for building MDA tools.
There is tool support for automatically creating repositories and maintaining

1A metamodel is a model that describes a class of models. For instance, a model mq can be the
metamodel of another model m1, which means that each metaobject (i.e., an element of a metamodel)
in mgy is a description of types of objects in m; and each object in m1 is an instance of a metaobject
in my. In this way, metamodels specify the vocabulary that can be used to define other models.
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metadata based on MOF, for example, Akehurst and Kent [2002]. Moreover, by
separating the abstract syntax of modeling languages from their UML-based

concrete syntax, we can define languages in a concise and uncluttered way and
directly use UML CASE-tools for building models.

2.4 RBAC

Mathematically, access control requirements can, in many cases, be expressed
as a relation AC between a set of Users and a set of Permissions:

AC C Users x Permissions.

User u is granted permission p if and only if (u, p) € AC. Aside from the
technical question of how to integrate this relation into systems so that grant-
ing permissions respects this relation, a major challenge concerns how to ef-
fectively represent this information, since directly storing all the (u, p) pairs
scales poorly. Moreover, this view is rather “flat” and does not support natural
abstractions like sets of permissions.

Role-Based Access Control, or RBAC, addresses both of the above limitations.
The core idea of RBAC is to introduce a set of roles and to decompose the relation
AC into two relations: user assignment UA and permission assignment PA:

UA C Users x Roles, PA C Roles x Permissions.
The access control relation is then simply the composition of these relations:
AC = PAo UA,

where the symbol “0” denotes relational composition. In other words, AC is
defined by

AC = {(u, p) € Users x Permissions | I role €
Roles.(u, role) e UA A (role, p) e PA}.

To further reduce the size of these relations and support additional abstrac-
tion, RBAC also has a notion of hierarchy on roles. Mathematically, this is a
partial order > on the set of roles, with the meaning that larger roles inherit
permissions from all smaller roles. Formally, this means that the access control
relation is now given by the equation

AC= PAo=>o UA,

where the role hierarchy relation > is also part of the composition. To express
the same access control relation without a role hierarchy, one must, for ex-
ample, assign each user additional roles—a user is then not just assigned his
original roles, but also all smaller roles. Alternatively, one can give roles ad-
ditional permissions—a role not only has its assigned permissions, but also
all the permissions of smaller roles. The introduction of a hierarchy, like the
decomposition of relations, leads to a more expressive formalism in the sense
that one can express access control relations more concisely. Role hierarchies
also simplify the administration of access control since they provide a conve-
nient and intuitive abstraction that can correspond to the actual organizational
structure of companies.
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We have chosen RBAC as a foundation of our security modeling language
because it is well established and it is supported by many existing technol-
ogy platforms, which simplifies the subsequent definition of the transforma-
tion functions. However, RBAC also has limitations. For example, it is diffi-
cult to formalize access control policies that depend on dynamic aspects of
the system, like the date or the values of system or method parameters. We
have extended RBAC with authorization constraints to overcome this limita-
tion. Furthermore, although many technologies support RBAC, they differ in
details, like the degree of support for role hierarchies and the types of pro-
tected resources. As we will see later, our approach of generating architectures
from models provides a means to overcome such limitations and differences in
technologies.

2.5 Security Architectures

We use the security mechanisms of three different target platforms in this
article. We provide an overview of these architectures here, focusing on their
support for access control.

Enterprise JavaBeans. Enterprise JavaBeans (EJBs) is a component archi-
tecture standard [Monson-Haefel 2001] for developing server-side components
in Java. These components usually form the business logic of multi-tier ap-
plications and run on application servers. The standard specifies infrastruc-
tures for system level aspects such as transactions, persistence, and security.
To use these, an EJB developer declares properties for these aspects, which are
managed by the application server. This configuration information is stored in
deployment descriptors, which are XML documents that are installed together
with the components.

EJB differentiates between three types of components: entity beans, session
beans, and message-driven beans. We will focus on the first type of components,
which represent persistent business objects. The core of an EJB entity compo-
nent is the bean class, which contains the business logic of the component. An
entity component may have up to four interfaces, which can be categorized along
two dimensions. First, there are home and component interfaces. Home inter-
faces are used, for example, to create and find bean instances, whereas com-
ponent interfaces define the methods applicable to the component instances.
Second, such an interface can either be a remote or a local interface. Remote
interfaces can be accessed from outside the application server process, whereas
local interfaces are only accessible within the Java virtual machine where the
component resides.

The access control model? of EJB is based on RBAC, where the protected re-
sources are the methods accessed using the interfaces of an EJB. This provides
a mechanism for declarative access control where the access control policy is
configured in the deployment descriptors of an EJB component. The security

2Note that the usage of the term model in the security community is analogous to the usage of
metamodel as in Section 2.3. The access control model describes the language for formulating
access control policies.
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subsystem of the EJB application server is then responsible for enforcing this
policy on behalf of the components. The following example shows the definition
of a permission that authorizes the role Supervisor to execute the method cancel
on the component Meeting.

<method-permission>
<role-name>Supervisor</role-name>
<method>
<ejb-name>Meeting</ejb-name>
<method-intf>Remote</method-intf>
<method-name>cancel</method-name>
<method-params/>
</method>
</method-permission>

As this example illustrates, permissions are defined at the level of individual
methods. A method-permission element lists one or more roles using elements
of type role-name and one or more EJB methods using elements of type method.
An EJB method is identified by the name of its EJB component (ejb-name),
the type of the interface it belongs to (method-intf, with the possible values
Remote, Local, Home, and LocalHome), and the method signature (method-name
and method-params). The listed roles are granted the right to execute the listed
methods.

In general, the information needed to specify a comprehensive access control
policy for realistic applications is quite voluminous. Even using good security
administrative tools, there is the danger that developers introduce errors due
to oversights or unjustified simplifications. For example, suppose a high level
security policy states that a role is granted the permission to read the state of a
particular component. At the implementation level, this requires granting the
role access to all read methods of the attributes and associations of the compo-
nent, defining one method-permission element containing one method element
for each of these read methods. To save time, a developer might simply define
just one method permission that grants the role full access to all methods of the
EJB (which can be achieved using the wild-card “+” as the method-name). The
example discussed in Section 10 gives some insight into the magnitude of this
problem. Model Driven Security provides a promising solution to this problem
by providing a technology for modeling security policies at a high abstraction
level and automatically generating the related deployment descriptors.

In addition to declarative access control, EJB offers the possibility of enforc-
ing access control within the business logic of components. This mechanism is
called programmatic access control and is based on inserting Java assertions
in the methods of the bean class. To support this, EJB provides interfaces for
retrieving security relevant data of a caller, like his name or roles.

Enterprise Services for .NET. The Microsoft Enterprise Services for .NET
support the development of server-side components based on the .NET platform
by providing services such as distributed transactions, life cycle management,
and security.
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Fig. 5. Security design language schema.

The Enterprise Services support declarative and programmatic access con-
trol [Beyer 2001]. Here, programmatic access control allows one to obtain
the identity of the caller of a method and to check the caller’s role assign-
ments. Declarative access control supports the configuration of access control
restrictions at the level of applications, components, interfaces, and methods.
To achieve this, .NET attributes are added to the source code of a component,
to an interface, or to the assembly descriptor of an application. The following
C# code fragment grants the role Supervisor the right to execute the method
cancel().

[SecurityRole("Supervisor")]
public void cancel(){...}

Java Servlets. The Java Servlet Specification [Hunter 2001] specifies an
execution environment for web components, called servlets. A servlet is basically
a Java class running in a web server that processes http requests and generates
http responses. Servlets can be used to dynamically create HTML pages or to
control the processing of requests in large web applications.

The execution environment, called the servlet container, supports both
declarative and programmatic access control. For declarative access control,
permissions are defined at the level of uniform resource locators (URLs) in
XML deployment descriptors. Programmatic access control is used to deter-
mine the identity and the roles of a caller and to implement decisions within a
servlet.

3. MODEL DRIVEN SECURITY: AN OVERVIEW

As explained in the introduction, we aim to close two gaps with Model Driven
Security: the gap between security models and system design models, and the
gap between design and implementation. We accomplish this by a model-driven
development process where security is explicitly integrated into the modeling
language and supported during model transformation.

Rather than developing a single language for security modeling, we propose
a schema for building such languages in a modular way. The overall form of
our schema is depicted in Figure 5. The schema is parameterized by three
languages:

(1) a security modeling language for expressing security policies;
(2) a system design modeling language for constructing design models; and
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(3) a dialect, which provides a bridge by defining the connection points for
integrating (1) with (2). For example, model elements of (2) are classified
as protected resources of (1).

This schema defines a family of security design languages. By different instan-
tiations of the three parameters, we can build different languages, tailored for
expressing different kinds of designs and security policies.

In the following, we discuss these languages in more detail, as well as the
model transformation process. We will focus on one particular security modeling
language, which we call SecureUML, which is based on an extension of Role-
Based Access Control. We will present this language, emphasizing the general
metamodeling ideas behind it. We will later present two different system design
modeling languages and different dialects.

3.1 Security Modeling Languages

A security modeling language is a formal language in that it has a well-defined
syntax and semantics. As we intend these languages to be used for creating
intuitive, readable models (e.g., visual models, like in UML), they will also be
employed with a notation (e.g., icons, strings, or figures). To distinguish these
two kinds of syntax, and following UML (cf. Section 2.2), we call the underlying
syntax the abstract syntax and the notation the concrete syntax. In general, the
abstract syntax is defined formally, for example, by a grammar, whereas the
notation is defined informally. The translation between notation and abstract
syntax is generally straightforward; we give examples in Section 4.2.

The definition of a language’s syntax follows the standard approach taken
in MDA, as described in Section 2.3. The abstract syntax is defined using MOF
and the concrete syntax is defined by a UML profile. In Section 4 we explain
this in detail. In addition, we provide a semantics for SecureUML by defining
a mapping from models into order-sorted first-order relational structures. We
also explain how to combine the syntax and semantics of SecureUML with those
of design modeling languages.

Note that the abstract syntax and semantics of SecureUML define a modeling
language for access control policies that is independent of UML and which could
be combined with design modeling languages different from those of UML.
However, we do make a commitment to UML when defining notation, and our
use of a UML profile to define a UML notation motivates the name SecureUML.

3.2 System Design Languages and Dialects

Our schema is open to different system design modeling languages. This sup-
ports the common practice of using domain-specific languages to specify systems
using a vocabulary suitable for formalizing the system at different levels of ab-
straction and from different views. We give examples of such domain-specific
languages, based on UML, in Sections 5 and 8.

To make a design modeling language “security aware,” we combine it with
a security modeling language by merging their vocabularies at the levels of
notation and abstract syntax. But more is required: it must be possible to build
expressions in the combined language that combine subexpressions from the
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different languages. That is, security policies expressed in the security mod-
eling language must be able to make statements about system resources or
attributes specified in the design modeling language. It is the role of the dialect
to make this connection. We will show one way of doing this using subtyping (in
the object-oriented sense) to classify constructs in one language as belonging
to subtypes in the other. We will provide examples of such combinations in
Section 5 and Section 8.

These ideas are best understood in an example. Our security modeling lan-
guage SecureUML provides a language for specifying access control policies for
actions on protected resources. However, it leaves open what the protected re-
sources are and which actions they offer to clients. These depend on the prim-
itives for constructing models in the system design modeling language. For
example, in a component-oriented modeling language, the resources might be
methods that can be executed. Alternatively, in a process-oriented language, the
resources might be processes with actions reflecting the ability to activate, de-
activate, terminate, or resume the processes. Or, if we are modeling file systems,
the protected resources might correspond to files that can be read, written, or
executed. The dialect specifies how the modeling primitives of SecureUML are
integrated with the primitives of the design modeling language in a way that al-
lows the direct annotation of model elements representing protected resources
with access control information. Hence it provides the missing vocabulary to
formulate security policies involving these resources by defining:

—the model element types of the system design modeling language that repre-
sent protected resources;

—the actions these resource types offer and hierarchies classifying these ac-
tions; and

—the default access control policy for actions where no explicit permission is
defined (i.e., whether access is allowed or denied by default).

We give examples of integrating SecureUML into different system modeling
languages in Sections 5.1 and 8.1.

3.3 Model Transformation

Given a language that is an instance of the schema in Figure 5, we must define
a transformation function that operates on models in the language. As our focus
in this article is on security, we shall assume that the system design modeling
language used is already equipped with a transformation function, consisting
of transformation rules that define how model elements are transformed into
code or system infrastructure. Our task then is to define how the additional
modeling constructs, from the security modeling language, are translated into
system constructs. Our aim here is neither to develop nor to generate new kinds
of security architectures, but rather to capitalize on the existing security mech-
anisms of the target component architecture and to automatically generate
appropriate instances of these mechanisms. Of course, for this to be successful,
the modeling constructs in the security modeling language and their semantics
should be designed with an eye open to the class of architectures and security
mechanisms that will later be part of the target platforms.
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We require that a transformation function respects the semantics of the
security modeling language: the transformation function must be semantic
preserving. Also, we require that the new and adapted transformation rules
do not “break” the existing rules. Intuitively, this means that the system be-
havior should not be changed, except where it is mandated by the semantics of
the security modeling language. In the case of SecureUML, where we expect the
system to have a state-transition semantics (see Section 4.3), this can be stated
more precisely. Namely, the transitions that are allowed by the SecureUML
semantics must have the same effect on the system state as before adding the
new transformation rules.

To judge the correctness of a transformation function requires a formal se-
mantics for the targeted security architectures.? In our work, we model the
targeted security architectures at a high level of abstraction. Basically, in our
model, system execution is abstracted to a sequence of attempts to perform
protected actions. For every such attempt, a security monitor (1) checks the
attempt against the static role and permission assignments (which are gener-
ated by the transformation function), and (2) evaluates code (again generated
by the transformation function) that must return the Boolean true to allow
the action. Correctness of the transformation function means that the secu-
rity monitor allows an action if and only if the action is allowed according to
the semantics of the security design language. If desired, this high-level no-
tion of correctness could be refined and could be used to provide a basis for a
fully verified mapping. However, this would involve, among other things, show-
ing that the security monitor behaves as specified (e.g., according to the EJB
specification) and that the evaluation of code at runtime also behaves “as ex-
pected.” We will not pursue this further as it is outside the scope of this article.
Instead, we will sketch a proof, based on this simplified model, of the correct-
ness of the transformation process using the example of the EJB platform (cf.
Section 6.3).

We will illustrate the transformation process using SecureUML. We will de-
fine transformations that generate security infrastructures for platforms that
support RBAC and programmatic access control. Specifically, we will give ex-
amples of transformation functions that translate models defined with the de-
sign modeling language ComponentUML (described in Section 5) into secure,
executable systems for the component platforms EJB (Section 6) and .NET
(Section 7) and a transformation function that translates models given in the
design modeling language ControllerUML (defined in Section 8) into secure web
applications based on the Java Servlet standard (Section 8.5).

3.4 Methodology

Our methodology consists of the activities carried out in two different kinds
of processes. To start with, there are activities for developing security design
modeling languages and accompanying tools. These activities are carried out
in a tool development process. The results of this process are used by software

3Unfortunately, most such architectures are not formally specified, so a rigorous correctness proof
would also involve formalizing their behavior.
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Fig. 7. The roles and activities in the system development process.

engineers in a system development process to design and implement secure
systems.

The Tool Development Process. The UML use case diagram in Figure 6
shows the roles and activities of the tool development process. The security
architect is someone knowledgeable about security and additionally has some
understanding of UML and metamodeling. In contrast, a system architect
should understand metamodeling techniques as well as the system domain.
The responsibilities of the security and the system architects are depicted in
Figure 6.

Note that these activities need only be carried out once for a particular secu-
rity and system design language. The same holds for defining and implementing
the transformation function. The languages and tools can then be used by soft-
ware engineers to model and construct a wide class of systems in the application
domain.

The System Development Process. The system development process is char-
acterized by the roles and activities presented in Figure 7. The difference from
a standard model driven development process lies in the modeling languages
used for modeling the system. Here the software engineers use modeling lan-
guages that are equipped with a vocabulary for specifying security properties of
the system and the generators used to transform models into systems also cre-
ate security architectures. Hence software engineers only need to understand
the concepts in the UML-based security design language. They need not have
expertise in the target technology or even understand how the concepts are
realized there.
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Fig. 8. SecureUML metamodel.

4. SecureUML

We now define the abstract syntax, concrete syntax, and semantics of Se-
cureUML. While we will later give examples of how to combine SecureUML
syntactically with different design modeling languages, we describe here the
semantic foundations for this combination.

4.1 Abstract Syntax

Figure 8 presents the metamodel that defines the abstract syntax of Se-
cureUML. The language is based on RBAC, which we extend in several direc-
tions. The left-hand part of the diagram essentially formalizes RBAC, where
we extend Users by Groups and formalize the assignment of users and groups
to roles by using their common supertype Subject. The right-hand part of the
diagram factors permissions into the ability to carry out actions on resources.
Permissions may be constrained to hold only in certain system states by au-
thorization constraints. Additionally, we introduce hierarchies not only on roles
(which is standard for RBAC), but also on actions.

Let us now examine these types and associations in more detail. Subjectis the
base type of all users and groups in a system. It is an abstract type (type names
in italic font in class diagrams represent abstract types), which means that it
cannot be instantiated directly: each subject is either a user or a group. A User
represents a system entity, like a person or a process, whereas a Group names
a set of users and groups. Subjects are assigned to groups by the aggregation
SubjectGroup, which represents an ordering relation over subjects. Subjects are
assigned to roles by the association SubjectAssignment.

A Role represents a job and bundles all privileges needed to carry out the job.
A Permission grants roles access to one or more actions, where the actions are
assigned by the association ActionAssignment and the entitled roles are denoted
by the association PermissionAssignment. Due to the cardinality constraints
on these associations, a permission must be assigned to at least one role and
action. Roles can be ordered hierarchically, which is denoted by the aggregation
RoleHierarchy, with the intuition that the role at the part end of the association
inherits all the privileges of the aggregate.
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An AuthorizationConstraint is a logical predicate that is attached to a per-
mission by the association ConstraintAssignment and makes the permission’s
validity a function of the system state, for example, dependent on the current
time or attribute values. Consider a policy stating that an employee is allowed
to withdraw money from a company account provided the amount is less than
$5,000. Such a policy could be formalized by giving a permission to a role Em-
ployee for the method withdraw, restricted by an authorization constraint on the
parameter amount of this method. Such constraints are given by OCL expres-
sions, where the system model determines the vocabulary (classes and methods)
that can be used, extended by the additional symbol caller, which represents
the name of the user on whose behalf an action is performed.

Resource is the base class of all model elements in the system modeling
language that represent protected resources. The possible operations on these
resources are represented by the class Action. Each resource offers one or more
actions and each action belongs to exactly one resource, which is denoted by the
composite aggregation ResourceAction. We differentiate between two categories
of actions formalized by the action subtypes AtomicAction and CompositeAction.
Atomic actions are low-level actions that can be directly mapped to actions of
the target platform, for example, the action execute of a method. In contrast,
composite actions are high-level actions that may not have direct counterparts
on the target platform. Composite actions are ordered in an ActionHierarchy and
are used to group actions.

As we will see, the semantics of a permission defined on a composite action is
that the right to perform the action implies the right to perform any one of the
(transitively) contained subordinated actions. This semantics yields a simple
basis for defining high-level actions. Suppose that a security policy grants a
role the permission to “read” an entity. Using an action hierarchy, we can for-
malize this by stating that such a permission includes the permission to read
the value of every entity attribute and to execute every side-effect free method
of the entity. Action hierarchies also simplify the development of generation
rules since it is sufficient to define these rules only for the atomic actions.

Together, the types Resource and Action formalize a generic resource model
that serves as a foundation for combining SecureUML with different system
modeling languages. The concrete resource types, their actions, and the action
hierarchy are defined as part of a SecureUML dialect.

4.2 Concrete Syntax

SecureUML’s concrete syntax is based on UML. To achieve this, we define a
UML profile that formalizes the modeling notation of SecureUML using stereo-
types and tagged values. In this section, we will introduce the modeling nota-
tion and explain how models in concrete syntax are transformed into abstract
syntax.

Table I gives an overview of the mapping between elements of the Se-
cureUML metamodel and UML types. Note that a permission, its associations
to other elements, and its optional authorization constraint are represented by
a single UML association class. Also note that the profile does not define an
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Table I. Mapping Between SecureUML Concrete and Abstract Syntax

UML Metamodel Type and Stereotype SecureUML Metamodel Type

Class < User> User

Class <Group> Group

Dependency <«SubjectGroup>> SubjectGroup

Dependency <SubjectAssignment> SubjectAssignment

Class <Role> Role

Generalization between classes with stereotype «Role>> | RoleHierarchy

AssociationClass «Permission>> Permission, PermissionAssignment,
ActionAssignment, AuthorizationCon-
straint, and ConstraintAssignment

OwnerMeeting

<<EntityAction>>-Meeting : update
<<EntityAction>>-Meeting : delete

caller.name=self.owner.name [ﬁ

T
1
1
1
1
1
]

<<User>> <<SubjectAssignment>> <<Role>> <<Entity>>
Bob | User <<Permission>> Meeting
-start : date
-duration : time
<<User>> <<SubjectAssignment>> <<Role>> :gggiye(l)() 'Ve:)did
Alice [T Supervisor :

Fig. 9. Example of the concrete syntax of SecureUML.

encoding for all SecureUML elements. For example, the notation for defining
resources is left open and must be defined by the dialect. Also, no representation
for subjects is given because Subject is an abstract type.

We now illustrate the concrete syntax and the mapping to abstract syntax
with the example given in Figure 9, which formalizes the second part of the
security policy introduced in Section 2.1: only the owner of a meeting may
change meeting data and cancel or delete the meeting.

In the SecureUML profile, a role is represented by a UML class with the
stereotype «Role>> and an inheritance relationship between two roles is de-
fined using a UML generalization relationship. The role referenced by the ar-
rowhead of the generalization relationship is considered to be the superrole of
the role referenced by the tail, and the subrole inherits all access rights of the
superrole. Hence, the subrole is the larger role in RBAC terms. In our example,
we define the two roles User and Supervisor. Moreover, we define Supervisor as
a subrole of User.

Users are defined as UML classes with the stereotype «User>>. The as-
signment of a subject to a role is defined as a dependency with the stereotype
«SubjectAssignment>>>, where the role is associated with the arrowhead of the
dependency. In our example, we define the users Alice and Bob, and formalize
that Alice is assigned to the role Supervisor, whereas Bob has the role User.*

4SecureUML supports users, groups, and their role assignment. This can be used, e.g., to an-
alyze the security-related behavior of an application. In general, user administration will not
be performed using UML models, but rather using administration tools provided by the target
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The right-hand part of Figure 9 specifies a permission on a protected re-
source. Specifying this is only possible after combining SecureUML with an
appropriate design modeling language. The concrete syntax of SecureUML is
generic in that every UML model element type can represent a protected re-
source. Examples are classes, attributes, and methods, as well as state machines
and states. A SecureUML dialect specializes the base syntax by stipulating
which elements of the system design language represent protected resource,
and defines the mapping between the UML representation of these elements
and the resource types in the abstract syntax of the dialect. For this example,
we employ a dialect (explained in Section 5.1) that formalizes that UML classes
with the stereotype «Entity>>> are protected resources possessing the actions
update and delete. Here, the class Meeting is a protected resource.

A permission, along with its relations to roles (PermissionAssignment) and
actions (ActionAssignment), is defined in a single UML model element, namely
an association class with the stereotype «Permission>>>. We have chosen this
representation as it is concise. Moreover, it always satisfies the cardinality con-
straints on permissions since an association class will be deleted when one of the
referenced classes is removed from the model. The association class connects a
role with a UML class representing a protected resource, which is designated
as the root resource of the permission. The actions that such a permission refers
to may be actions on the root resource or on subresources of the root resource.
In our example, the class Meeting is the root resource of the permission Owner-
Meeting granted to the role User.

Each attribute of the association class represents the assignment of an ac-
tion to the permission (ActionAssignment), where the action is identified by the
name of its resource and the action name. The action name is given as the at-
tribute’s type, for example “update”. The resource name is stored in the tagged
value identifier and references the root resource or one of its subresources. The
format of the identifier depends on the type of the referenced resource and is
determined by the stereotype of the attribute.

The stereotypes for action references and the naming conventions for identi-
fiers are defined as part of the dialect. As a general rule, the resource identifier is
always specified relative to the root resource. This prevents redundant informa-
tion in the model and inconsistencies when the root resource’s name is changed.
For example, the attribute start would be referenced by the string “start” and
the root resource itself would be referenced by an empty string. Note that the
name of the action reference attribute has only an illustrative meaning. We gen-
erally use names that provide information about the referenced resource. In our
example, the attribute of type “update” with the stereotype «EntityAction>>
and the name “Meeting” denotes the action update on the class Meeting. As we
will later see in Table II, the permission to update an Entity also comprises
the permission to execute any non-side-effect free method of the Entity, for ex-
ample the method cancel() of the class Meeting. The second attribute in our
example denotes the action delete on the class Meeting. Together, these two

platform at deployment time. Note too that the reader should not confuse the «Role>>> User with
the SecureUML type «Users.
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attributes specify the permission to update (which includes canceling) and
delete a meeting.

Each authorization constraint is stored as an OCL expression in the tagged
value constraint of the permission that it constrains. To improve the readabil-
ity of a model, we attach a text note with the constraint expression to the
permission’s association class. In our example, the permission UserMeeting is
constrained by the authorization constraint

caller.name = self.owner.name,

which restricts the permission to update and delete a meeting to the owner of
the meeting.

4.3 Semantics

The General Idea. SecureUML formalizes access control decisions that de-
pend on two kinds of information.

(1) Declarative access control decisions that depend on static information,
namely the assignments of users and permissions to roles, which we desig-
nate as an RBAC configuration.

(2) Programmatic access control decisions that depend on dynamic informa-
tion, namely the satisfaction of authorization constraints in the current
system state.

While formalizing the semantics of RBAC configurations is straightforward,
formalizing the satisfaction of authorization constraints in system states is not.
This is mainly because what constitutes a system state is defined by the design
modeling language, and not by SecureUML. Since the semantics of SecureUML
depends on the set of states, we parameterize the SecureUML semantics by this
set. Also, we have to define the semantics of RBAC configurations in a way that
supports its combination with the semantics of authorization constraints.

The basic ideas are as follows. To formalize (1), declarative access control
decisions, we represent an RBAC configuration as a first-order structure Ggpac,
and we define the semantics of declarative access control decisions by Grpac =
¢rBac(u, a), where ¢prpac(u, a) formalizes the requirement that the user u is “in
the right role” to perform the action a.

To formalize (2), we represent system states st by (corresponding) first-order
structures S, and authorization constraints as first-order formulas ¢5,(w)
(independent of the state st). In accordance with the SecureUML metamodel,
constraints are associated with permissions (not actions), and this formula for-
malizes under which condition the user u has the permission p. Whether or not
this condition holds in the state st is then cast as the logical decision problem
Sut b= Bhr(w).

To combine both RBAC configurations and authorization constraints, we
combine the first-order structures &, and Ggrpac, as well as the first-order
formulas ¢, (v) and ¢rpac(u, a), and use this to formalize the semantics of in-
dividual access control decisions. Roughly speaking, the combined semantics is
defined by (Srpac, Gsx) = dac(u, a), where ¢ac(u, a) is built from both ¢£(w)
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and ¢grpac(u, a), and (SGgrpac, S.) denotes the “union” of the structures Ggpac
and Sg. Since the addition of access control changes the run-time behavior of
a system, we must also define how the semantics of SecureUML models affects
the system behavior specified by design models specified in design modeling
languages. To accomplish this, we require that the system behavior can be de-
fined by a transition system, and we interpret the addition of access control as
restricting the system behavior by removing transitions from this transition
system. In what follows, we formalize these ideas more precisely.

Declarative Access Control. To begin with, we define an order-sorted sig-
nature Ygpac = (SrBac, <rBac, FrBAC, PrBAC), Which defines the type of struc-
tures that specify role-based access control configurations.? Here Sgpac is a set
of sorts, <gpac is a partial order on Sgpac, Frpac is a sorted set of function
symbols, and Prpac is a sorted set of predicate symbols. In detail, we define

Srpac = { Users, Subjects, Roles, Permissions, AtomicActions, Actions},
where Users <gpac Subjects, and AtomicActions <ggac Actions,

FrBac =9,
> Subjects: Subjects x Subjects, UA: Subjects x Roles,

PrBAC = 3 > Rotes : Roles x Roles, PA : Roles x Permissions,
> Actions - Actions x Actions, AA: Permissions x Actions

The subsort relation <gpac is used here to formalize that Users is a subsort of
Subjects, and AtomicActions is a subsort of Actions.

The predicate symbols UA, PA, and AA denote assignment relations corre-
sponding in the SecureUML metamodel to the associations SubjectAssignment,
PermissionAssignment, and ActionAssignment respectively. The predicate sym-
bols > supjects, = Roles, aNd > actions denote hierarchies on the respective sets and
correspond to the aggregation associations SubjectGroup, RoleHierarchy, and
ActionHierarchy respectively.

A SecureUML model defines a Xppac-structure Sgpac in the obvious way:
the sets Users, Subjects, Roles, Permissions, AtomicActions, and Actions each
contain entries for every model element of the corresponding metamodel types
User, Subject, Role, Permission, AtomicAction, and Action. Also, the relations UA,
PA, and AA contain tuples for each instance of the corresponding association
specified in the abstract syntax of SecureUML.

Additionally, we define the partial orders > supjects, = Roles, @and > Actions ON
the sets of subjects, roles, and actions respectively. > gupjects 1S given by the
reflexive closure of the aggregation association SubjectGroup in Figure 8 and
formalizes that a group is larger than all its contained subjects. > .. is defined
analogously, based on the aggregation association RoleHierarchy on Role, and
we write subroles (roles with additional privileges) on the left (larger) side of the
>-symbol. > acons 1S given by the reflexive closure of the composition hierarchy

5For an overview of order-sorted signatures and algebras, see Goguen and Meseguer [1992].
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on actions, defined by the aggregation ActionHierarchy. We write a1 > Actions @2,
if ag is a subordinated action of a;. These relations are partial orders because
aggregations in UML are transitive and antisymmetric by definition.

Note that compared to Figure 8, we have excluded the metamodel types
Group, CompositeAction, Resource, and AuthorizationConstraint. Resource is ex-
cluded because the target of access control is the actions performed on resources,
and not resources themselves. Group and CompositeAction are excluded because
groups and composite actions are just subsets of subjects and actions respec-
tively and do not play any further role in the semantics. AuthorizationConstraint
is excluded because its semantics is not part of declarative access control, but
rather part of programmatic access control.

We define the formula ¢rpac(u, a) with variables u of sort Users and a of sort
Actions by

orBac(U, @) =3s € Subjects,ri,ro € Roles, p € Permissions,a’ € Actions.
S = Subjects U N\ UA(s,r1) AT1 > Roles T2 A
PA("Z, p) /\AA(p, a)rnad = Actions @-

Alternatively, we can factor out the permissions, yielding the equivalent formu-
lation

¢reacw, @)= \/ ¢ U, P) A $ Action(D, @), (1)

pePermissions

where

¢ User(u, p) = 3s € Subjects,r1,ro € Roles.
S = Subjects U N\ UA(s,r1) AT1 > Roles T2 APA(rg, p)

states that the user u has the permission p, and

& Action(p, @) = a’ € Actions.AA(p,a’) Aa’ > actions @

states that p is a permission for the action a. This is essentially a reformulation
of the usual RBAC semantics (cf. Section 2.4). The reason for the factorization
given by definition (1) will become clear when we combine this formula with
programmatic access control formulas ¢5,(w).

The declarative access control part of SecureUML is now defined by saying
that a user u may perform an action a only if Grpac = ¢reac(u, a) holds.

Programmatic Access Control. While declarative access control decisions
can be made independently of the system model, we must explicitly incorporate
the syntax and semantics of the design modeling language into SecureUML
for programmatic access control. In order to be able to combine the semantics
of SecureUML with the semantics of system design modeling languages, we
make some assumptions about the nature of the latter, so that the semantic
combination will be well-defined.

To make programmatic access control decisions, we require that the system
design model provides a vocabulary for talking about the structure of the sys-
tem. More formally, we require that the system design model provides a sorted
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first-order signature sy = (Sst, Fs7, Pst). Typically, Sgr contains one sort
for each class in the system model, Fs7 contains a function symbol for each
attribute and for each side-effect free method of the model, and Psr contains
predicate symbols for 1-to-many and many-to-many relations between classes.
How exactly this signature is defined depends on the semantics of the system
design modeling language. We do however require that Sgr contains a sort
Users and that Fgr contains a constant symbol caller of sort Users, and a con-
stant symbol selfc for each class C in the system model. This amounts to the
requirement that the design modeling language provides some way of talking
about who is accessing what, which is a minimal requirement for any reason-
able notion of access control. For practical reasons, we also assume that Fgr
contains a function symbol UserName, which maps users to a string represen-
tation of their names. How the symbols in X g7 are interpreted in Gy is again
defined by the system design modeling language. Here we only require that the
constant symbol self¢ is interpreted by the currently accessed object, when the
currently accessed object is of the sort C, and that the constant symbol caller
is interpreted as the user that initiated this access.

In this setting, the state of the system at a particular time defines a
Ygr-structure G;. Constraints on the system state G5 can be expressed as
logical formulas ¢sr, whereby constraint satisfaction is just the question of
whether &, = ¢g7 holds.®

Combining Declarative and Programmatic Access Control. To formalize
combined declarative and programmatic access control decisions, we combine
the states G, and Ggrpac into the composite structure S ¢ = (Srpac, G4 ), and
combine the formulas ¢s7 and ¢rpac into a new formula ¢sc. The combined
access control decision is then defined as the question of whether Gac = ¢ac
holds.

By (SgrBac, Gs) we mean that Sc is the structure that consists of the carrier
sets, functions, and predicates from both Grpac and G, where we identify the
carrier sets of the sort Users, which belong to both structures. As for ¢¢, in
the simplest case it is just the conjunction of ¢prpac and ¢sr, dac = drAC A PST,
stating that both the declarative and the programmatic access control must
grant access.

For realistic security policies, ¢4c is usually more than just the conjunction
of ¢rpac and ¢sr. For example, authorization constraints are not global con-
straints, but are attached to permissions (as can be seen in Figure 9) and hence
are only relevant for the roles that have these permissions. We denote the au-
thorization constraint that is attached to a permission p by ¢%,, and require
that ¢%, is an expression in the first-order language defined by Zg7. In order
to define the language for the combined formula ¢4¢, we combine the signa-
tures Yrpac and T g7 by taking their componentwise union.” ¢ = (Sac, <ac,
Fac, Pac), where Sac = Srpac U Sst, <ac = <rBac Y {(x,x) | x € Sgr},

6Recall that authorization constraints are OCL formulas. A translation from OCL constraints to
first-order formulas is mostly straightforward and can be found in Beckert et al. [2002].

"Note that we are here combining a many-sorted signature and an order-sorted signature. This is
sensible because every many-sorted signature is trivially order-sorted.
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Fac = Frac U Fst, and Pac = Prac U Psr. Here we assume that the signa-
tures Xgpac and g7 are disjoint, with the exception of the sort Users, which
belongs to both signatures. Observe that under this definition of Xa¢, Gac is a
Y ac-structure.

Analogously to (1), the combined access control semantics is now defined by
the formula

pac(u,a) = \/ & User(tt, P) A @ Action(p, @) A ¢§T(u) (2)

pePermissions

This states that the user u must have a permission p for the action a according
to the RBAC configuration and that the corresponding authorization constraint
for this permission p must evaluate to ¢rue for the user u.

Behavioral Semantics of Access Control. The preceding paragraphs defined
how access control decisions are made in a system state. But what is interest-
ing in the end is how the system behaves when access control decisions are
made, that is, how the system’s state can evolve over time. In order to define
this, we again make some minimal assumptions on the semantics of the de-
sign modeling language. Namely, we assume that the semantics of each system
design modeling language can be expressed as a Labeled Transition System
(LTS) A =(Q, A, §). In this LTS, the set of nodes @ consists of Xgp-structures,
the edges are labeled with elements from a set of actions A that is a superset
of AtomicActions, and § € @ x A x @ is the transition relation. The behav-
ior of the system is defined by the set of traces of the LTS as is standard: a
trace s) — s; — ... defines a possible behavior if and only if (s;, a;, si11) € 3,
for 0 <i.

In this setting, adding access control to the system design corresponds to
deleting traces from the LTS: when an action is not permitted then the transi-
tion must not be made, and when an action is permitted, the subsequent state
must be the same as before adding access control.

More formally, adding access control to a system description means trans-
forming the LTS A = (@, A, §) to an LTS Axc = (Q ac, Aac, Sac) as follows:

— @ ac 1s defined by combining system states with RBAC configurations: @ ¢ =
®RrBac X @, where @ rpac denotes the universe of all finite Y gpac-structures.

— Ay is unchanged: Axc = A.
—384c is defined by restricting § to the permitted transitions:
8ac = {((qrBAC; q), @, (qrBAC, Q")) | (@,0,9") € S A
(a € AtomicActions — (qrpac,q) = dac( caller, a)}.

Note that this definition implies that the RBAC configuration does not change
during system execution. We do not address issues like run-time user admin-
istration in this work.

We will see concrete semantic combinations of SecureUML with differ-
ent design modeling languages in Sections 5.3 (for ComponentUML) and in
Section 8.3 (for ControllerUML).
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Summary. Let us summarize the formal prerequisites that are required for
combining languages. From the design modeling language, in order to combine
it with SecureUML, we require:

(1) a concrete syntax based on UML;
(2) an abstract syntax based on MOF; and
(3) a semantics with
—a first-order signature that includes a sort Users, a constant symbol
caller, and a function symbol UserName mapping users to (unique)
strings; and
—atransition system semantics where states are first-order structures over
the signature.

The result of the combination is then a modeling language for specifying both
declarative and programmatic access control restrictions.

Note that this combination schema can be generalized to support combi-
nation with other access control languages, not only RBAC-based ones like
SecureUML. From the security modeling language we require:

(1) a concrete syntax based on UML;
(2) an abstract syntax based on MOF; and
(3) a semantics with
—a first-order signature that includes a sort Users and a sort of Actions
that are to be protected;
—an explicit extension point to associate authorization constraints (like
the sort Permissions in the case of SecureUML);? and
—access control restrictions that are expressible as first-order formulas
over this signature.

5. AN EXAMPLE MODELING LANGUAGE: ComponentUML

In this section we give an example of a system design language, which we
call ComponentUML, and present its combination with SecureUML. We also
show how to model security policies using the resulting security design model-
ing language and we illustrate its semantics using the example introduced in
Section 2.1.

ComponentUML is a simple language for modeling component-based sys-
tems. The metamodel for ComponentUML is shown in Figure 10. Elements of
type Entity represent object types of a particular domain. An entity may have
multiple methods and attributes, represented by elements of the types Method
and Attribute respectively. Associations are used to specify relations between
entities. An association is built from an Association model element and ev-
ery entity participating in an association is connected to the association by an
AssociationEnd.

8Even less is possible. Authorization constraints could also be added without an explicit extension
point. This would result in a simple conjunction of declarative and programmatic access control
formulas.
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Entity |+type AssociationEnd Association

1 0.* 2 1

Attribute Method

Fig. 10. ComponentUML metamodel

+owner

: 1 <<Entity>>
«E”t't}’» 0. Person
Meeting
- +participants |-name : string
N 3 Gl 0.* -e-mail : string
-duration : time 0.*
+notify() : void 0..*

+cancel() : void <<Entity>>
. Room
+location

0.1 |-number :int
-floor : int

Fig. 11. Scheduling application.

ComponentUML uses a UML-based notation where entities are represented
by UML classes with the stereotype «Entity>>. Every method, attribute, or
association end owned by such a class is automatically considered to be a
method, attribute, or association end of the entity, so no further stereotypes are
necessary.

Figure 11 shows the structural model of our scheduling application in the
ComponentUML notation. Instead of classes, we now have the three entities
Meeting, Person, and Room, each represented by a UML class with the stereo-
type <Entity>.

5.1 Extending the Abstract Syntax

Merging Syntax. As the first step towards making ComponentUML secu-
rity aware, we extend its abstract syntax with the vocabulary of SecureUML by
merging both metamodels. This is achieved by importing the SecureUML meta-
model into the metamodel of ComponentUML. This extends ComponentUML
with the SecureUML modeling constructs, for example, Role and Permission.
As MOF metamodels are defined in packages, their corresponding namespaces
ensure that no conflicts arise during merging.

Identifying Protected Resources. Second, we identify the model elements of
ComponentUML representing protected resources and formalize this as part of
a SecureUML dialect. To do this, we must determine which model element we
wish to control access to in the resulting systems. When doing this, we must ac-
count for what can ultimately be protected by the target platform. Suppose, for
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(from SecureUML)
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v

CompositeAction
(from SecureUML)

Fig. 12. SecureUML dialect for the ComponentUML metamodel.

example, we decide to interpret entity attributes as protected resources and the
target platform supports access control for methods only. To protect attributes
then, our transformation function must transform each modeled attribute into
a private attribute and generate (and enforce access to) methods for reading
and changing the value of the attribute in the generated system.

In our example, we identify the following model elements of
ComponentUML as protected resources: Entity, Method, Attribute, and As-
sociationEnd. This identification is made by using inheritance to specify that
these metatypes are subtypes of the SecureUML type Resource, as shown in
Figure 12. In this way, the metatypes inherit all properties needed to define
authorization policies. Additionally, we define in this figure several action
classes as subtypes of the SecureUML class CompositeAction. The action
composition hierarchy is then defined as part of each action’s type information,
by way of OCL invariant constraints (see below) on the respective types.

Defining Resource Actions. In the next step, we define the set of actions
that is offered by every model element type representing a protected resource.
Specifically, we fix the domain of the metamodel association ResourceAction for
each resource type of the dialect. Actions can be freely defined at every level of
abstraction. One may choose just to leverage the actions that are present in the
target security architecture, for example, the action “execute” on methods. Al-
ternatively one may define actions at a higher level of abstraction, for example,
“read” access to a component. This results in a richer, easier to use vocabulary
since granting read or write access to an entity is more intuitive than giving
someone the privilege to execute the methods getBalance, getOwner, and getId.
High-level actions also lead to concise models. We usually define actions of both
kinds and connect them using hierarchies.

In the metamodel, the set of actions each resource type offers is defined by
the named dependencies from the resource type to action classes, as shown in
Figure 12. Each dependency represents one action of the referenced action type
in the context of the resource type, where the dependency name determines the
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Table II. SecureUML Dialect Action Hierarchy

Composite Action Type Subordinated Actions

EntityFullAccess create, read, update, and delete of the entity.

EntityRead read for all attributes and association ends of the entity, and
execute for all side-effect free methods of the entity.

EntityUpdate update for all attributes of the entity,

update for all association ends of the entity, and
execute for all non-side-effect free methods of the entity.
AttributeFullAccess read and update of the attribute.
AssociationEndFullAccess | read and update of the association end.

name of the action. For example, the metamodel in Figure 12 formalizes that
an Attribute always possesses the action fullAccess of type AttributeFullAccess
and the actions read and update of type AtomicAction.

Defining the Action Hierarchy. As the final step in defining our SecureUML
dialect, we define a hierarchy on actions. We do this by restricting the domain
of the SecureUML association ActionHierarchy on each composite action type of
the dialect by an OCL invariant. An overview of the composite actions of the
SecureUML dialect for ComponentUML is given in Table II. The approach
we take is shown for the action class EntityFullAccess by the following OCL
expression.

context EntityFullAccess inv:
subordinatedActions =
resource.actions->select (name="create" or name="read" or
name="update" or name="delete")

This expression states that the composite action EntityFullAccess is larger (a
“super-action”) in the action hierarchy than the actions create, read, update,
and delete of the entity the action belongs to.

Another example for the action class EntityRead is given by the OCL
expression

context EntityRead inv:
subordinatedActions =
resource.attributes.actions->select (name="read")
->union(resource.roles.actions->select (name="read"))
->union(resource.operations->select (isQuery) .actions
->select (name="execute")).

This states that EntityRead is larger than the read actions of the attributes and
association ends contained in the entity and the execute actions of all side-effect
free methods of the entity. Here, the tagged value “isQuery” is used to select the
side-effect free methods. Our OCL formalization of this is somewhat complex
as we must use the syntax of the metamodel to select actions of the resources
that are contained in the entity instance that the action belongs to.

5.2 Extending the Concrete Syntax

In the previous section, we have seen how the abstract syntax of Component-
UML can be augmented with syntax for security modeling by combining it
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Table III. Action Reference Types for ComponentUML

Stereotype Resource Type | Naming Convention
EntityAction Entity empty string
MethodAction Method method signature
AttributeAction Attribute attribute name
AssociationEndAction | AssociationEnd | association end name

with the abstract syntax of SecuretUML. We extend the concrete syntax of
ComponentUML analogously by importing the SecureUML notation into Com-
ponentUML. Afterwards, we define well-formedness rules on SecureUML prim-
itives that restrict their use to those ComponentUML elements representing
protected resources. For example, the scope of a permission, which is any UML
class in the SecureUML notation (see Section 4.2), is restricted to UML classes
with the stereotype «Entity>>. Finally, as shown in Table III, we define the
action reference types for entities, attributes, methods, and association ends.

5.3 Extending the Semantics

Our combination schema requires that we define the semantics of Component-
UML as a labeled transition system A = (@, A, ) over a first-order signa-
ture Xgr. Intuitively, every entity defines a sort in the first-order signature,
and every atomic action defined by the SecureUML dialect for Component-
UML (cf. Figure 12) defines an action in the labeled transition system. Side-
effect free actions give rise to function and predicate symbols in the first-order
signature.

To make this more precise, given a model in the ComponentUML language,
we define the signature Xg7r = (Ss7, Fsr, Pst) as follows:

—Each Entity e gives rise to a sort S, in Sgr. Additionally, Sg7r contains the
sorts Users, String, Int, Real, and Boolean:

Ssr = {S. | e is an entity} U {Users, String, Int, Real, Boolean}.

— Each side-effect free entity method m (which is marked in UML by the tagged
value “isQuery” set to true) gives rise to a function symbol f,, in Fgr of the
corresponding type. Corresponding type here means, in particular, that we
add the sort of the entity as an additional parameter: the “this-pointer” is
passed as an additional argument. Each entity attribute a¢ gives rise to a
function symbol get,; in Fgr (the “get-method”) of type s — v, where s is the
sort of the entity and v is the sort of the attribute’s type. Each association end
ae with multiplicity {1} gives rise to a function symbol f,.. Finally, we have
a constant symbol caller of type Users and a function symbol UserName of
type Users — String:

Fst = {fm | m is an entity method} U
{gety: | at is an entity attribute} U
{ self, | e is an entity} U
{fae | ae is an association end with multiplicity {1}}U

{ caller, UserName}.
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—Each association end ae with a multiplicity other than {1} gives rise to a
binary predicate symbol P, in Pgr of the type of the involved entities:

Pst = {Py,. | ae is an association end with multiplicity # {1}}.
We now define the labeled transition system A = (@, A, §) by:

— @ is the universe of all possible system states, which is just the set of all first-

order structures over the signature X g7 that consist of finitely many objects
for each entity as well as for the sort Users, and where the interpretations
of String, Int, Real, and Boolean are fixed to be the sets Strings, Z, R, and
{true, false} respectively.
The entity sorts consist of objects that can be thought of as tuples, containing
an object identifier and fields for each attribute. The attribute fields contain
the object identifier of the referenced object (in case this object is of an entity
sort) or a value of one of the primitive types.

—The set of actions A is defined by (cf. Figure 12):

A = EntityCreateActions U EntityDeleteActions U

MethodActions U

AttributeReadActions U AttributeUpdateActions U

AssociationEndReadActions U AssociationEndAddActions U

AssociationEndRemoveActions,
where, for example, AttributeUpdateActions is defined by:

AttributeUpdateActions = U {setyr) x Qe X Qut.
{ateAttributes)

Here, @. and @,; denote the universes of all possible instances of the type
of the attribute’s entity, and the type of the attribute respectively. For ex-
ample, the action (sety, e, v) € AttributeUpdateActions denotes the action of
setting the attribute at of the entity e to the value v. The other sets of actions
are defined similarly.

—The transition relation § € @ x A x @ defines the allowed transitions. The
exact details of § will depend on the intended semantics of the methods them-
selves. We will just give a few examples here to illustrate the main idea. For
example, for a € AttributeReadActions, (q,a,q’) € § if and only if ¢ = q':
In other words, reading an attribute’s value does not change the system
state. In contrast, setting an attribute value should be reflected in the sys-
tem state: for a = (sety, e, v) € AttributeUpdateActions, (q,a,q’) € § implies
q' = geta(e) =v.

It is possible to complete this account and give a full semantics of Com-
ponentUML, but this would take us too far afield. Any completion will meet
the requirements put forth in Section 4.3 and have a well-defined behavioral
semantics. Specifically, the transition system Asc = (Qac, Aac, Sac) for the
combination is defined by adding Xgpac-structures to the system states in @,
extending § to @ ac x Aac X @ ac, and removing forbidden transitions. Hence, ¢
will only contain those transitions that are allowed according to the SecureUML
semantics.
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OwnerMeeting

<<EntityAction>>-Meeting : update caller.name = self.owner.name %

<<EntityAction>>-Meeting : delete

7 fOWner | <<Entity>>
<<Permission>> <<Entity>> ) Person
<<Role>> o Meeting 0.* -name : string
User <<Permission>> » |-e-mail : string
: -start : date . 0. .
- -duration : time | .0--
? UserMeeting Tnotify() : void +participants
<<EntityAction>>-Meeting : read aerrea ) ° el N
<<Role>> <<EntityAction>>-Meeting : create 0 0.
Supervisor <<Entity>>
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<<Permission>> 0.1 |-number : int
i -floor : int
SupervisorCancel

<<EntityMethodAction>>-Meeting.cancel : execute
<<EntityMethodAction>>-Meeting.notify : execute

Fig. 13. Scheduler example with authorization policy.

5.4 Modeling the Authorization Policy

We now use the combined language to formalize the security policy given in
Section 2.1. We do this by adding permissions to the entity model of the sched-
uler application that formalize the three policy requirements. As these permis-
sions associate roles with actions, we also employ the roles User and Supervisor,
which we introduced in Section 4.2.

The first requirement states that any user may create and read meeting data.
We formalize this by the permission UserMeeting in Figure 13, which grants
the role User the right to perform the create and read actions on the entity
Meeting.

We formalize the second requirement with the permission OwnerMeeting,
which states that a meeting may only be altered or deleted by its owner. This
permission grants the role User the privilege to perform the update and delete
actions on a Meeting. Additionally, we restrict this permission with the au-
thorization constraint caller.name = self.owner.name, which states that the
name of a caller must be equal to the name of the owner of the meeting in-
stance. Due to the definition of the action update (cf. Table II), this permis-
sion must hold for every change of the value of the attributes or association
ends of the meeting entity as well as for invocations of the methods notify or
cancel.

Finally, we formalize the third requirement with the permission Supervisor-
Cancel. This gives a supervisor the permission to cancel any meeting, namely,
the right to execute the methods cancel and notify.

5.5 Examples of Access Control Decisions

We now illustrate the semantics by analyzing several access control decisions
in the context of Figure 13. We assume that we have three users, Alice, Bob, and
Jack, and that Bob is assigned the role User whereas Alice is assigned the role
Supervisor. Here we assume that our dialect has the default behavior “access
allowed” and we directly apply the semantics of SecureUML to the policy given
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in the previous section. The corresponding Yrpac-structure Srpac is?
Users = Subjects ={Alice, Bob, Jack}
Roles ={User, Supervisor}
Permissions ={0wnerMeeting, SupervisorCancel, ...}
AtomicActions ={Meeting::cancel.execute,...}
Actions =AtomicActions U {Meeting.update, ...}
UA ={(Bob, User), (Alice, Supervisor)}
PA ={(User, OwnerMeeting),
(Supervisor, SupervisorCancel), ...}
AA ={(SupervisorCancel, Meeting::cancel.execute),
(OwnerMeeting, Meeting.update), ...}
>Roles—={(Supervisor, User), (Supervisor, Supervisor),
(User, User)}
> Actions={(Meeting.update, Meeting::cancel.execute),

b

and the signature Xg7, derived from the system model, is

S = {Meetings, Persons, Rooms} U {String, Int, Real, Bool}

F = {(selfyeetings - - - » MeetingOwner, PersonName}

P = {MeetingLocation, MeetingParticipants, ...}.
The constant symbol SelfMeetings of sort Meetings denotes the currently ac-
cessed meeting. The function symbols

MeetingOwner : Meetings — Persons
PersonName : Persons — String
represent the association end owner of the entity type Meeting and the attribute
name of a person.
Now suppose that Alice wants to cancel a meeting entry owned by Jack.

Suppose further that the system state is given by the first-order structure G
over g1, where

caller® = Alice

Meetings®* = {meetingj,q.}
Persons® = {alice, bob, Jjack}
Self]l?esétings = meetingyacx
MeetingOwner®™ = {(meeting .., jack)}
PersonName® = {(alice,”Alice”), (bob, ”Bob”), (jack,”Jack™)}

UserName®* = {(Alice, ”’Alice”, (Bob, ”Bob”), (Jack, ”Jack”)}.

9We denote actions by the name of their resource and the name of the action type, separated by a
dot.
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The formula that must be satisfied by the structure Gac = (Srpac, Ss) in order
to grant Alice access is built according to the definition (2), given in Section 4.3:

¢pacw,a)= \/ ¢ vwr®, ) A ¢ acion(p,a) A P ).
pePermissions

As can be seen in Figure 13, Alice has the permission SupervisorCancel
for the action Meeting: :cancel.execute. However, the method cancel() of the
entity Meeting is a method with side-effects. Therefore, the composite action
Meeting.update includes the action Meeting: :cancel. execute. Because the role
Supervisor inherits permissions from the role User, Alice also has the permis-
sion OwnerMeeting for the action Meeting: :cancel.execute. No other permis-
sions for this action exist. Hence, the formula

¢ User(Alice, p) A ¢ action(p, Meeting: :cancel.execute)
is only true for these permissions. The constraint expression
caller.name = self.owner.name
on the permission OwnerMeeting is translated into the formula
UserName(caller) = PersonName(Meeting Owner(selfyoetings ),

and the formula for the permission SupervisorCancel is ¢rue. For all other per-
missions p, the formula ¢yse- (U, p) A Paction(p, @) is false. Therefore the access
decision is equivalent to

Sac k= true v UserName(caller) = PersonName(MeetingOwner(selfyjootings())),

which is satisfied.

Alternatively, suppose that Bob tries to perform this action. The correspond-
ing structure &/, differs from G4c¢ by the interpretation of the constant symbol
caller, which now refers to “Bob”. Bob only has the permission OwnerMeeting
for this action. Hence,

G)c = UserName(caller) = PersonName(MeetingOwner(selfyopsings()))

is required for access. Since Jack is the owner of this meeting, not Bob, this
constraint is not satisfied and access is denied.

6. GENERATING AN EJB SYSTEM

We now show how ComponentUML models can be transformed into executable
EJB systems with configured access control infrastructures. First, we outline
the basic generation rules for EJB systems and illustrate the approach using the
example introduced in the previous section. Afterwards, we present the rules for
transforming SecureUML elements into EJB access control information. The
generation of users, roles, and user assignments is straightforward in EJB:
for each user, role, and user assignment, we generate a corresponding element
in the deployment descriptor. We therefore omit these details and focus here
on the parts of the infrastructure responsible for enforcing permissions and
authorization constraints.
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6.1 Basic Generation Rules for EJB

Generation rules are defined for entities, their attributes, methods, and asso-
ciation ends. The result of the transformation is a source code fragment in the
concrete syntax of the EJB platform, either Java source code or XML deploy-
ment descriptors.

An Entity is transformed to a complete EJB component of type entity bean
with all necessary interfaces and an implementation class. Additionally, a fac-
tory method create for creating new component instances is generated. The
component itself is defined by an entry in the deployment descriptor of type
entity as shown by the following XML fragment.

<entity>
<ejb-name>Meeting</ejb-name>
<local-home>scheduler.MeetingHome</local-home>
<local>scheduler.Meeting</local>
<ejb-class>scheduler.MeetingBean</ejb-class>

</entity>
A Method is transformed to a method declaration in the component interface
of the respective entity bean and a method stub in the corresponding bean

implementation class. The following shows the stub for the method cancel of
the entity Meeting.

void cancel(){ }

For each Attribute, access methods for reading and writing the attribute value
are generated along with persistency information that is used by the application
server to determine how to store this value in a database. The declarations of
the access methods for the attribute duration of the entity Meeting are shown in
the following Java code fragment.

int getDuration();
void setDuration(int duration);

Elements of type AssociationEnd are handled analogously to attributes. Ac-
cess methods are generated for reading the collection of associated objects and
for adding objects to, or deleting them from, the collection. Furthermore, per-
sistency information for storing the association-end data in a database is gener-
ated. The following code fragment shows the declarations of the access methods
for the association end participants of the entity Meeting.

Collection getParticipants();
void addParticipant(Participant participant);
void removeParticipant(Participant participant);

6.2 Generating Access Control Infrastructures

We define generation rules that translate a security design model into an
EJB security infrastructure based on declarative and programmatic access
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control. Each permission is translated into an equivalent XML element of type
method-permission, used in the deployment descriptor for the declarative ac-
cess control of EJB. The resulting access control configuration enforces the
static part of an access control policy, without considering the authorization
constraints. Programmatic access control is used to enforce the authorization
constraints. For each method that is restricted by at least one permission with
an authorization constraint, an assertion is generated and placed at the start
of the method body.

Note that since the default behavior of both the SecureUML dialect for Com-
ponentUML and the EJB access control monitor is “access allowed,” we need
not consider actions without permissions during generation.

Generating Permissions. As explained in Section 2.5, a method permission
element names a set of roles and the set of EJB methods that the members of
the roles may execute. Generating a method permission can therefore be split
into two parts: generating a set of roles and assigning methods to them.

Since EJB does not support role hierarchies, both the roles directly connected
to permissions in the model, as well as their subroles, are needed for generation.
First, the set of roles directly connected to a permission is determined using
the association PermissionAssignment of the SecureUML metamodel. Then, for
every role in this set, all of its subroles (under the transitive closure of the rela-
tion defined by the association RoleHierarchy) are added to the role set. Finally,
for each role in the resulting set, one role-name element is generated. Apply-
ing this generation procedure to the permission OwnerMeeting in our example
results in the following two role references.

<role-name>User</role-name>
<role-name>Supervisor</role-name>

The set of method elements that is generated for each permission is computed
similarly. First, for each permission, we determine the set of actions directly
referenced by the permission using the association ActionAssignment. Then, for
every action in this set, all of its subordinated actions (under the reflexive clo-
sure of the relation defined by the association ActionHierarchy) are added to
the action set. Finally, for each atomic action in the resulting set, method ele-
ments for the corresponding EJB methods are generated. The correspondence
between atomic actions and EJB methods is given in Table IV. Note that an
atomic action may map to several EJB methods and therefore several method
entries may need to be generated.

We illustrate this process for the permission UserMeeting, which references
the actions Meeting.create and Meeting.read. The resulting set of atomic ac-
tions for this permission is

{Meeting.create, Meeting::start.read,
Meeting::duration.read, Meeting::owner.read,

Meeting::location.read, Meeting::participants.read},

where “: :” is standard object-oriented notation, which is used here to reference
the attributes and association ends of the entity Meeting. The action create of
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Table IV. Atomic Action to Method Mapping for EJB

Rule # | Resource Type Action EJB Methods

1 Entity create automatically generated factory methods

2 Entity delete delete methods

3 Method execute | corresponding method

4 Attribute read get-method of the attribute

5 Attribute update | set-method of the attribute

6 AssociationEnd | read get-method of the association end

7 AssociationEnd | update | add- and remove-method of the association end

<method> <method>
<ejb-name>Meeting</ejb-name> <ejb-name>Meeting</ejb-name>
<method-intfs>Local</method-intf> <method-intfs>Local</method-intf>
<method-name>create</method-name> <method-name>getOwner</method-name>
<method-params/> <method-params/>

</method> </method>

<method> <method>
<ejb-name>Meeting</ejb-name> <ejb-name>Meeting</ejb-name>
<method-intf>Local</method-intf> <method-intfs>Local</method-intf>
<method-name>getStart</method-name> <method-name>getLocation</method-name>
<method-params/> <method-params/>

</method> </method>

<method> <method>
<ejb-name>Meeting</ejb-name> <ejb-name>Meeting</ejb-name>
<method-intf>Local</method-intf> <method-intfsLocal</method-intfs>
<method-name>getDuration</method-name> <method-name>getParticipants</method-name>
<method-params/> <method-params/>

</method> </method>

Fig. 14. Generated XML code for the methods of the permission UserMeeting.

the entity Meeting remains in the set, whereas the action read is replaced by the
corresponding actions for reading the attributes and the association ends of the
entity Meeting. The mapping rules 1, 4, and 6 given in Table IV are applied,
which results in a set of six methods: the method create, the read-methods of
the attributes start and duration, and the read-methods of the association ends
owner, participants, and location. The XML code generated is given in Figure 14.

Generating Assertions. While the generation of an assertion for each OCL
constraint is a simple matter, this task is complicated by the fact that a method
may have multiple (alternative) permissions, associated with different con-
straints and roles, where the roles in turn may be associated with subroles.
Below we describe how we account for this when generating assertions.

First, given a method m, the atomic action a corresponding to the method
is determined using Table IV. For example, the action corresponding to the
EJB method Meeting: :cancel is the action execute of the method cancel of the
entity Meeting in the model. Then, using this action a, the set of permissions
ActionPermissions(a) that affect the execution of the method m is determined
as follows: a permission is included if it is assigned to a by the association
ActionAssignment or to one of the super-actions of a (under the reflexive clo-
sure of the relation defined by the association ActionHierarchy). Next, for each
permission p in the resulting set ActionPermissions(a), the set PR(p) of roles
assigned to p is determined, again taking into account the hierarchy on roles
in the same way as in the previous section. Finally, based on this information,
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an assertion is generated of the form

if (!( (( \/ UserRole(r)) A Constraint(p))))

rePR(p)

This scheme is similar to the definition of ¢ac(u, a) by Equation (2) in Sec-
tion 4.3, as each permission represents an (alternative) authorization to exe-
cute an action. However, because the permission assignments and action as-
signments are known at compile time, this information is used to simplify the
assertion. Instead of considering all permissions, we only consider permissions
that refer to the action in question by calculating the set ActionPermissions(a).
This has the effect that the equivalent of ¢acsion(p, @) in Equation (2) can be omit-
ted. Similarly, the equivalent of ¢, is simplified by only considering roles that
have one of these permission, which is done by calculating the sets PR(p). If a
constraint is assigned to a permission, it is evaluated afterwards. Access denial
is signaled to the caller by throwing an exception.

As an example, for the method Meeting: :cancel, we generate the following
assertion.

3

peActionPermissions(a)

thrownewAccessControlException(’Accessdenied.”); .

if (!(ctxt.isCallerInRole("Supervisor") /* SupervisorCancel */
|l (ctxt.isCallerInRole("User")
|| ctxt.isCallerInRole("Supervisor"))
&& ctxt.getCallerPrincipal.getName () .equals(getOwner())))
throw new AccessControlException("Access denied.");

Observe that the role assignment check UserRole(r) is translated into a Java
expression of the form ctxt.isCallerInRole(<roleName>). The variable ctxt
references an object of type javax.ejb.EJBContext, which is used in EJB to
communicate with the execution environment of a component. Here, the context
object is used to check the role assignment of the current caller.

Authorization constraints are translated into equivalent Java expressions.
The symbol caller is translated to ctxt .getCallerPrincipal . getName (). Access
to methods, attributes, and association ends respects the rules that are applied
to generate the respective counterparts of these elements, given in Section 6.1.
For example, access to the value of an attribute name is translated to a call of the
corresponding read method getName. The OCL equality operator is translated
to the Java method equals for objects or to Java’s equality operator for primitive

types.

6.3 The Correctness of Generation

As stated in Section 3, judging the correctness of the transformation process re-
quires a formal semantics for the target security architecture. In the following,
we first give an informal semantics of the security architecture of EJB, which
can be further formalized. Afterwards, we explain why systems that are gener-
ated according to the rules given above actually implement the access control
policy that is defined by the semantics of SecureUML.
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Informal Semantics of The EJB Security Architecture. In the EJB context,
the protected resources are the methods of the entity beans. Each method pro-
vides the single action to “execute this method,” the collection of which forms
the set of actions. Permission to perform these actions can be denied in two
cases. First, if the execution of a method is restricted by at least one method
permission element in the deployment descriptor, a user may only execute the
method if he has one of the roles listed in one of the method permission el-
ements protecting the method. Second, the body of methods can be prefaced
by code whose evaluation determines if the execution of the method should be
allowed: there can be an assertion of the form

if (<predicate>){
throw new AccessControlException("Access denied.");

}s

where <predicate> is defined by the application developer. In all remaining
cases, method execution is allowed.

Sketch of the Correctness Proof. To argue the correctness of the generation
rules with regard to an arbitrary atomic action a, we distinguish three cases:

(1) There is no permission assigned directly to a, or to an action a’ with
a’ > Actions @, in the security design model.

(2) There is at least one permission assigned to a, either directly or indirectly,
in the security design model, but none of these permissions is assigned an
authorization constraint.

(3) There is at least one permission assigned to a, either directly or indirectly,
in the security design model, and at least one of these permissions has been
assigned an authorization constraint.

In the first case, the generation rules neither generate a method permis-
sion nor an assertion. The default behavior of the SecureUML dialect for Com-
ponentUML is “access allowed” and the EJB container allows the execution of
the relevant methods corresponding to this atomic action, which is correct.

In the second case, the formal semantics of SecureUML specifies

¢reacw, )= \/  GUser(, P) A Paciion(p, @).

pePermissions

Hence, access is allowed if and only if the user u is assigned to a role that is
larger than or equal to a role that has a permission p and this permission refers
to an action that is larger than or equal to the atomic action corresponding to
executing this method (cf. Equation (1) in Section 4.3). As no authorization
constraint is assigned, an assertion is not generated. Therefore we only need to
show that a user isin a role listed in the generated method-permission elements
if and only if ¢rpac(u, a) is true. However in the generation of these method-
permission elements, both the hierarchy on roles as well as the hierarchy on
actions are expanded when calculating the set of roles and the set of methods
that appear in the method-permission element. This means that the method-
permission that is generated for a permission p, which contains the method
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corresponding to the action a (i.e., ¢acion(p, @) holds), contains a role that the
user u has if and only if ¢y (1, p) holds.

In the third case, it suffices to show that the predicate <predicate> in the
generated assertion evaluates to true if and only if ¢pac(u, a) evaluates to false.
This is equivalent to showing that

\/ (( \/ UserRole(r)) A Constraint( p)) (4)

peActionPermissions(a) rePR(p)

evaluates to true if and only if

\/ SUser (U, P) A G action(p, @) A ¢§t(u), (5)

pePermissions

evaluates to true. However, looking at the definitions of ActionPermissions(a)
and PR(p), one sees that p € ActionPermissions(a) corresponds to ¢acsion(p, @),
and that J, PR(p) UserRole(r) corresponds to ¢yse-(u, p). This means that both

formulas are essentially the disjunction over the same set of constraints ¢%, ().

7. GENERATING A .NET SYSTEM

One of the advantages of Model Driven Security is that by implementing dif-
ferent translation functions one can generate security architectures for differ-
ent platforms. Here we consider generating secure applications based on the
programming language C# and the Enterprise Services for .NET, described in
Section 2.5. Rather than presenting this translation in detail, we focus on the
main conceptual differences to the EJB translation.

An Entity of ComponentUML is transformed into a serviced component of the
enterprise services. The generated component consists of an interface and an
implementation class; a default constructor is generated as well. This is shown
by the following code fragment for the entity Meeting.

public interface IMeetingInterfacef{...}
public class Meeting : ServicedComponent, IMeetingInterface

{
public Meeting(){...}

Methods and association ends are transformed to access methods and mem-
bers as described in Section 6. Attributes are handled differently; for each at-
tribute, a C# property is added to the interface and the implementation class.
The declaration of the property for the attribute duration of the entity Meeting
is shown in the following example.

int duration

{
get;
set;

}
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In contrast to the EJB generation, the transformation of permissions
is “method-centric” because access restrictions are defined in .NET using
SecurityRole attributes in the component source code (see Section 2.5). Such
attributes must be generated for each role that is allowed to execute a method
m. The set of roles MethodRoles(m) that are granted access to m is determined
as follows. First, the action a corresponding to the method m is determined
and the set of permissions ActionPermissions(a) is calculated according to the
rules given in Section 6.2. Second, for each permission in ActionPermissions(a),
all roles referenced by the association PermissionAssignment and all of their
subroles (under the transitive closure of the relation defined by the association
RoleHierarchy) are added to MethodRoles(m). For each role in MethodRoles(m),
a corresponding .NET attribute of type SecurityRole is generated as shown
below for the method Meeting: :cancel.

[SecurityRole("User")]
[SecurityRole("Supervisor")]
public void cancel() {...}

Note that there is no transformation rule for SecureUML roles because .NET
does not require global role definitions. Instead, the .NET environment deter-
mines this information by analyzing the declared role checks of all the applica-
tion’s components.

The transformation of authorization constraints is analogous to the EJB
transformation. There are only minor syntactic differences in the mapping rules
between OCL and the C# programming language and the programmatic access
control functions of NET. The following shows the counterpart of the example
given in Section 6.2.

if (!(ctxt.IsCallerInRole("Supervisor") /* SupervisorCancel */
[l (ctxt.IsCallerInRole("User")
|| ctxt.IsCallerInRole("Supervisor"))
&& ctxt.OriginalCaller.AccountName == owner)))
throw new UnauthorizedAccessException("Access denied.");

8. ControllerUML

To demonstrate the general applicability of our approach, we now present a
second design modeling language. This language, which we call Controller-
UML, is based on state machines.!® We will show how ControllerUML can
be integrated with SecureUML and used to model secure controllers for multi-
tier applications, and how access control infrastructures can be generated from
such controller models.

A well-established pattern for developing multi-tier applications is the
Model-View-Controller pattern [Krasner and Pope 1988]. In this pattern, a
controller is responsible for managing the control flow of the application and
the data flow between the persistence tier (model) and the visualization tier

10T keep the account self-contained, we simplify state machines by omitting parallelism, actions
on state entry and exit, and details on visualization elements.
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Fig. 15. Metamodel of ControllerUML.

(view). The behavior of the controller can be formalized by using event-driven
state machines and the modeling language ControllerUML utilizes UML state
machines for this purpose.

The abstract syntax of ControllerUML is defined by the metamodel shown
in Figure 15. Each Controller possesses a Statemachine that describes its be-
havior in terms of States, StateTransitions, Events, and StatemachineActions. A
State may contain other states, formalized by the association StateHierarchy,
and a transition between two states is defined by a StateTransition, which is
triggered by the event referenced by the association end trigger. A state ma-
chine action specifies an executable statement that is performed on entities
of the application model. ViewState and SubControllerState are subclasses of
State. A ViewState is a state where the application interacts with humans by
way of view elements like dialogs or input forms. The view elements generate
events in response to user actions, for example, clicking a mouse button. These
events are then processed by the controller’s state machine. A SubController-
State references another controller using the association end controller. The
referenced controller takes over the application’s control flow when the refer-
encing SubControllerState is activated. This supports the modular specification
of controllers.

The notation of ControllerUML uses primitives from UML class diagrams
and statecharts. An example of a ControllerUML model is shown in Figure 16.
A Controller is represented by a UML class with the stereotype <« Controller:>s>.
The behavior of the controller is defined by the state machine that is associ-
ated with this class. States, transitions, events, and actions are represented
by their counterparts in the UML metamodel. Transitions are labeled with a
string, containing a triggering event and an action to be executed during state
transition, separated by a slash. We use events to name transitions in our ex-
planations. View states and subcontroller states are labeled by the stereotypes
«ViewState>> and «SubControllerStates>, respectively.

Figure 16 shows the design model for an interactive application that for-
malizes the scheduler workflow presented in Section 2.2. The controller class
MainController is the top-level controller of the application and CreationCon-
troller controls the creation of new meetings (details are omitted here to save
space). The state machine of MainController is similar to that of Figure 4. In
the state ListMeetings, a form is displayed that shows all meeting entries in the
database, independent of their owner. A user can trigger different actions from
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<<Controller>> <<Controller>>
MainController | _______ > CreationController
- selectedMeeting : Meeting

MainController's Statechart
Start

delete / deleteMeeting
create

<<SubControllerState>>
CreateMeeting

<<ViewState>>
ListMeetings edit

<<ViewState>>
exit EditMeeting
apply / update

cancel / cancelMeeting @ End

Fig. 16. Controllers for the scheduling application.

this form. It is possible to select a meeting and to execute an action on it. The
selected meeting is stored in the attribute selectedMeeting of the controller ob-
ject. An event of type delete triggers the execution of the action deleteMeeting,
whereas cancel causes the execution of the action cancelMeeting. The transi-
tion edit causes a state transition to EditMeeting, where the user can change
the meeting information. The action update on the transition apply propagates
the changes to the database. The creation of a new meeting is triggered by
an event of type create. In this case, the subcontroller state CreateMeeting is
activated, which in turn activates a controller of type CreationController. Note
that the reference from the subcontroller state CreateMeeting to the controller
CreationController is not visible in the diagram. This information is stored in a
tagged value of the subcontroller state.

8.1 Extending the Abstract Syntax

There are various ways to introduce access control into a process-oriented mod-
eling language like ControllerUML. For example, one can choose whether entry
to states or making transitions (or both) are protected. Each choice results in the
definition of a different dialect for integrating ControllerUML with SecureUML.
Here we shall proceed by focusing on the structural aspects of statecharts, which
are described by the classes of the metamodel (Figure 15) and the relations be-
tween them. We identify the types Controller, State, and StatemachineAction as
the resource types in our language since their execution or activation can be
sensibly protected by checkpoints in the generated code. Figure 17 shows this
identification and also defines the composite actions for the dialect and the
assignment of actions to resource types.

The resource type StatemachineAction offers the atomic action execute and
a state has the actions activate and activateRecursive. The action activateRe-
cursive on a state is composed of the actions activate on the state, execute on
all state machine actions of the outgoing transitions of the state, and the ac-
tions activateRecursive on all substates of the state. The corresponding OCL
definition is as follows:
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Fig. 17. Resource model of ControllerUML.

context StateActivateRecursive inv:
subordinatedActions =
resource.actions->select(name = "activate")
->union(resource.outgoing->select (effect<>None) .effect.actions
->select(name = "execute"))
->union(resource.substates.actions
->select(name = "activateRecursive"))).

This expression is built using the vocabulary defined by the ControllerUML
metamodel shown in Figure 15 and the dialect definition given in Figure 17.
The third line accesses the resource that the action belongs to (always a state)
and selects the action with the name “activate.” The next line queries all out-
going transitions on the state and selects those transitions with an assigned
state machine action (association end effect). Afterwards, for each state ma-
chine action, its (SecureUML) action with the name “execute” is selected. The
last line selects all actions with the name “activateRecursive” on all substates
of the state to which the action of type StateActivateRecursive belongs.

A controller possesses the actions activate and activateRecursive. The latter
is a composite action that includes the action activate on the controller and the
action activateRecursive for all of its states. Due to the definition of activateRe-
cursive on states, this (transitively) includes all substates and all actions of the
state machine.

8.2 Extending the Notation

First, we merge the notation of ControllerUML with SecureUML. Afterwards,
we define well-formedness rules on SecureUML primitives that restrict which
kinds of combined expressions are possible. We restrict how SecureUML prim-
itives can refer to ControllerUML elements representing protected resources.
For example, the scope of a permission is restricted to the UML classes with
the stereotype «Controller>>. Finally, we define the action reference types for
controllers, states, and state machine actions, as shown in Table V.

8.3 Extending the Semantics

We first define the semantics of ControllerUML in terms of a labeled transi-
tion system over a fixed first-order signature (cf. Section 4.3). Intuitively, every
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Table V. Action Reference Types for ControllerUML

Stereotype Resource Type Naming Convention
ControllerAction | Controller empty string

StateAction State state name

ActionAction StatemachineAction | state name + “.” + event name

Controller defines a sort in the first-order signature and, in addition, we have
a sort of states. Also, every atomic action defined in the SecureUML dialect as
well as every state-transition in the ControllerUML model defines an action of
the labeled transition system.

More precisely, given a model in the ControllerUML language, the corre-
sponding signature Xg7r = (Ss7, Fsr, Psr) is defined as follows:

—Each Controller ¢ gives rise to two sorts C, and S, in Sgr. C, is the sort
of the controller ¢, where the elements of sort C. represent the instances of
the controller c¢. Each user interacting with the system gives rise to such an
instance. S, is the sort of the states of the controller ¢, where each state of
the state machine describing the behavior of the controller ¢ gives rise to an
element of sort S.. Additionally, Sg7 contains the sorts Users, String, Int,
Real, and Boolean:

Sst = {S¢ | ¢ is a controller} U {C. | c is a controller} U
{Users, String, Int, Real, Boolean}.

—Function symbols are defined similarly to ComponentUML. However, con-
trollers in ControllerUML can only have attributes, but not methods. There-
fore, each controller attribute at¢ gives rise to a function symbol get,; in Fgr
(the “get-method”) of type s — v, where s is the sort of the controller and v is
the sort of the attribute’s type:

Fst = {gety | at is a controller attribute} U
{ self. | ¢ is a controller} U {caller, UserName}.

The initial and current states of a controller’s state machine are denoted
by the implicit (in the sense that every controller will have them) controller
attributes initialState and currentState of type S.. The initial state of a
controller denotes the state that is active when the state machine starts after
the controller is created, and the current state denotes the currently active
state. Whereas the attributes initialState and currentState are of type S,
other controller attributes denote application-specific data attached to the
controller and can have the types String, Int, Real, and Boolean. Addition-
ally, it is possible to combine ControllerUML with a data-oriented modeling
language (like ComponentUML). Then one can use controller attributes with
types provided by the data-modeling language. For example, in Figure 18 in
the MainController, we refer to the entity Meeting of the ComponentUML
model.

—Since there are no predicate symbols,
Psr = 0.
The transition system A = (@, A, §) is defined as follows:
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UserCreation

<<ControllerAction>>CreationController : activate_recursive

<<Controller>>
CreationController

<<Permission>>

OwnerMeeting

<<ActionAction>>ListMeetings.delete : execute
<<ActionAction>>ListMeetings.cancel : execute
<<StateAction>>EditMeeting : activate_recursive

caller.name = self.selectedMeeting.owner.name H

<<Role>>
User

<<Permission>>

<<Permission>>

<<Controller>>
MainController

<<Role>>
Supervisor

-selectedMeeting : Meeting

UserMain

<<ControllerAction>>MainController : activate
<<StateAction>>ListMeetings : activate
<<StateAction>>CreateMeeting : activate

<<Permission>>

SupervisorCancel

<<ActionAction>>ListMeetings.cancel : execute

Fig. 18. Policy for the scheduling application.

— @ is the universe of all possible states, which is just the set of all first-
order structures over the signature g7 with finitely many elements for
each controller sort as well as for the sort Users, where the interpretations
of String, Int, Real, Boolean, and S, are fixed to be the sets Strings, Z, R,
{true, false}, and the set of states of the controller ¢ respectively.

—The set of actions A is defined by:

A = ControllerActivateActions U StateActivateActions U
StatemachineActionExecuteActions U StateTransitions.

This means that all atomic actions (cf. Figure 17) as well as all state tran-
sitions are actions of the transition system.

—The transition relation § C @ x A x @ defines the allowed transitions. For
example, one requires that for each transition s; — sy in the model there
are corresponding tuples (S,;q, @, Snew) in 8, where the current state of the
controller (i.e., the attribute currentState) is s1 in sy;¢ and is Sy in Spe,. For
the purposes of this article, it does not matter which particular semantics is
used, for example, one of the many semantics for statechart-like languages
(von der Beeck [1994] lists about 20 of them).

Having defined the semantics of ControllerUML in this way, we combine it
with the semantics of SecureUML as described in Section 4.3. That is, the new
transition system Aac = (Qac, Aac, Sac) is defined by adding Xpgac-structures
to the system states in @, extending § to @ ac x Aac x Qac, and removing the
forbidden transitions from the result. Hence, §4¢ will only contain those tran-
sitions that are allowed according to the SecureUML semantics.
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8.4 Formalizing the Authorization Policy

We now return to our scheduling application model and extend it with a for-
malization of the security policy given in Section 2.1. In doing so, we use the
role model introduced in Section 4.2.

As Figure 18 shows, we use two permissions to formalize the first require-
ment that all users are allowed to create and to read all meetings. The per-
mission UserMain grants the role User the right to activate the controller
MainController and the states ListMeetings and CreateMeeting. The permission
UserCreation grants the role User the privilege to activate the CreationController
including the right to activate all of its states and to execute all of its actions.

The second requirement states that only the owner of a meeting entry is
allowed to change or delete it. We formalize this by the permission OwnerMeet-
ing, which grants the role User the right to execute the actions on the outgoing
transitions delete and cancel of the state ListMeetings and the right to activate
the state EditMeeting. This permission is restricted by the ownership constraint
attached to it.

Finally, supervisors are allowed to cancel any meeting. Therefore, the per-
mission SupervisorCancel grants this role the unrestricted right to execute the
action cancelMeeting on the transition cancel.

8.5 Transformation to Web Applications

In this section, we describe a transformation function that constructs secure
web applications from ControllerUML models. As a starting point, we assume
the existence of a transformation function that translates UML classes and
state machines into controller classes for web applications, which can be exe-
cuted in a Java Servlet environment (see Section 2.5). We describe here how we
extend such a function to generate security infrastructures from SecureUML
models.

The Java Servlet architecture supports RBAC; however, its URL-based au-
thorization scheme only enforces access control when a request arrives from
outside the web server. This is ill-suited for advanced web applications that are
built from multiple servlets, where one acts as the central entry point for the
application. This entry point servlet acts as a dispatcher in that it receives all
requests and forwards them (depending on the application state) to the other
servlets, which execute the business logic. The declarative authorization mech-
anism only provides protection for the dispatcher. To overcome this weakness,
we generate access control infrastructures that exploit the programmatic ac-
cess control mechanism that servlets provide, where the role assignments of a
user can be retrieved by any servlet.

Our transformation function is an extension of an existing generator pro-
vided by the MDA-tool ArcStyler [Hubert 2001], which converts UML classes
and state machines into controller classes. Each controller is equipped with
methods for activating the controller, performing state transitions, activating
the states of the controller, and executing actions on transitions.

We augment the existing transformation function by generation rules that
operate on the abstract syntax of SecureUML and add Java assertions to the
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methods for process activation, state activation, and action execution of a con-
troller class. First, the set ActionPermissions(a), which contains all permissions
affecting the execution of an action, is determined as described in Section 6.2.
Afterwards, an assertion is generated of the form:

if (1( \/ (( \/ UserRole(r))/\Constraint(p)) )
peActionPermissions@) rePR(p) (6)

c.forward("/unauthorized. jsp") .

The rule that generates this assertion has a structure similar to rule 3 in Sec-
tion 6.2, which is used to generate assertions in the stubs of EJB components.
When access is denied, however, the request is now forwarded to an error page
by the term c.forward("/unauthorized. jsp"), instead of throwing an excep-
tion. Additionally, the functions used to obtain security information differ be-
tween EJB and Java Servlet. For example, the following assertion is generated
for the execution of the action cancel on the state ListMeetings.

if (!(request.isUserInRole("Supervisor") /* SupervisorCancel */
|l (request.isUserInRole("User")
|| request.isUserInRole("Supervisor"))
&& getSelectedMeeting() .getOwner () .getName () .equals(
request.getRemoteUser())))
c.forward("/unauthorized. jsp");

The role check is performed using the method isUserInRole() on the request
object and each constraint is translated into a Java expression that accesses
the attributes and side-effect free methods of the controller. The symbol caller
is translated into a call to getRemoteUser() on the request object.

9. EVALUATION, SCOPE AND RELATED WORK

9.1 Evaluation

We have evaluated the ideas presented in this article in an extensive case study:
the model-driven development of the J2EE “Pet Store” application. Pet Store
is a prototypical e-commerce application designed to demonstrate the use of
the J2EE platform. It features web front-ends for shopping, administration,
and order processing. The application model consists of 30 components and
several front-end controllers. We have extended this model with an access con-
trol policy formalizing the principle of least privilege [Mayfield et al. 1991],
where a user is given only those access rights that are necessary to perform
a job. The modeled policy comprises six roles and 60 permissions, 15 of which
are restricted by authorization constraints. The corresponding infrastructure
is generated automatically and consists of roughly 5,000 lines of XML (overall
application: 13,000) and 2,000 lines of Java source code (overall application:
20,000).

This large expansion is due to the high level of abstraction provided by the
modeling language. For example, we can grant a role read access to an en-
tity, whereas EJB only supports permissions for whole components or single
methods. Therefore, a modeled permission to read the state of a component
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may require the generation of many method permissions, for example, for the
get-methods of all attributes. Clearly, this amount of information cannot be
managed at the source code level. The low abstraction level provided by the
access control mechanisms of today’s middleware platforms often forces de-
velopers to take shortcuts and make compromises when implementing access
control. For example, roles are assigned full access privileges even where they
only require read access. As our experience shows, Model Driven Security can
not only help to ease the transition from security requirements to secure appli-
cations, it also plays an important role in helping system designers to formalize
and meet exact application requirements.

9.2 Alternative Access Control Models

We have focused in this article on a particular instance of Model Driven Security
for design models combined with SecureUML. SecureUML and the generated
infrastructures are based on extensions of RBAC. We believe, however, that the
scope of Model Driven Security is much more general. To support this thesis, we
briefly sketch here its application to two other popular access control models.

Chinese Wall. Chinese Wall policies [Brewer and Nash 1989] formalize the
notions of conflict of interest classes and of being on the “wrong side of the wall”.
In this formalism, data is organized according to the company that controls it,
and the set of companies is partitioned into conflict of interest classes. An em-
ployee may access a data object of some particular company, he is on the “right
side of the wall”, if he has not previously accessed data of a different company in
the same conflict of interest class. Chinese Walls intuitively capture the policy
that must be adhered to by a management consultant. Such a consultant should
not advise companies where he has gained insider knowledge of a competitor,
that is, where he has accessed data of a different company in the same conflict
of interest class.

Modeling which company controls what data and the membership of com-
panies in conflict of interest classes can, for example, be done by statically as-
signing data objects to companies and companies to conflict of interest classes,
using associations comparable to the subject-role and user-group assignments
of SecureUML. The transformation rules for such models must then generate
book-keeping code that tracks which company’s data a user has already ac-
cessed. The rules must also generate appropriate assertions that check whether
the current caller is on the “right side of the wall.”

Bell-LaPadula. The main idea of Bell-LaPadula and related models [Bell
and LaPadula 1976] is to classify objects by security levels and to grant subjects
clearance for individual levels. The security levels are taken from a partially
ordered set, for example, {unclassified, confidential, secret} where unclassified
< confidential < secret, and the clearance of a subject defines which objects he
can access, depending on the type of access (read, write, or append). The two
primary rules of the Bell-LaPadula model are often informally summed up by
the phrases that “no read up” and “no write down” are allowed. Usually, the
Bell-LaPadula model also incorporates an access control matrix, which maps
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subject-object pairs to allowed access types, but we ignore this here in the dis-
cussion, as this can be handled similarly to SecureUML.

Assigning security levels to data objects and subjects, as well as classifying
actions into read, write, or append actions, can be done as in the case of Chinese
Wall policies. The transformation rules then only have to generate assertions
that check the “no read up” and “no write down” conditions.

9.3 Related Work

Various extensions to the core RBAC model have been presented in the litera-
ture. The need for flexible constraints on role assignments to express different
kinds of high-level organizational policies, like separation of duty, is empha-
sized by Jaeger [1999]. A formal language to express these constraints, based
on first-order logic, is, for example, proposed by Chen and Sandhu [1996]. Ahn
and Sandhu [1999] develop the “RSL99 language for Role-Based Separation
of Duty Constraints” and the Role-Based Constraint Language RCL2000 [Ahn
and Sandhu 2000]. Ahn and Shin [2001] show how these constraints can be ex-
pressed using OCL. In contrast to these works, we use authorization constraints
as additional restrictions on the permissions that a role has. As a result, Se-
cureUML can (unlike RBAC) be used to express access control policies that
depend on the system state.

Ahn and Shin [2000] give a description of the static, functional, and dynamic
views of RBAC using UML diagrams. In contrast, our SecureUML metamodel
provides a static view of our RBAC extensions. However, we can combine Se-
cureUML with other design modeling languages and use the results to develop
systems with access control infrastructures using security design models that
support the formalization of different system views.

In the area of using UML for modeling security and access control, Epstein
and Sandhu [1999] show how UML can be used to model RBAC-like situations,
in particular the RBAC Framework for Network Enterprises (FNE). Although
the authors also use a UML-based notation to express access control policies,
their syntax is different from SecureUML. Furthermore, we propose an ap-
proach for integrating policy models into system design models and facilitate
this by allowing the definition of authorization constraints on the system state.
Also, Epstein and Sandhu [1999] do not consider the question of implement-
ing infrastructures for enforcing access control policies, whereas we propose a
generative approach.

Jirjens [2001, 2002] proposes an approach to developing secure systems us-
ing an extension of UML called UMLsec. Using UMLsec, one can annotate
UML models with formally specified security requirements, like confidentiality
or secure information flow. In contrast, our work focuses on a semantic basis
for annotating UML models given by class or statechart diagrams with access
control policies, where the semantics provides a foundation for generating im-
plementations and for analyzing these policies.

Probably the most closely related work is the Ponder Specification Language
[Damianou et al. 2001; Damianou 2002], which supports the formalization
of authorization policies where rules specify which actions each subject can
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perform on given targets. As in our work, Ponder supports the organization of
privileges in an RBAC-like way and allows rules to be restricted by conditions
expressed in a subset of OCL. Moreover, policies given in the Ponder Specifica-
tion Language can directly be interpreted and enforced by a policy management
platform. As an alternative, the authors propose using code generators to create
infrastructures for particular access control technologies.

There are, however, important differences. To begin with, the possible ac-
tions on targets are defined in Ponder by the target’s visible interface methods.
Hence, the granularity of access control in Ponder is at the level of methods,
whereas in our approach higher-level actions (for example, updating an object’s
state) can be defined using action hierarchies. Second, while Ponder is given
an operational semantics, we employ a denotational semantics directly based
on our RBAC extensions. Finally, and most importantly, Ponder’s authorization
rules refer to a hierarchy of domains in which the subjects and targets of an
application are stored. In contrast, our approach integrates the security model-
ing language with the design modeling language, providing a joint vocabulary
for building combined models. In our view, the overall security of systems ben-
efits by building such security design models, which tightly integrate security
policies with design models during system design, and using these as a basis
for subsequent development.

10. CONCLUSION AND FUTURE WORK

We have proposed Model Driven Security as a methodology for developing se-
cure systems and demonstrated its application to the domain of access control.
In doing so, we have developed a number of new ideas including: the use of
object-oriented metamodels and dialects for formalizing and combining model-
ing languages; the modeling language SecureUML for specifying access control
policies, which constitutes a substantial extension of RBAC; and techniques
for generating platform-specific access control infrastructures. We have given
examples of language combinations that illustrate our methodology as well as
its application.

There are a number of promising directions for future work. To begin with,
the languages we have presented constitute three different, representative ex-
amples of security and design modeling languages. There are many questions
remaining on how to design such languages and how to specialize them for
particular modeling domains. On the security modeling side, one could enrich
SecureUML with primitives for modeling other security aspects, like digital
signatures or auditing. On the design modeling side, one could explore other
design modeling languages, for example, other UML diagram types (like use
case diagrams or sequence diagrams), which would support modeling different
views of systems at different levels of abstraction. What is attractive here is that
our use of dialects to join languages provides a way of decomposing language
design so that these problems can be tackled independently.

We believe that Model Driven Security has an important role to play not only
in the design of systems but also in their analysis and certification. Our seman-
tics provides basis for formally verifying the transformation of models to code.
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Moreover, since our models are formal, we can ask questions about them and
get well-defined answers, as the examples given in Section 5.5 suggest. More
complex kinds of analysis should be possible too, which we will investigate in
future work. Ideas here include calculating a symbolic description of those sys-
tem states where an action is allowed, model checking statechart diagrams that
combine dynamic behavior specifications with security policies, and verifying
refinement or consistency relationships between different models.

Finally, the question remains of how Model Driven Security can be inte-
grated into the overall system development process. For example, how can roles
and protected resources be identified during requirements analysis and incor-
porated into different models and how can security requirements be refined
during the different analysis and design phases. An initial proposal for inte-
grating Model Driven Security into requirements analysis has been made in
Lodderstedt [2003]. However, more experience carrying out large case studies
is needed to answer this question.

REFERENCES

AnN, G.-J. aND SanpHU, R. S. 1999. The RSL99 language for role-based separation of duty con-
straints. In Proceedings of the 4th ACM Workshop on Role-based Access Control. ACM Press,
43-54.

AnN, G.-J. AND SANDHU, R. S.  2000. Role-based authorization constraints specification. ACM Trans.
Inform. Syst. Security 3, 4 (November), 207-226.

AnN, G.-J. anp SHIN, M. E. 2000. UML-based representation of role-based access control. In 9¢h
IEEE International Workshop on Enabling Technologies: Infrastructure for Collaborative Enter-
prises (WETICE 2000). IEEE Computer Society, 195-200.

AnN, G.-J. anp SHIN, M. E. 2001. Role-based authorization constraints specification using object
constraint language. In 10th IEEE International Workshop on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises (WETICE 2001). IEEE Computer Society, 157-162.

AxkeHURST, D. aND KENT, S. 2002. A relational approach to defining transformations in a meta-
model. In UML 2002—The Unified Modeling Language. Model Engineering, Languages, Concepts,
and Tools. 5th International Conference, Dresden, Germany, September [ October 2002, Proceed-
ings. LNCS, vol. 2460. Springer Verlag, 243—-258.

Beckert, B., KELLER, U., AND Scamitt, P. H. 2002. Translating the Object Constraint Language
into first-order predicate logic. In Proceedings of the Second Verification Workshop: VERIFY 02
(Copenhagen, Denmark, July 25-26, 2002), S. Autexier and H. Mantel, Eds. DIKU technical
reports, vol. 02-07. 113-123.

BeLL, D. E. AND LAPaDULA, L. J.  1976. Secure computer systems: Unified exposition and multics
interpretation. Tech. Rep. MTR-2997, The Mitre Corporation. March.

BEeYER, D. 2001. C# COM+ Programming, Book and CD-ROM (October 15, 2001) ed. John Wiley
& Sons.

BREWER, D. AND NasH, M. 1989. The chinese wall security policy. In Proceedings of the 1989 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, 206-214.

CHEN, F. AND SanDHU, R. S. 1996. Constraints for role-based access control. In Proceedings of the
1st ACM Workshop on Role-based Access Control. ACM Press, 39—46.

Damianou, N. 2002. A policy framework for management of distributed systems. Ph.D. thesis,
Imperial College, University of London.

Damianoy, N., Duray, N., Lupy, E., aND SLoman, M. 2001. The ponder policy specification language.
In Policies for Distributed Systems and Networks (POLICY 2001), M. Sloman, J. Lobo, and E. C.
Lupu, Eds. Number 1995 in LNCS. Springer-Verlag, 18-38.

EpstEIN, P. AND SanpaU, R. S. 1999. Towards a UML based approach to role engineering.
In Proceedings of the 4th ACM Workshop on Role-based Access Control. ACM Press, 135—
143.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 1, January 2006.



Model Driven Security: From UML Models to Access Control Infrastructures . 91

Ferratovo, D. F., SAnDHU, R., GavriLa, S., Kunn, D. R., anp CHANDRAMOULL R.  2001. Proposed NIST
standard for role-based access control. ACM Trans. Inform. Syst. Security (TISSEC) 4, 3,224-274.

FraNkEL, D. S. 2003. Model Driven Architecture™ : Applying MDA™ to Enterprise Computing.
John Wiley & Sons.

GOGUEN, J. A. AND MESEGUER, J. 1992. Order-sorted algebra I: equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105, 2 (Novem-
ber), 217-273.

Husert, R. 2001. Convergent Architecture: Building Model Driven J2EE Systems with UML.
John Wiley & Sons.

HunTER, J. 2001. Java Servlet Programming, 2nd Edition. O’Reilly & Associates.

JAEGER, T. 1999. On the increasing importance of constraints. In Proceedings of 4th ACM Work-
shop on Role-based Access Control. ACM Press, 33—42.

JURJENS, J. 2001. Towards development of secure systems using UMLsec. In Fundamental Ap-
proaches to Software Engineering (FASE/ETAPS 2001), H. Hussmann, Ed. Number 2029 in
LNCS. Springer-Verlag, 187-200.

Kiczairgs, G., LAMPING, J., MENHDHEKAR, A., MAEDA, C., LoPEs, C., LOINGTIER, J.-M., AND IRwIN, J.  1997.
Aspect-oriented programming. In Proceedings European Conference on Object-Oriented Program-
ming, M. Aksit and S. Matsuoka, Eds. Vol. 1241. Springer-Verlag, 220-242.

KRASNER, G. E. anD Popg, S. T. 1988. A cookbook for using the model-view controller user interface
paradigm in smalltalk-80. J. Object Oriented Prog. 1, 3, 26—49.

LoppersteDT, T. 2003. Model driven security: from UML models to access control architectures.
Ph.D. thesis, University of Freiburg, Germany.

Mavrierp, T., Roskos, J. E., WELKE, S. R., AND BoonE, J. M.  1991. Integrity in automated informa-
tion systems. Tech. Rep. 79-91, National Computer Security Center. September.

Monson-HAEFEL, R. 2001. Enterprise JavaBeans (3rd Edition). O'Reilly & Associates.

Object Management Group 2002. Meta-Object Facility (MOF™), version 1.4. Object Management
Group. http://www.omg.org/technology/documents/formal/mof .htm.

RumMBAUGH, dJ., JACOBSON, 1., AND BoocH, G. 1998. The Unified Modeling Language Reference Man-
ual. Addison-Wesley.

VON DER BEECK, M. 1994. A comparison of statechart variants. In Formal Techniques in Real-Time
and Fault-Tolerant Systems, H. Langmaack, W.-P. de Roever, and J. Vytopil, Eds. LNCS, vol. 863.
Springer Verlag, 128-148.

Received April 2003; revised July 2004, May 2005; accepted August 2005

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 1, January 2006.



