A Model of OASIS Role-Based Access
Control and Its Support for Active Security

JEAN BACON, KEN MOODY, and WALT YAO
University of Cambridge

OASIS is a role-based access control architecture for achieving secure interoperation of services in
an open, distributed environment. The aim of OASIS is to allow autonomous management domains
to specify their own access control policies and to interoperate subject to service level agreements
(SLAs). Services define roles and implement formally specified policy to control role activation and
service use; users must present the required credentials, in an appropriate context, in order to
activate a role or invoke a service. All privileges are derived from roles, which are activated for the
duration of a session only. In addition, a role is deactivated immediately if any of the conditions
of the membership rule associated with its activation becomes false. These conditions can test the
context, thus ensuring active monitoring of security.

To support the management of privileges, OASIS introduces appointment. Users in certain roles
are authorized to issue other users with appointment certificates, which may be a prerequisite for ac-
tivating one or more roles. The conditions for activating a role at a service may include appointment
certificates as well as prerequisite roles and constraints on the context. An appointment certificate
does not therefore convey privileges directly but can be used as a credential for role activation. The
lifetime of appointment certificates is not restricted to the issuing session, so they can be used as
long-lived credentials to represent academic and professional qualification, or membership of an
organization.

Role-based access control (RBAC), in associating privileges with roles, provides a means of
expressing access control that is scalable to large numbers of principals. However, pure RBAC
associates privileges only with roles, whereas applications often require more fine-grained access
control. Parametrized roles extend the functionality to meet this need.

We motivate our approach and formalise OASIS. We first present the overall architecture
through a basic model, followed by an extended model that includes parametrization.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems; D.2.1 [Software Engineering]: Requirements/Specifications; D.4.6 [Operating
Systems]: Security and Protection—access controls; D.4.7 [Operating Systems]: Organization
and Design—distributed systems

General Terms: Design, Security, Theory, Management

Additional Key Words and Phrases: Certificates, distributed systems, OASIS, policy, role-based
access control, RBAC, service-level agreements

This article extends Yao et al. [2001], presented at SACMAT 2001.

Authors’ address: Computer Laboratory, William Gates Building, JJ Thomson Avenue, University
of Cambridge, Cambridge CB3 OFD, United Kingdom; email: Ken.Moody@cl.cam.ac.uk.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.

© 2002 ACM 1094-9224/02/1100-0492 $5.00

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002, Pages 492-540.

Role-Based Access Control for Active Security . 493
1. INTRODUCTION

Role-based access control (RBAC), in associating privileges with roles, provides
a means of expressing access control that is scalable to large numbers of prin-
cipals. The detailed management of large numbers of access control lists, as
people change their employment or function, is avoided. RBAC is also likely to
correspond well with policy expressed in legislation. We have worked on RBAC
in the context of the design and deployment of large-scale, widely distributed
applications. In such applications, policy is set by a loose federation of adminis-
trative domains, each of which has a degree of autonomy over the services that
it manages. For example, a national Electronic Health Record (EHR) service
may have a central EHR management domain, thousands of client domains
(such as hospitals, clinics, research institutes and primary care practices) and
millions of patients. Decentralized RBAC administered at the domain level is
a realistic approach for such applications, in that it is not necessary to regis-
ter all doctors nationally; a hospital domain may define a role doctor for its
employees.

Large-scale, widely distributed applications are likely to contain indepen-
dently developed and legacy software. Some policies are established across the
application as a whole, whereas others are local to a particular administrative
domain. Policies may restrict the use of services to suitably qualified princi-
pals and may specify constraints which must hold at the time a service is in-
voked. In our role-based, Open Architecture for Securely Interworking Services
(OASIS) we assume that roles may be named and policies established at the
level of individual services, so recognizing the heterogeneity that arises in such
applications. We handle this diversity through service-level agreements (SLAs)
established within and between administrative domains. The SLAs are imple-
mented in the policies for role activation and service invocation, and, for each
service, embody the requirement for credentials issued by other services. In-
cremental deployment is essential for large-scale, widely distributed systems;
it is not feasible to install the access control system of a large-scale applica-
tion atomically with a “big bang.” Structuring an application into autonomous
domains of independently developed services helps to make incremental de-
ployment possible.

Pure RBAC associates privileges only with roles, whereas applications often
require more fine-grained access control in order to handle relationships such
as file ownership. Parametrized roles extend the functionality of RBAC to meet
this need. The evaluation of role activation conditions can check parameter val-
ues and the relationship between them, so that, in particular, policy can express
exceptions to the default access controls. For example, in the healthcare domain,
a patient is empowered by law to specify individual exclusions such as “my un-
cle Fred Smith [who is a doctor] may not read my health record” which may be
an exception to the default role-based policy. Parametrization is essential in or-
der to make policy scalable and stable. Role membership certificates can include
a number of typed parameters; exclusions can be checked against a database
which forms part of the context during role activation or service invocation.
Other constraints on context may relate to environmental constraints, such as

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

494 o J. Bacon et al.

the time and place of the role activation or service invocation, as required by
local or application-wide policy.

The design of OASIS was motivated by the need to satisfy access control
requirements that are context-sensitive in large-scale systems, as in a national
EHR service. Active management is needed because the context established
at the start of a session may change. Suppose a doctor reports that a smart-
card used for authentication into medical roles has been stolen; any currently
active roles must be the result of impersonation. The card must be invalidated
and the news propagated to all the services concerned, so that the roles can be
deactivated and their associated privileges cancelled. The membership rule of
a role indicates which of the role activation conditions must remain true while
the role is active. A role is deactivated immediately if any of the conditions of the
membership rule associated with its activation become false. This is facilitated
by session-based role activation and implemented by building OASIS above an
active, event-based, middleware platform [Bacon et al. 2000; Bacon and Moody
2002]. Event channels are set up between services, thus allowing all violations
of membership conditions to be notified immediately.

Many RBAC schemes have used privilege delegation and role hierarchies,
see Section 7. The essential requirement is that an authorized user should be
able to issue credentials to other users in order to authorize them to perform
certain actions. OASIS introduces the notion of appointment, whereby being
active in certain roles authorizes the user to issue appointment certificates to
other users. In order to transfer privileges by means of appointment certificates
two separate privileges are needed; first, the right to enter an appointer role;
second, the right to define security policy by establishing the current sets of role
activation and authorization rules for a given service. This latter privilege is
generic, and applies to any service protected by OASIS. It is natural to associate
it with a security officer role, in the terminology of Sandhu et al. [1996, 1999].
Appointment certificates may be issued in many different circumstances, see
Section 3, and their use is specific to each application. An example is that a
hospital administrator need not be medically qualified yet may issue a creden-
tial which indicates that a user is employed as a doctor. This is a case of an
administrative role, using the same terminology. A different example is that in
an emergency situation a doctor may issue an appointment certificate to en-
able a junior colleague to activate a more senior role, which corresponds to role
delegation. The lifetime of appointment certificates is independent of the issu-
ing session, and they can therefore serve as long-lived credentials to represent
academic and professional qualification or membership of an organisation. The
role activation conditions of a service may include appointment certificates in
addition to prerequisite roles and environmental constraints. An appointment
certificate does not convey privileges directly but it is used as a credential for
role activation. Appointment extends and abstracts role delegation.

Substantial work on RBAC as an effective means of replacing traditional
discretionary and mandatory access control has led to the development of sev-
eral models [Sandhu et al. 1996; Ferraiolo et al. 1999; Nyanchama and Osborn
1995]. Earlier papers about OASIS have defined the architecture and discussed
large-scale, distributed system engineering issues. We have been developing a

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 495

practical implementation of OASIS for more than two years, during which a
precise semantics, and therefore a formal model, became essential. A model is
important for two reasons: first, it provides a sound foundation for reasoning
about policy; and second, it acts as a reference framework to guide the imple-
menter. In this article, we present a formal model for OASIS.

The remainder of this article is organized as follows. Section 2 introduces
the OASIS model informally and relates it to the literature. Section 3 discusses
appointment, the OASIS mechanism that enables the persistent allocation of
privileges. Section 4 provides a formal description of the basic structure of the
model in propositional logic, as presented in Yao et al. [2001]. Section 5 uses
many-sorted first-order logic to extend this treatment with the syntax and se-
mantics of parametrization. Section 6 develops scenarios which demonstrate
applications of the model. Section 7 compares our approach to related work on
active security. Section 8 briefly discusses the state of the OASIS implementa-
tion and our plans for evaluating the OASIS system in a practical application.
Section 9 concludes the paper and points the way to future research that the
model makes possible.

2. OVERVIEW OF THE OASIS MODEL

Central to the OASIS model is the idea of credential-based role activation. The
credentials that a user possesses, together with side conditions that depend on
the state of the environment, will authorize him or her to activate a number of
roles. At any given time, a user will activate a subset of these potential roles
in order to carry out some specific task, thus embodying the principle of least
privilege in an organisation [Saltzer and Schroeder 1975]. The ability to acti-
vate and deactivate roles is vital to the support of active security [Thomas and
Sandhu 1997], where the context is taken into consideration when an access
is requested. The concept of role activation in OASIS is similar to the concept
of session in Sandhu et al. [1996]. Activation of any role in OASIS is explicitly
controlled by a role activation rule, and this rule may require that specified pre-
conditions continue to hold while the role remains active, the role membership
rule. Context-aware policy is therefore guaranteed to be satisfied throughout
the period of activation of any role. In addition, the authorization rule a service
enforces on an access request may require environmental constraints to be sat-
isfied in addition to membership of a role, thus enforcing context-aware policy
for service invocation.

A role activation rule specifies the conditions that a user must meet in order
to activate a role. The intuition behind this is that roles are usually given to a
person provided that he or she has met certain conditions, for example, being
qualified as a physician, being employed by a company, being assigned to a
task, being on shift, etc. We model these conditions in three categories, namely:
prerequisite roles, appointments, and environmental constraints.

A prerequisite role in the condition for a target role means that a user must
have already activated the prerequisite role before he or she can activate the
target role. This is a session-based notion. The basis for the selection of prereq-
uisite roles is competence and appropriateness [Sandhu et al. 1996].

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

496 o J. Bacon et al.

Appointment occurs when a member of some role grants a credential that
enables some user to activate one or more roles. The context may be an assign-
ment of jobs or tasks. It may also be the passing of an examination, qualifying
professionally, becoming employed, or joining an organization. An activation
rule for a role depending on an appointment will require that the associated
credential is presented when activating that role. Appointment can be used in
many different ways, subsuming both role delegation and the use of admin-
istrative roles [Sandhu et al. 1996, 1999]. We describe the characteristics of
appointment in Section 3.

Security policies in real life often involve constraints such as separation of
duties. Several types of role constraint have been identified and discussed in
the literature [Sandhu et al. 1996; Kuhn 1997; Simon and Zurko 1997; Gligor
et al. 1998; Jaeger 1999; Nyanchama and Osborn 1999; Ahn and Sandhu 2000].
In our model, constraints may be associated with role activation rules, see
Definition 4.4 and Section 5.2; in future work, we plan to specify role con-
straints at the organizational level, for example, “an account clerk cannot simul-
taneously be a billing clerk.” We describe a possible implementation of certain
types of role constraint in the discussion of negated prerequisite roles following
Definition 4.6.

The use of roles allows access control policy to be specified in terms of the
privileges of categories of users. This has two advantages: first, there is no need
to change policy as staff come and go; second, details of individuals need only
be taken into account during role activation. But in many applications it is
insufficient to base access control decisions solely on roles and their assigned
privileges. This is especially true when information such as time that depends
on the context needs to be considered. Specific extensions have been proposed
to the basic RBAC models in order to support workflow systems [Bertino et al.
1997; Kandala and Sandhu 2002] and team-based systems [Thomas 1997; Wang
1999]. More general ways of handling context are proposed in the content-based
access control model of Giuri and Iglio [1997] and the generalized model of
Covington et al. [2000].

In OASIS, we have extended the role model with parameters, based on first-
order logic. Parameters may be included in the rules that cover both role activa-
tion and access to an object or service. Parameters may be bound to such items
as the time of a role activation, the userid of a file owner, or an attribute of the
object that is being accessed. The values that instantiate parameters are there-
fore context-dependent. Our model is similar to Giuri and Iglio’s [1997] model
based on role templates. A significant difference is that in OASIS it is possible
to test context predicates during role activation as well as at the time of access.
It may also be necessary to check the relationship between parameters; for ex-
ample, a role for a primary care doctor might be parametrized with both the
doctor’s identifier and that of a patient. Suppose the role activation policy is that
the patient must be registered with the doctor, and this is checked with an ad-
ministration database at the time of role activation. If this relationship between
parameters is also a membership condition, then any database update that in-
validates the relationship must cause notification of the role-issuing service. We
have extended the PostgreSQL database management system [Monjian 2000]

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 497

with active predicates for this purpose. In general, when a role is activated
at a service an event channel is created in association with each membership
condition. An event is triggered immediately any such condition becomes false,
causing the role to be deactivated. Such a trigger may be generated when a
timer expires or, as described above, when a database is updated to remove a
user from membership of a group.

In Section 4, we present the details of a simplified model using propositional
logic. This version omits parameters, but it covers most of the essential features
of the architecture. In Section 5, we describe the full model, which is based on
many-sorted first-order logic. This model includes extensions for handling pa-
rameter typing and parameter matching, and corresponds closely to our imple-
mentation. We adopt a formal approach using logic because adding parameters
to privileges and roles adds a layer of complexity to the model. A logic-based
approach helps to reduce errors in security policies by allowing static checks
to be performed, for example, for completeness, consistency and reducibility. It
also allows formal reasoning about security policies to discover potential errors
or conflicts. The use of logic enables our model to be integrated with policies
specified in pseudo-natural language. Preliminary, proof-of-concept work in this
area can be found in Bacon et al. [2001a].

3. APPOINTMENT

In OASIS privileges are associated with membership of some role, which is
active only for the duration of a session. In practice, it is essential to provide
users with a means of establishing privileges that remains good from session
to session. This is achieved through a level of indirection. The user is issued
with a secure persistent capability [Gong 1989] that can serve as a prerequisite
for role activation, thus allowing the user to obtain privileges repeatedly by
activating a role. The capability does not itself convey any privileges, so limiting
the damage if it should be compromised. A digital signature protects fields
within the capability, which can safely be checked during role activation. We call
this indirect technique for allocating privileges persistently appointment, and
the corresponding capability an appointment certificate. After an appointment
has taken place the appointment certificate is transferred to the user for whom
it is intended, and it can then be used as a credential to activate one or more
roles. As a side effect of creating the new appointment certificate a credential
record (CR) is set up to enable its administration, and a reference to this CR is
retained. The validity rule if any is stored with the CR, see Section 5.4.
Traditional delegation, within or external to a computer system, refers to
the process whereby a principal transfers certain privileges to an agent to per-
form tasks on her behalf. The need to model the propagation of privileges in
RBAC has led to work on role-based delegation [Barka and Sandhu 2000a,
2000b]. Role-based delegation is similar to traditional delegation, but instead
of transferring privileges, roles are transferred. Because of the association of
privileges with roles, privileges are effectively delegated through roles. While
role-based delegation is a possible implementation of the temporary transfer
of privileges and responsibilities [Crispo 1998], privileges are also granted to

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

498 o J. Bacon et al.

principals in other ways, for example through the use of administrative roles.
We discuss some of the ways in which appointment in OASIS extends delegation
in Section 3.2.

3.1 OASIS Task Assignment and Qualification

In OASIS, we control the allocation of privileges by policies that allow roles
to be activated. In particular, we can make possession of an appointment cer-
tificate a precondition of role activation. We consider two common bases for
privilege allocation, namely task assignment and qualification, both of which
we implement through the appointment mechanism.

Task Assignment. If atask is assigned to a principal by some authority, she
will often require specific privileges to enable her to carry it out. In a role-based
model, one could aggregate these privileges into a role and grant the right to
activate this role to the principal.

As a motivating example, suppose that a doctor asks a nurse to place an
order for drugs on her behalf (a privilege that a nurse does not usually have). To
enable this type of task assignment, the security administrator could introduce
a role pharmacy-nurse with the right to order drugs, and allow activation of
pharmacy-nurse to a principal who is acting as a nurse and who has a valid
recommendation from a doctor. In this case, the doctor who wishes to assign
this task is an appointer, the “recommendation” is an appointment certificate,
and the nurse who accepts this recommendation is an appointee.

Task assignment is in some ways similar to traditional delegation but there
are important differences. In the above example, one might assume that the
doctor herself has the privilege to order drugs. This is not always the case. For
example, a screening nurse in the Accident and Emergency (A&E) department
at a hospital assesses patients when they are admitted and assigns them to
a particular doctor, basing the decision on both the needs of the patient and
the current workloads of the medical team. The screening nurse need not have
the privileges that a doctor possesses, but the role is not purely administrative.
One effect of the assignment is to establish the treating doctor’s right to see
the patient’s medical records. Task assignment is explicit about the intention
of privilege propagation, whereas delegation focuses on the process of privilege
propagation.

Qualification. Another common criterion for granting privileges is the pos-
session of some valid qualification or credential. There are numerous examples
in daily life. For example, in order to be employed as a doctor in the UK, one
must be qualified by the British General Medical Council (GMC); in electronic
commerce, a customer may need to produce a loyalty card in order to take ad-
vantage of special offers; at a university, in order to become fully registered, a
student must prove that the tuition fee has been paid.

A fundamental difference from task assignment is that a qualification may
not empower its holder with any specific rights, and its future uses may not
be foreseen at the time of issue. The use of a qualification largely depends
on the application. We expect a GMC qualification to convey privileges in a
healthcare system in a hospital; it is unlikely to have value when buying goods

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 499

from an Internet shop, unless the GMC has come to an arrangement for the
benefit of all doctors. Further, the degree of trust in a qualification is determined
by the security policies of an application, which may be based on pragmatics,
experience, or legal requirements. For example, in a healthcare system within
the UK, a non-UK medical qualification may by default convey fewer privileges
than its GMC counterpart.

A qualification in our model therefore refers to any credential that asserts
certain facts. Academic and professional qualifications are examples; others
include a receipt that establishes payment, a signed agreement or contract, a
certificate of employment, a proof of identity or membership of a group.

Appointment is our abstraction for expressing policies relating to both task
assignment and qualification. An appointment is a specific instance of either,
represented by an appointment certificate. In task assignment, an appointment
certificate can be seen as a recommendation or an order; in qualification, an
appointment certificate represents the qualification itself.

The ability to express qualifications by appointment is an important feature,
especially in a multidomain setting. Appointment certificates relating to task
assignment embody the responsibilities associated with the appointment and
their explicit existence allows the responsibilities to be recorded and audited.

3.2 Appointment, Role-Based Delegation and Administrative Roles

Both appointment and role-based delegation enable the propagation of priv-
ileges. In role-based delegation, this is achieved by delegating roles to some
grantee; the unit is per role and not per privilege. There are many situations
in which a principal wishes to give out only a subset of the privileges of a role.
Totality is introduced in Barka and Sandhu [2000b] to identify whether the
complete set of privileges assigned to a role is to be delegated; if the intention
is to delegate only a subset, the authors refer to partial delegation. Partial del-
egation breaks the semantics of the strict RBAC model in order to delegate at
the level of privileges. A partially delegated role shares an overloaded name
with its delegating role, but it is in fact a new role that confers only a subset
of the privileges. Any formal analysis must take this into account. A separate
problem with the role delegation model is the restriction that a grantor can del-
egate only the privileges that she possesses. This is inadequate for situations
in which the privileges relate to an object that is in some specific relationship
to the grantee, such as the medical records of a patient undergoing treatment
in the A&E department.

Role delegation is usually associated with task assignment, in cases where
the principal assigning the task has the competence to carry it out. The
appointment model avoids the problems of partial delegation. What an ap-
pointer grants is a credential that enables the activation of some role. The
set of privileges associated with the new role may be a subset of those of
the appointer role, as in the pharmacy-nurse example in Section 3.1. Estab-
lishing privileges that are specific to some object can be handled naturally
through the use of parameters, which we discuss with many examples in
Section 5. The appointment model and parametrization together make it easy

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

500 o J. Bacon et al.

to define policies to allocate only the privileges that are intended, and at a fine
granularity.

In many situations, the principal who is to allocate privileges does not herself
possess them. For instance, a human resource manager in an organization is
not allowed to touch the accounts, but she can authorize the appointment of an
accounts clerk; in a hospital, a receptionist admits patients and assigns them
to a doctor, but she does not have the privileges of a doctor. In the terminology
of Sandhu et al. [1996, 1999], such functions are associated with administra-
tive roles. Using appointment, since the privileges allocated will be derived
from some role, the administrator can assign them by issuing an appointment
certificate that is a prerequisite for activating the role in question.

Because of its support for fine-grained and controlled propagation of privi-
leges, the appointment model embodies the principle of least privilege [Saltzer
and Schroeder 1975]. The appointee may activate only those roles required to
complete a task, subject to conditions restricting the context. Appointment in
itself confers no privileges. Any privileges derive solely from roles activated on
the basis of an appointment, and are limited to the current session.

Another issue in the delegation model is whether the grantee of a privilege
should be allowed to delegate that privilege. Making delegation transitive leads
to further complexity in the specification, with the introduction of chained del-
egation and revocation, and of the permitted depth of delegation. While chained
delegation sometimes reflects real-life policies, these usually apply to the del-
egation of privileges at a fine grain. Transitive delegation of roles is unlikely
to be appropriate in practice. In the appointment model, a principal in an ap-
pointer role grants an appointment certificate, so transitive delegation of roles
does not arise; if transitive delegation of privileges is required, then policies
can be defined to meet the need, choosing appointments and roles to suit the
specific application. Transitive delegation of privileges in a role-based context
is better expressed by appointment than by role delegation.

Role delegation can be viewed as a special case of appointment in which a
user holding some role may appoint another user to activate that same role. For
example, this mechanism could be part of the emergency procedure of a service
when a role holder is called away or is taken ill.

3.3 Characteristics of Appointment

In Section 3.1, we presented a number of applications in which it is appropriate
to use appointment. The possible uses of appointment differ in a number of
ways. We characterize some of these differences in this section.

Type. Appointment captures task assignment and qualification using the
same abstraction mechanism. It is often worth distinguishing the nature of
an appointment. A task assignment appointment is usually transient, because
a task will eventually finish (although it may require multiple sessions). A
qualification appointment usually asserts some fact, so that it is more often
persistent and long-lived.

Appointer. An appointer refers to a principal who initiates a process of ap-
pointment and issues an appointment certificate. Appointment can take place

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 501

only after the appointer has activated a role that includes the privilege of is-
suing appointment certificates. Let us refer to such a role as an appointer role.
It is essential to constrain who may initiate an appointment, and the activa-
tion rules for appointer roles must specify the required policies. Three types of
constraint on appointers should be considered: a set of appointer roles, a set of
users, and a set of services.

In the case of task assignment, it is often easy to identify the potential ap-
pointers. The appointer role usually corresponds to the job entity responsible
for task assignment. In such cases, anyone who is active in the appointer role
can initiate the appointment process. However, there are some situations in
taht the responsibility for a task lies with a specific user. It is easy in OASIS to
constrain an appointer to a particular set of users. An example is an appoint-
ment that expresses the authorization to transfer money from an individual’s
account. Only the named account owner can initiate such an appointment.
Discretionary access control in a filing system has similar semantics.

In the case of qualification, an appointment certificate is not issued for a
single, explicit purpose. It is often the case that the appointer is an employee
in a trusted position, who issues appointment certificates to assert group
membership or academic credentials. For each type of qualification, there will
be a service that can construct appointment certificates of the appropriate type.
In order to do this, the trusted employee must activate an appointer role of that
service.

Appointee. An appointee is a principal who receives an appointment cer-
tificate. It is essential to constrain who may use an appointment certificate in
order to prevent fraud. This is achieved in OASIS by role activation rules. These
rules specify prerequisite roles and environmental constraints which must be
satisfied when an appointment certificate is used as a credential in order to
activate a role. For example, parameter matching can ensure that the authen-
ticated user in a session is the one to whom the appointment certificate was
issued. In addition a validity rule, see Definition 5.8, can specify conditions
which are checked whenever a particular appointment certificate is presented.
These rules allow a broad range of policies to be expressed to control the use of
appointment certificates.

For an appointment representing a qualification, it is possible to constrain
its use only by naming the specific individual, since the contexts in which it will
be presented are unknown at the time of issue. For task assignment, however,
it is usually the case that an appointee must already be active in a specific
role in order to make use of the appointment certificate. In OASIS, this can be
enforced through the validity rule associated with the appointment certificate,
see Section 5.4.

Revocation. When an appointment certificate is presented as a credential
during role activation the issuing service validates it, checking the CR and the
validity rule. The appointment certificate can be revoked by marking the CR as
no longer valid. An appointment can be revoked in four ways: by its appointer
only; by anyone active in the appointer role; by resignation; or by rule-based
system revocation.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

502 o J. Bacon et al.

In the first case, an appointment can only be revoked by its appointer.
This is common in real-life organizations; for example, the lead doctor in a
care team might assign tasks to staff on that team by means of appoint-
ment. She then becomes responsible for monitoring their performance. Revok-
ing the appointment of any member who performs badly is up to the lead doctor
herself.

Dependence on a particular user to revoke may have undesirable conse-
quences [Barka and Sandhu 2000a]; for example, if an appointer is ill or on
leave, it may not be possible to take immediate action to limit damage. A more
flexible solution is to allow anyone who can activate the appointer role to carry
out the revocation. The principle is to reduce the risk by ensuring that it is
always possible to revoke an appointment.

An appointee may also give up an appointment voluntarily by resignation.
Resignation is only possible if the service issuing an appointment certificate
makes explicit provision for it. Arguably resignation is redundant since an ap-
pointee can simply refrain from using an appointment certificate. Explicit res-
ignation, on the other hand, allows the system to clean up any state associated
with the appointment, and also prevents any future abuse of the appointment
certificate.

The fourth possibility is system-managed revocation. In this case, an ap-
pointment is revoked automatically when certain conditions are met. There
are many circumstances in which the revocation of an appointment can be han-
dled by predefined rules. The conditions for system-managed revocation can be
arbitrary predicates. Three common types of condition are based on time, task
and session.

For time-based revocation, the appointer sets an expiry time when the ap-
pointment is made. The appointment certificate is revoked automatically at
the expiry time. This is appropriate if the appointee has been employed on a
fixed-term contract, or if the policy is to review long-lived credentials at regular
intervals.

In applications such as workflow, an appointment may be conditional on
the user’s performance of specific tasks. The user only requires the privileges
associated with a particular role while assigned to the relevant task; the sys-
tem monitors progress, and once the task has been completed successfully, the
appointment is automatically revoked. Continuing the A&E scenario, the lead
doctor may appoint a member of staff to order a blood test and wish the appoint-
ment to be revoked once the order has been made. This approach, which requires
substantial support from a task model, is suitable for a workflow environment.

The third type of system-managed revocation is based on sessions. The du-
ration of an appointment can be restricted either to the session of the appointer
or to the session of the appointee. In the former case, an appointment is valid
so long as the appointer is still active in the appointer role. It will be revoked
automatically when the appointer leaves the appointer role. An appointment
can also be for the duration of the current session of the appointee. For exam-
ple, a junior doctor may be appointed to stand in for a consultant who is called
away to an emergency. When the junior’s shift is over, the session and the
appointment end.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 503

Table I. Attributes of Appointment

Attribute Option Meaning
Type Task-assignment Appointment is related to some task.
Qualification Appointment represents some qualification or asserts
some fact.
Appointer Set of appointers Only specific users in the appointer set may initiate this
appointment.
Appointer role Anyone who can be active in the appointer role may
initiate this appointment.
Set of services Appointment certificate is only valid if issued by any of
the specified services.
Appointee Specific users The appointment certificate is only valid for certain
specified users.
Appointee role Anyone who is active in a specified prerequisite role can
use the appointment certificate.
Unconstrained There are no restrictions on the use of the appointment
certificate.
Revocation Appointer-only Appointment revokable by the original appointer only.

Appointer-role
Resignation
System-managed

Anyone who is actve in the appointer role may revoke.
The appointee may revoke this appointment voluntarily.
Time: revoked at expiry time.

Task: revoked at the completion of the task.

Appointer session: revoked at the end of the appointer
session.

Appointee session: revoked at the end of the appointee
session.

A summary of these characteristics is shown in Table I. This list shows
how a wide variety of practical security policies can be based on the use of
appointments.

This range of policies can be implemented in OASIS. When an appointment
certificate is used to activate a role it is first validated by the issuing service,
which checks the CR and verifies the validity conditions, see Section 5.4. OASIS
services are built on an active platform which deploys event-based middleware.
Event channels may be built between services and an event may be signalled
to an OASIS service immediately it occurs. Each active role has a membership
rule, which indicates which of the activating conditions must remain true in
order for the role to remain active. Should such a condition become false, this
can be signalled immediately to the service. For example, if an appointment
certificate is revoked by its appointer, the issuing service can notify any service
at which that credential is a membership condition for some currently active
role. Any such role is immediately deactivated.

4. BASIC MODEL

We present the formal model in the next two sections. In this section, we in-
troduce the fundamental structure of the model based on propositional logic
to formalize role activation conditions. It covers most of the ideas introduced
in the previous sections, including appointment. We show in particular how to
express the membership rules associated with active roles, and we explain how
we enforce these rules using event channels.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

504 o J. Bacon et al.

OASIS role membership and appointment certificates include parameters.
Role activation rules can match parameters to ensure, for example, that logged-
in users can only invoke mutator methods on objects that they own. In Section 5,
we describe the extensions required to handle parametrization. The extended
model is based on many-sorted first-order predicate calculus, which allows the
use of typed variables in expressions. Our models are not application specific.
Instead, they are capable of expressing a variety of security policies across a
range of applications.

4.1 Basic Constructs

The model is built on top of six basic sets, described as follows:

—U: set of all user sessions!

—&: set of all services

—N: set of all role names

—¢&: set of all environmental constraints

—O: set of all objects

—A: set of all access modes for objects (see Definition 4.2)

In addition to these sets, which are fundamental, two other sets are central
to the interpretation of the basic model:

—TR: set of all roles
—P: set of all privileges

A user is a human-being interacting with a computer system. Each user in-
teraction takes place after an authentication which starts a session. An element
in U can be any representation that uniquely identifies a user session within a
system. In most situations the act of authentication identifies a particular user,
and an audit trail can connect a user session u € U/ to its human originator. In
some circumstances there is a requirement for privacy, and it ought not to be
possible to identify the human user behind a session. An example is described
in Section 6.1.

The computer system is composed of a collection of services S, which may
be managed independently. A role is a named function that is associated with
some service; a role is specific to a service and is defined below. Services confer
privileges on their role members and may also recognize the roles of other
services.

Definition 4.1. Aroler € Ris apair (s,n) € S x N, where s € S is a service
and n € NV is the name of a role defined by s.

The name of a role is unique within the scope of its defining service. When
describing our model, we blur the distinction between roles and role names
where this will not lead to confusion.

IPrivileges are associated with active roles. Roles are deactivated automatically at the end of each
authenticated session.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 505

An environmental constraint e € £ is a proposition that is evaluated while
making a security decision. Its value may depend on factors such as the time
of day, the identity of the computer on which the current process is running or
a condition such as group membership that requires access to a local database.
In this article, we do not discuss the details of environmental constraints. We
therefore consider each environmental constraint as an atomic proposition.

The conditions of some role activation rule must be satisfied when a role is
activated. We may require in addition that some subset of these conditions, the
membership rule, remains true throughout the session. If an environmental
constraint e appears as a membership condition then its implementation must
be active; when the role is activated each membership condition is evaluated,
and in addition a trigger is set to notify the service should the condition become
false. We discuss this requirement in more detail below.

A privilege is a right to perform some operation on a particular object. It is
defined formally as follows:

Definition 4.2. A privilege p € P is a pair (0,a) € O x A, whereo € O is an
object and a € A is an access mode for the object o.

The set of objects and their corresponding access modes are service depen-
dent. For example, in relational database applications, objects may represent
rows and their associated access modes include read- or update-attributes. In
object-oriented systems, including distributed object systems, objects are repre-
sented naturally while access modes are the methods for each object. In general,
we treat privileges as an abstract unit if the context permits. The underlying
idea of RBAC is to associate privileges with roles, and roles with user sessions.
These associations are described as relations in our model. Before describing
these relations, we need to define the way in which roles are activated.

4.2 Appointment

We control the acquisition of privileges through role activation governed by
rules. Roles can only be activated during a session, and being active in one role
may be a precondition for activating another; an example is a log-in credential
that ensures that the user has been authenticated. In order to activate certain
roles a user must hold an appointment; the corresponding condition in a role
activation rule is an appointment certificate.

Definition 4.3. An appointment certificate » is an instance of an appoint-
ment. Each appointment certificate may be subject to a validity rule, comprising
a set of prerequisite roles described by the function o : @ — 2% and a set of en-
vironmental constraints described by the function : 2 — 2, where Q is the
set of all appointment certificates in the system.

An appointment certificate held by a user is valid only if the user is active
in all of its prerequisite roles. This allows an appointer to ensure that an ap-
pointment certificate can only be used when the preconditions for activating all
of those roles have been met. Its use is subject to the specified environmental
constraints.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

506 o J. Bacon et al.

4.3 Role Activation

In order to activate a role during a session, a user must satisfy the conditions
of some role activation rule. The formal definition is as follows:

Definition 4.4. A role activation rule, or activation rule for short, is defined
as a sequent (x1,x9,...,%, F r), where x; for 1<j <n is an element in the
universe X = RUQUE, and r e R. We say that each x; for 1<j <n is an
activating condition for the role r.

The sequent notation is conjunctive. In order to activate the role r through
an activation rule (x1,x9,...,%, = r), a user must satisfy all conditions
X1, X2, ..., X Satisfaction interprets each element x; within the current con-
text to give a Boolean value, see Definition 4.6. There may be more than one
activation rule associated with a particular role r.

An example of an activation rule is given below with R = {ry,rs,r3,r4} and
Q = {w1, w2}, where o(w1) = ({r3}).

ri, wi H ry4.

According to this rule, a user who is active in role r; and holds the appoint-
ment certificate w; can activate the role r4, provided that the conditions for the
appointment certificate to be valid are satisfied. In this case, the sole condition
is that the user be active also in the prerequisite role rs.

This definition of activation rule is essentially a restricted form of Boolean
logic. Any Boolean expression without negation over the universe X can be
translated into one or more activation rules by rewriting it into disjunctive
normal form (DNF), and taking each implicant as an activation condition. For
example, an expression in the same universe as the above example is shown
below in Boolean logic syntax

(rivre) Awr F ory.
This is translated to DNF,
(riAnw) Vg A1) = ry,
which can be written in sequent notation as shown below

ri, w1 = rq

re, w1 F rg.

The set of all activation rules specified in a system is denoted by I'. We sum-
marise the symbols representing additional sets of objects in our model here.

—Q: set of all appointment certificates
—T': set of all role activation rules
— A: set of all membership rules see Section 4.4

We now consider a special type of role activation rule, called initial.

Definition 4.5. A role activation rule (x1, xe,...,x, b r), in which for 1 <
J < nthe element x; € QU ¢, is initial. The role r is said to be an initial role.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 507

Initial rules provide a means to allow users to start a session by acquir-
ing initial roles. A particular case is that of rules with no antecedent condi-
tions, F r. The activation of such an initial role depends on system policies and
typically requires a system-dependent mechanism, for example, biometric or
challenge-response authentication. In general, activation of an initial role may
require an appointment certificate (in this case having no prerequisite roles, see
Definition 4.3) and be subject to environmental constraints. The set of all ini-
tial roles is denoted ZR < R. We restrict explicit association between users
and roles to initial roles. In order to activate any other role a user must satisfy
the preconditions of some activation rule, including possession of one or more
prerequisite roles. These preconditions can include appointments and environ-
mental constraints as well as role membership.

Note that during a session a user accumulates privileges by activating a suc-
cession of roles. Starting from a set of initial roles, which become active following
authentication, a number of roles may be entered according to specified rules.
An acyclic directed graph structure is therefore established that exhibits the
run-time dependency of each role on its preconditions. Superficially, the struc-
ture is similar to a static role hierarchy, but there are important differences.
First, the dependency structure is dynamic; there may be several activation
rules for a given role, but a particular activation depends on a single rule only,
the current activation rule for that role. Second, any privileges acquired by en-
tering a role in this way will usually not be shared with any prerequisite role;
it is likely that the new role is more specific and has been activated on the basis
of appointment, or perhaps after checking a database, see Section 5.3.

At present, an active role is deactivated implicitly at the end of a session,
or if a membership condition for the current activation should become false,
see Section 4.4. It would be easy to provide an interface for a session holder
to deactivate a role explicitly, so giving better support to the principle of least
privilege [Saltzer and Schroeder 1975].

The activation of a non-initial role requires a user to satisfy each of the con-
ditions of some activation rule for that role. We define what is required for ele-
ments of each of the sets R, Q2 and £ to satisfy a precondition for role activation.

Definition 4.6. The interpretation function for a role activation rule is a
truth assignment with type, I : X — {true, false}. An interpretation function,
I, with respect to a user session u € U is denoted as I, and is defined below:

true ifx € R and u is active in role x,
ifx € Q, u possesses the appointment certificate x,
u is active in all the prerequisite roles r € o(x),
and all environmental constraints e € n(x) hold,
if x € £, and the evaluation of x yields true.

false otherwise

Note that the definition of activation rules does not include negation (—).
We briefly consider the effect of allowing negation of each of the three types
of role activation condition. First, environmental constraints e € £ are atomic
by definition. Any discussion of negation must take place in the context of an

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

508 o J. Bacon et al.

explicit environmental sublanguage, such as temporal expressions that test the
time of day.

Second, appointment certificates w € Q record the fact of an appointment. It
is only when the appointment certificate satisfies a precondition for activating
a role that any privileges are bestowed on the user. Negation should be asso-
ciated with the roles activated rather than with the appointment certificate
itself. In any case, appointment certificates can be anonymous and therefore
transferable from user to user, as might be the case when joining an organiza-
tion. The advantage of such a scheme is that one credential record covers all the
users of such an appointment certificate, which makes it possible to revoke the
appointment of every member by a single action. It is not in general possible to
tell whether a user has such an anonymous appointment.

Negating aroler € R makes perfectly good sense. Indeed, allowing a negated
role among the conditions for role activation has a natural interpretation under
I, namely I,,(—r) = true if u is NOT active in role r. This is a possible imple-
mentation of a separation of duties constraint. But if a user must not activate
two roles simultaneously, then the activation rules for each role should indi-
cate that this user must not be active in the other. A more appropriate way of
specifying the requirement would be to declare an explicit separation of duties
constraint. That is beyond the scope of this article.

Given the interpretation function, we can then define role activation formally.

Definition 4.7 (Role Activation). A role r € R can be activated within a
session u € U by the activation rule y = (x1,x9,...,x, - r) € T provided that
I, Ex; forall 1 < j < n, where I, is the interpretation function for u at the
time when the activation request is made. y € I' becomes the current activation
rule for role r.

Note that the definition of the interpretation function implies that its eval-
uation with respect to a user session changes with the context. When a user
requests an activation of a role, the interpretation function is immediately eval-
uated in the current context and the decision is made.

4.4 Membership Requirements and Role Deactivation

The opposite of role activation is role deactivation. Often continuing activation
of a role will be valid only if some subset of the activation conditions continues
to hold. These are called the membership conditions. The membership rule as-
sociated with a role activation rule specifies those conditions that must remain
true in order for a user to remain active in that role.

When a role is activated at a service s € S each of the conditions of the acti-
vation rule is verified. For roles associated with s itself, this is straightforward.
Roles and appointment certificates of other services must be validated by the
issuer. In the case that x; is a membership condition s establishes an event
channel on the trigger —x; so that the issuer can notify s should the condi-
tion become false. OASIS depends on asynchronous notification to support role
deactivation, see, for example, Bacon et al. [2000].

We have not defined explicit sublanguages for environmental constraints in
this paper. However, it is worth considering two examples. First, let us suppose

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 509

that a particular role may be held only between 16:00 and 18:00 hours on any
day. We can include this requirement as part of the activation rules through
a constraint in &£; at activation, we check the time of day, say 17:23, and set a
timer exception for 18:00 hours. In this instance, the evaluation is independent
of the user session u.

Second, suppose that a principal in session u requests a privilege that is
restricted to members of group g. For this example, we require active database
support. At activation, we check the database to ensure that the user respon-
sible for the session is a member of the specified group. At the same time, we
set a trigger for the negation of the condition. If the group manager updates
the database to exclude the user, then the trigger fires and deactivation takes
place. This example shows how constraints in £ may be user specific. The first
prototype implementation of OASIS included a simple associative tuple store
with triggers.

Definition 4.8. The membership rule associated with the activation rule
(x1,x2,...,%, = 1) € T for the role r € R is the sequent (x1, xs, ..., x, = r) for
some m < n, where x; for which 1 <i < m are the membership conditions.

Associated with any active role, there is a current activation rule, see
Section 4.3. We refer to the associated membership rule as the current mem-
bership rule. An active role r shall be immediately deactivated if the current
membership rule can no longer be satisfied. We denote the set of all member-
ship rules in a system as A. The formal definition of role deactivation is given
below.

Definition 4.9 (Role Deactivation). Suppose that a role r € R has current
activation rule y € I', and that (x1,x2,...,x, F r) € A is the corresponding
membership rule. Then r shall be deactivated as soon as the context changes so
that I, & x; for some membership condition x;, where I, is the interpretation
function for u.

A principal will be active in role r only while the current membership rule
continues to be satisfied. Note that deactivation of a role r may trigger deactiva-
tion of some other role r’ for which being active in r is a membership condition.
This is referred to as cascading deactivation. Its implementation is discussed
in Bacon et al. [2000] and Hayton et al. [1998], which describe the use of an
event infrastructure.

Note that the membership rule associated with an active role r is specific
to the rule under which r was activated. Consider as an example the rules
obtained by translating the Boolean expression introduced after Definition 4.4:

(rivre) Awr oy,

which specifies that a user who is active either in role ry or in role ro and who
holds an appointment certificate w; may activate role ry.
The corresponding activation rules are as follows:

ri, wi = r4

rq, w1 = rg.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

510 o J. Bacon et al.

In each case, the membership rule will include the relevant prerequisite role,
so as to enforce cascading deactivation at the end of the session. If revocation of
the appointment is to take immediate effect, then the appointment certificate
must also be a membership condition.

4.5 Dealing with Privileges

We can now define the association of roles with privileges. This is expressed as
a relation as follows.

—RP C R x P, the role-privilege relation.

RP describes the role-privilege relationship. It is a many-to-many relation
specified by the security administrators of an organisation to express security
policies. We distinguish two sets of privileges for a role by the terms direct
and effective. Our definitions are different from those given in Nyanchama and
Osborn [1999], where direct and effective privileges are defined with role hier-
archy in mind.

The direct privilege set of a role r € R is the set of privileges assigned to r
directly, that is, DP(r) = {p | (r, p) € RP}. The effective privilege set of a role
r is the set of privileges that continue to hold within a session while a user
is active in role r. This includes the effective privileges of all roles specified
as membership conditions when r was activated, as well as the prerequisite
roles of any appointment certificates. Each of these roles must still be active,
or r would have been subject to cascading deactivation. The effective privilege
set is dynamic, and depends on the specific activation history. The following
definition ascends the activation tree recursively.

Definition 4.10. Suppose a user holding a session u € U is active in some
role r whose current membership rule is (x1,x2,...,%,, F r). The effective
privilege set EP(r) of r is defined as follows:

EP(x;) ifx; € R is a prerequisite role

DP(r) U U if x; € Qis an appointment certificate, the union of
1<izm | EP(p) for all prerequisite roles p € o(x;).

In some RBAC models, it is possible to compute the maximum privileges
that a user may assume. OASIS defines security policies on a service-by-service
basis for multiple management domains in a distributed world. For example,
a nationwide system for electronic health records will comprise many inter-
operating domains such as hospitals, primary care practices, clinics, research
institutes etc. Services within a given domain express their policy for role ac-
tivation and service use. Membership of a role of one service may be required
as a credential for entering another. Such dependencies are specified in ser-
vice level agreements. It is likely that policy will be administered at domain
level, and will derive from local and national administrative and legal sources,
depending on the application. Service level agreements will also be made
across domains. Appointments may be made at several administrative levels.
Some appointment certificates will apply to many domains, for example those

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 511

representing academic and professional qualifications. Others will be dynamic
and local, for example temporary substitution for a colleague who is called away
while on duty.

Should it be required, it is possible to compute the maximum privileges that
a user may obtain based on statically known appointments. This assumes that
all constraints will be satisfied at the time roles are activated. In practice,
dynamic environmental conditions may prevent some roles from being activated
in any specific session. In addition, unforeseen appointments might be made
dynamically within sessions.

4.6 Managing Appointment

Previously we introduced appointment certificates to represent appointments.
Services that support appointment will define their own roles and policies to
manage it, and will issue and validate the appointment certificates. At each
appointment, an appointment certificate is returned to the appointer who sub-
sequently transfers it to the appointee. The latter can then use the appointment
certificate during role activation, either at the issuing service or at some other.
A role activation rule may specify a number of prerequisite roles in addition
to one or more appointment certificates. In this way, we can, for example, im-
plement the two-signature, countersign approval system commonly found in
business by requiring two appointment certificates. In addition, the appointer,
when applying for the appointment certificate, may specify a set of prerequi-
site roles in which the appointee must be active and a set of environmental
constraints, see Definition 4.3.

OASIS supports rapid and selective revocation, which is managed by invali-
dating the certificate issued on an appointment. When an appointment is made
a credential record is created, which is checked whenever the appointment cer-
tificate is validated. Subsequently, the appointment certificate can be revoked
by setting the credential record to show that it is no longer valid. If an ap-
pointment certificate is a current membership condition for an active role, then
an event channel is established at the time of validation. The use of events to
implement cascading revocation for RMCs is described in Bacon et al. [2000].
A revocation certificate is a capability that identifies the credential record for
the corresponding appointment certificate. The use of revocation certificates
may be restricted in the ways listed in Table I. This basic model is sufficient to
support system-managed revocation.

5. EXTENDED MODEL

In the basic model described in Section 4, access control decisions are made on
the basis of propositions evaluated in the current context. These propositions
relate to roles and appointments, and the policy governing the acquisition of
privileges is expressed in terms of them. Role activation rules can take account
of the execution environment by evaluating propositions relating to factors
such as the current time of day or an entry in an administration database. We
extend this model to allow parametrization of roles, appointment certificates,
privileges and environmental constraints. We accommodate these extensions

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

512 o J. Bacon et al.

by defining role activation rules and membership rules in terms of predicates
rather than propositions.

5.1 Basic Syntactic Constructs

The extended model shares many of the sets found in the basic model, namely
U,S, N, O and A. In this section, these symbols refer to sets in the extended
model rather those in the basic model.

We base the formalism on first-order logic, extended to include parameter
typing. More precisely, our model is a simple form of many-sorted first-order
logic. There are two main reasons for including types in the model. First, pa-
rameter typing aids intuition and so makes policies more readable. The sec-
ond consideration is practical. We have an implementation of OASIS based on
XML/Schema [Thompson et al. 2001] and Simple Object Access Protocol (SOAP)
[Box et al. 2000], which provides access control enforcement for SOAP services.
Access control decisions can be based on the actual parameter values of a SOAP
request. The type system in this implementation is that of XIML/Schema [Biron
and Malhotra 2001]. Parameter typing is a great help in this case because it
allows static checks to be performed.

Let ¥ be the set of all types. For a parameter v of type ¢ € T, we write v'.
We assume there is an unlimited supply of parameters, which may be denoted
using subscripts, vi, ve, The set of all parameters of type ¢ is U;, that is,
U, = |J; v}, where ¢t € T. We let U be the set of all possible parameters,

o=

te¥

Our vocabulary consists of three sets: a set of typed parameters 2, a set of
typed function symbols §, and a set of typed predicate symbols 3. Function and
predicate symbols, each of some arity n > 0, are typed by means of a signature.

Definition 5.1. We define the signature Z(x) of function and predicate sym-
bols as follows:

—If f € § denotes an n-ary function f(@,...,ulr) and f has type ¢, £(f) =
(t1 x -+ X t,) > t.

—If P € i denotes an n-ary predicate P(utf, conUn), B(P)=(t X -+ X ty) —>
bool .

A constant symbol ¢ of type ¢ is treated as a 0-place function with a sig-
nature X(c) = () — t. Contrary to what might be thought, because of the
nature of our model a constant symbol does not necessarily bind semanti-
cally to a constant value. All expressions are evaluated in a specific context
and the value of a constant symbol may be context-sensitive, for example,
current _time. We shall return to this when we explain the activation model in
Section 5.6.

As in first-order logic the syntax of our model comprises terms and rules.
Terms refer to individual entities of a system, whereas rules define associations
between the various components of the model, for example, appointments, roles

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 513

and privileges. Rules are a set of specialized formulae in first-order logic which
are given semantics that corresponds naturally to the OASIS implementation.

Parameters in our model have two modes, in and out. These mode names are
motivated by the programming model. Predicates are evaluated in some context
during the interpretation of a rule. The value of an in-parameter must already
be set before predicate evaluation, whereas the value of an out-parameter is
established as a side-effect during the process of evaluation itself, for example,
by pattern matching, calculation or database lookup. In our notation, we denote
the occurrence of variable x as an out-parameter by x?, and as an in-parameter
simply by x, for example, P(x, y?) features x as an in-parameter and y as an
out-parameter in the predicate P(vil, véz). Note that the modes refer to the
flow of information through individual predicates, not to the flow through
the engine that evaluates rules. Parameter resolution is straightforward, since
the semantics of rules is such that an efficient plan for each rule can be deter-
mined statically, see Section 5.6.2.

Before describing the syntax of predicates, we establish a many-sorted alge-
bra of typed terms.

Definition 5.2. A term of type ¢ is defined recursively as follows:

—Ifv? € Y, is a variable, then an in-parameter v’ is a term of type ¢.

—If utf, ..., ul" are terms and an n-ary function f € § has signature
(#1 x -+ xt,) — ¢, then f(utll, ...,u")is a term of type ¢.
—In particular a constant symbol ¢ of type ¢ is a term of type ¢.

For the sake of clarity, we drop the type superscript in a parameter name
in situations where types have no effect on the formalism. But it is crucial to
remember that all parameters, functions and predicates are typed.

In our model, rules are interpreted in a particular context. Parametrized
predicates correspond in the interpretation to roles, appointment certificates,
privileges and environmental predicates. Predicate symbols are therefore par-
titioned into four sets, R, 2, P and £. The first three types correspond to access
control system entities. Out-parameters are set by pattern matching from spe-
cific instances of role membership and appointment certificates; during role
activation fields in the role membership certificate (RMC) are set by evaluating
terms that may include in-parameters. Environmental predicates are imple-
mented by computational procedures such as database lookup that can be in-
voked when a rule is interpreted. Only environmental predicates may contain
both in- and out-parameters. The corresponding predicate expressions share
the same general syntax:

Definition 5.3. If P € (RUQUPUE) is a predicate symbol of signature
(#y x -+ x t;) — bool and uq,..., u, are expressions of types ti,...,%,, then
P(uy,...,u,)is an n-ary predicate expression.

When the parameter values are unimportant we may refer to a function or
predicate expression simply by its symbol. The precise forms allowed for the
parameter expressions uq, ... , u, will depend on the context.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

514 o J. Bacon et al.

5.2 Role Activation Rules

The syntax for specifying role activation rules follows Definition 4.4 in the basic
model almost exactly. We use predicate expressions in place of propositional
variables and we introduce constraints on the way in which parameters can be
used. A role activation rule has syntax:

(x17x2>"'axn l_r)7

where each x; for 1 < j < n (an antecedent) is a predicate expression derived
from some predicate symbol in the universe (R U Q U &), and r is the target
role predicate expression. We now define additional syntactic constraints on
the parametrizations.

Definition 5.4. The parameters that may appear in the predicates of role
activation rules are restricted as follows:

—If an antecedent x; = x(uy, ..., u,) for some predicate symbol x € (R U Q),
then each uf must be either an out-parameter y% ? or a constant ¢ of type ¢;.

—If an antecedent x; = €(uy, ..., u,) for some predicate symbol € € &, then
each 1! must be either an out-parameter y’ ? or a term of type t;.

— The target role predicate expression r = p(uy, ..., u,) where p € R and each
uf is a term of type #;.

We may require that some subset of the activation conditions (the mem-
bership conditions) continue to be satisfied while the role remains active. The
details are essentially the same as in the basic model, see Section 4.4, and
in particular Definition 4.8. Each membership condition must have an active
implementation.

We next define parameter binding for our model. Intuitively, the values taken
by bound variables are determined precisely when a role activation rule is
interpreted in a specific context.

Definition 5.5 (Bound and Free Variables). A variable u is bound in a rule
(x1,%9,...,x, F r)if at least one occurrence of u in the rule is as an out-
parameter. A variable u is free in a rule if it is not bound.

For instance, consider an activation rule p(u?), w(73,v?), (v, w) F t(w),
where p € R is a prerequisite role, w € Q is an appointment certificate, € € £ is
an environmental predicate and t € R is the target role. The variables v and
v are bound, while w is free because it does not occur as an out-parameter. If
the mode of the parameter w in the environmental predicate ¢ were altered to
out, then w would also be bound in the rule. Here 73 is an integer term, a 0-ary
function whose evaluation is not context-sensitive!

CoNSTRAINT 1. There must be no free variables in an activation rule
(x1,%2,...,%, F 1)

The reason behind this constraint will become clear when we explain the
semantics of activation rules. By excluding free variables from the rule we

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 515

establish clearly defined activation semantics.? The semantics of parameter
handling is similar to the unification process found in Prolog. Note that we
can exploit the side effects of predicate evaluation to set parameters in the
target RMC to context-sensitive values, thus supplying application-dependent
attributes to the underlying security mechanism. We first explain the semantics
informally with the aid of examples, later giving a formal description.

Example 1. Suppose we are modelling a hospital policy that says that a
user who is employed there as a doctor may acquire a doctor_on_duty role when-
ever she is on duty. For simplicity, we do not represent the wards, clinics or
departments to which the doctor is allocated in these first examples. (An ex-
tension with the doctor’s current work location as an additional parameter is
shown in activation rule 4 of Section 6.2.) We define the following predicates:

Name Type Parameters

local_user(h_id) role h_id: local user id
employed_medic(h_id) | appointment | A_id: local user id
on_duty(h_id) environment | h_id: local user id
doctor_on_duty(h_id) | role h_id: local user id

We make the following assumptions about the hospital security policy. First,
all hospital employees are authenticated into the role local_user(h_id) when
they log in. Second, an appointment certificate employed_medic(h_id) is issued
whenever a qualified doctor is first employed. Finally, the condition currently
on duty is checked by the environmental predicate on_duty(h_id), here imple-
mented by consulting a database. We have extended the standard PostgreSQL
implementation to act as an active predicate store, see Section 5.6.1. Were
on_duty(h_id) to be a membership condition of doctor_on_duty, the role would
be deactivated when % _id came off duty. For the purposes of this example, we
could make the unrealistic assumption that the time a doctor is to come on
and off shift is recorded statically in the database and enforced. In a more en-
lightened world, the doctor might wear an active badge and be tracked in a
sensor-rich hospital environment. The database would be updated dynamically
when she was detected entering the medical ward area (so on-shift) and leaving
it (so off-shift).
The policy can be expressed as follows:

local_user (h_id ?), employed_medic (h_id?), on_duty (h_id)
F doctor_on_duty (h_id).

This rule says that a doctor may acquire the role doctor_on_duty when she
is working. The values of h_id set by pattern matching while checking the
preconditions local_user,employed_medic must be equal for this rule to succeed.
This common value is passed to the environmental predicate on_duty, which
checks that the doctor is on shift. Note that in the latter context 4 _id is regarded

2Some extra static checks may be needed to ensure that no cyclic dependencies can arise during
parameter matching, see Section 5.6.2.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

516 o J. Bacon et al.

as a term. Finally, this value is used to initialise the target RMC. This rule
corresponds to the first-order logic formula:

Vx (local_user (x) A employed_medic (x) A on_duty (x) — doctor_on_duty (x)).

Example 2. Continuing the example, suppose another policy states that all
patients in a ward are in the care of the doctor currently on duty there. Again,
for simplicity, we do not represent the ward as a parameter, but see Section 6.2.
We extend the system to include the following predicates:

Name Type Parameters

treating _doctor (h_id, pat_nhs_id) | role h_id: local user id,
pat_nhs_id: patient id

ward_patient(pat_nhs_id, t) environment | pat_nhs_id: patient id,
t: time of admission

ward_patient is an environmental predicate which takes two parameters, the
patient identifier and the time of admission. We assume that this predicate can
be checked at runtime, for example by querying a relation in a database, and
that it reflects the current set of patients in the ward at any given time.

The policy could be expressed as:

doctor_on_duty (h_id?), ward_patient(pat_nhs_id ?,t?)
b treating_doctor(h_id, pat_nhs_id).

The rules for parameter matching require that the value of the in-parameter
h_id of treating _doctor(h_id,y) must match the out-parameter ~_id in the RMC
for the prerequisite role doctor_on_duty. pat_nhs_id and ¢ are output as the
result of evaluating ward_patient, and the actual value of pat_nhs_id is also
supplied as a parameter to the treating_doctor role and bound to the RMC
that is generated. The parameter ¢ in the predicate ward_patient is only a
placeholder and its value would not be requested when querying the database.

In some situations, more than one binding may satisfy the rule, as is the
case in the example above. Formally, this does not cause a problem; it simply
means that any of those role instances may be activated within the session. It is
therefore semantically correct to allow multiple outcomes, and in our example
a new doctor coming on duty could acquire the treating_doctor role for each
of the patients in the ward. Prolog would output all the possible answers in a
similar situation. On the other hand, a user may often wish to activate a single
role instance only, and it is therefore important to know how many tuples will
satisfy a database query.

We can express the semantics of parameter matching very simply.

Definition 5.6 (Parameter Matching). If a variable u! occurs in an activa-
tion rule (x1, xe,...,x, F r), then at activation time the same value of type ¢
must be bound to each occurrence of u’.

In the case that more than one set of bindings is consistent with the precon-
ditions x;, role activation succeeds with each set of variable bindings. Note that

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 517

all variables in the target role r occur in terms and therefore as in-parameters,
so that each candidate set of variable bindings determines a unique RMC.

The notions of initial rule and initial role go over to the extended model
without modification. We restate the definition here for clarity.

Definition 5.7 (Initial Roles). A role activation rule (x1,x9,...,%, - r), in
which x; € (QU &) for all 1 < j < n, is initial. The role r is said to be an initial
role.

Example 3. Initial rules control user authentication at the start of a ses-
sion. Note that any variable occurring as a parameter of the initial role must be
bound, hence in such a case there must be at least one antecedent condition. For
example, for a user to log in successfully the initial rule might include an envi-
ronmental precondition pwd (h_id ?) implemented by the program which checks
the user’s password and returns A _id as an out-parameter. The corresponding
initial rule would be as follows:

pwd (h_id?) & local _user (h_id).

5.3 Environmental Predicates

Environmental constraints in the basic model allow dynamic aspects of a policy
to be modelled. Since each is an atomic proposition their usefulness is limited.
In the extended model, environmental constraints are renamed environmental
predicates to emphasise that each may take a number of typed parameters.
Since the parameters of environmental predicates may be of either mode they
can be used in a variety of ways. Three primary uses are given below.

—specifying environmental constraints (much as in the basic model)
—acquiring context-sensitive information (for example by database lookup)
—setting attributes to a computed value

In EHR applications, access control decisions cannot be based on knowledge
of the subjects and their privileges alone. Attributes such as the current time
of day, patient assignment or the presence of particular fields in an EHR must
also be taken into account. Other researchers have noted this requirement in
connection with health records [Georgiadis et al. 2001; Giuri and Iglio 1997],
and similar needs arise in active house applications [Covington et al. 2001]. It
is therefore important to take context into account when authorizing access; in
addition it is often helpful to do so when activating and deactivating roles. There
are two main advantages: (1) it allows a natural modelling of real-world policies;
(2)it becomes easier to specify privileges, since context-sensitive constraints can
be enforced through the role activation rules. We illustrate these points with
the help of the earlier examples.

In Example 1, we assume that a doctor can access the computer system at
all times, but that she gains additional privileges during her duty hours. This
is a natural example of an environmental constraint on access decisions; cer-
tain actions are only permitted to a doctor, and when she is on duty. The check
could be enforced at each access, but that would carry an unnecessary overhead.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

518 o J. Bacon et al.

We therefore associate the extra privileges with the specific role doctor_on_duty,
and use the environmental predicate on_duty(h_id) to control activation of that
role. Note that it is natural to use a parameter, and also that parameter match-
ing behaves as we should hope. In this case, the parameter value is obtained
from the local_user RMC, and the environmental predicate then serves much
the same purpose as in the basic model. It is vital that the implementation of
on_duty(h_id) is active, also that it is marked as a membership condition in the
role activation rule. Otherwise the doctor, if she remains logged in, could retain
the extra privileges when she is no longer on duty. It is now easy to express
privileges that are available to doctors only when on-duty. We believe that au-
thorization policies expressed in terms of on_duty roles will be more readable,
and that as a result fewer errors will be made.

In Example 2, we once again use an environmental predicate to extract
context-dependent information, but in this case the mode of the parameters
is out. Settings of the parameters pat_nhs_id and ¢ will iterate over the possi-
ble combinations of patients and their admission times. In this way, it is easy
to populate fields in a target RMC with values derived from a local database. If
the same variable occurs as an out-parameter in more than one environmental
predicate, the semantics is that of query evaluation with each shared vari-
able serving as a join key. We expect that in most situations database lookup
will be single-valued, and that policy managers will exploit key information in
database schemas to ensure this.

Another use of environmental predicates is to allow computed values to be
set in fields of a target RMC during role activation. This might be necessary
in order to set a nonce value such as a session identifier to be used solely for
audit purposes. In Example 3, we give a slightly different use, that of setting
a parameter in an initial role. Because we require every variable occurrence to
be bound it is essential to establish ~_id as an out-parameter. This may seem
rather artificial, but it has the great advantage of ensuring that all parameters
are set explicitly.

Example 4. Let us return to Example 1 again. We did not discuss
the validation of a doctor’s medical qualification when activating the role
doctor_on_duty, assuming that it was sufficient to check the locally issued ap-
pointment certificate employed_medic(h_id). A more realistic hospital-wide pol-
icy might be that any person who is qualified by the British General Medical
Council (GMC) and is in the hospital employee database can obtain a doctor
role. Suppose that the GMC issues an appointment certificate qualified to all
qualified doctors; each certificate bears a unique sequence number gmc_id and
also contains a number of attributes, such as surname, forename, date-of-birth,
registration date and specialism. This certificate is intended for life-long use
without any particular application in mind, it is merely an electronic assertion
that the holder is a qualified doctor. To implement hospital policy it is necessary
to match the information in a qualified certificate with a locally recognized user-
name. We assume the information is held in the database employee_db which
has a large number of fields, and we introduce an environmental predicate
emp_db_user for this specific task. The environmental predicate emp_db_user

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 519

takes the unique sequence number gmc_id set by the appointment certificate
qualified as an in-parameter, returning a Boolean to indicate whether the qual-
ified doctor it identifies is a current employee; if the result is true it sets the
out-parameter A _id to the local user id of the doctor. The appointment certificate
qualified may have fields other than those shown.

Name Type Parameters
qualified(gmc_id, sn, fn,d, sp, ...) | appointment | gmc_id: identifier

sn: surname

fn: forename

d: date of registration
sp: specialism

emp_db_user(gmc_id, h_id) environment | gmec_id: identifier
h_id: local user id

We could now express this policy as below:

qualified (gmc_id?, sn?, fn?,d?, sp?, ...), emp_db_user(gmc_id, h_id?
F doctor (h_id).

Informally, this rule means that any person who can present a valid qualified
certificate and is registered in the hospital’s database can activate the role of
doctor. The extra privileges associated with the specific role doctor_on_duty
require a check of the additional environmental predicate on_duty(h_id).
We discuss how the qualified appointment certificate might be validated in
Section 6.2.

An alternative approach would be to implement a unary function gmc_user
to convert from a gmec_id to the corresponding local 4_id, raising an exception if
the GMC certificate does not identify a local doctor. Type checking will ensure
that the function gmc_user sets an appropriate value in the doctor RMC.

qualified (gmc_id?, sn?, fn?,d?,sp?,...) + doctor(gmc_user(gme_id)).

As explained in this section, the power of environmental predicates is greatly
enhanced by including parameters. They increase the expressive power of the
model without adding unnecessary complexity. In particular, their use offers a
uniform way of introducing information from local databases, as well as sup-
porting context-sensitive behaviour such as temporal constraints.

5.4 Validity Rules for Appointment Certificates

In Definition 4.3 of the basic model, we described how the issuer of an appoint-
ment certificate can restrict its use by defining a set of prerequisite roles and
a set of environmental constraints. In this section, we extend that definition to
include parameters.

Definition 5.8 (Validity Rules). The issuer of an appointment certificate
can define a validity rule that must be satisfied whenever the appointment cer-
tificate is presented to meet a precondition during role activation. The syntax

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

520 o J. Bacon et al.

for specifying validity rules in an appointment certificate bears a close resem-
blance to the definitions of Section 5.2, except that there is no target role. A
validity rule has syntax:

(xlaxZa'“’xn |_)

where each x; for 1 < j < n (a validity condition) is a predicate expression
derived from some predicate symbol in the universe (R U £).
We define additional syntactic constraints on the parametrizations:

—Ifavalidity conditionx; = p(u1, ..., u,) for some role predicate symbol p € R,
then each 1) must be either an out-parameter y’ ? or a value c of type ;.

—If a validity condition x; = €(u1, ..., u,) for some predicate symbol € € &,
then each uf-“ must be either an out-parameter y% ? or a term of type ¢;.

As in the case of role activation rules there must be no free variables. If a
variable occurs as an in-parameter within some validity condition, then it must
also occur as an out-parameter in some other validity condition of the same
rule. Validity conditions are interpreted by the issuer when the appointment
certificate is presented for validation during role activation, for more details,
see Section 5.6. Each condition may optionally be specified as active, in which
case it has the same status as a membership condition in a role activation rule.
We discuss this further in Section 5.7.

5.5 Privileges and Authorization Rules

So far, we have not discussed how privileges are derived from roles in the ex-
tended model. In the basic model, a relation RP is defined to describe the
role-privilege relationship. In the extended model, we must take role param-
eters into account at the time of access. Access decisions may also be context-
sensitive. We therefore need a more flexible approach to privilege assignment
than can be derived from a simple relation.

A privilege in the extended model takes the form of a predicate symbol
for which each parameter has some specified type. The binding to concrete
privileges depends on the application context, but we assume that the rights
conferred by an instantiated privilege depend on the actual values of its
parameters.

Definition 5.9. A privilege instance is an n-ary predicate expression
(e, ..., cn), where m € Pis apredicate symbol of signature (¢ x - - - x t,) — bool
and for each 1 <i < n, ¢; is a value of type ¢;.

As an example, one could define a privilege instance as follows:

Privilege instance | Informal description of right
read_EHR(y,f) |read field f from the electronic health record of patient y

The definition of privileges and their bindings is entirely application-
dependent. With the use of parameters it is possible for an application to

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 521

establish rights at a fine-grained level, such as method invocation between dis-
tributed services. The level of granularity depends on the security policy and
implementation. Our formalism neither restricts nor encourages enforcement
at a particular level.

Privilege assignments are specified through authorization rules. An autho-
rization rule associates a privilege with an authorizing role. Authorization rules
take exactly one role on the left-hand side and may optionally have a number of
environmental predicates as authorizing conditions. The intention is to provide
active security by considering the context of a request at access decision time.
The syntax is similar to that of activation rules and validity rules.

Definition 5.10 (Authorization Rules). An authorization rule is defined as
a sequent

(r,e1,...,en = p),

wherer = p(uy, ..., u,)for arolesymbol p € R,eache; = ¢;(u1, ..., u,) for some
€j € £and p = n(uy, ..., u,) for some w € P. We say that r is the authorizing
role instance, each e; is an authorizing condition and p is the target privilege
instance. We define additional syntactic constraints on the parametrizations.

—In the authorizing role instance r, each #/ must be either an out-parameter
y%? or a value c; of type ¢;.

—In each authorizing condition e;, each u}' must be either an out-parameter
y%? or a term of type ¢;.

—In the target privilege instance p, each ' must be either an out-parameter
% ? or a value ¢; of type ¢;.

CONSTRAINT 2. There must be no free variables in an authorization rule
(r,e1,...,en = p).

Note that the treatment of parameters on the right-hand side of the rule is
quite different from that in role activation rules, where the aim is to instanti-
ate the fields of a newly created RMC. In this case, we know the details of both
the authorizing role instance and the access that has been requested, and we
must make a decision in the current context. A rule is applicable only if the
fields ¢; match; in that case, any out-parameters associated with the authoriz-
ing role and the target privilege are set, then the authorizing conditions are
evaluated. A case of interest is that of a variable whose only occurrence is as an
out-parameter on the right-hand side of the rule. The decision on whether to
authorize access is independent of the value of the parameter in that position,
effectively supporting universal quantification over target privilege instances.

The use of authorization rules is demonstrated in the following example:

Example 5. We continue the medical Examples 1 and 2 given in Section 5.2.
Suppose that a treating_doctor in the ward is allowed to read fields 1, 3 and 4
only from the EHR of a patient under her care. A possible way of specifying this
policy is to extend the system with the following components:

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

522 o J. Bacon et al.

Name Type Meaning and parameters
read_EHR(y, f) | privilege read a field from a patient’s EHR
f: field name

y: patient identifier
check _field_td(f) | environment | check within rights of treating doctor
f: a field name

We introduce a new environmental predicate check_field_td to check whether
a particular field in a patient’s record may be read by the doctor in charge of the
case. This predicate takes a field name f from the access request and returns
true if f is either 1, 3 or 4, and false otherwise.

We can now express the authorization policy:

treating _doctor (x?, y?), check_field_td(f) + read EHR(y?, f?).

Suppose that a doctor Alice is providing treatment for a patient Bob. She
presents the authorizing role instance treating_doctor (Alice, Bob) with her re-
quest to read field 3 of Bob’s EHR, and the variables x, y and f are set to Alice,
Bob and 3 respectively. Calling the environmental predicate check_field_td con-
firms that Alice as treating doctor may access field 3 of patient Bob’s EHR.

Note that in this case the privilege instance identifies the object of the ac-
cess, a particular field in Bob’s EHR; it is not necessary to identify the sub-
ject requesting the access, Alice, who has been authenticated into the role
treating_doctor, with Bob a patient under her care.

5.6 Model Semantics

In the basic model, the interpretation of activation rules in a particular context
is defined by a truth assignment function, which establishes what it means for
each precondition to be satisfied. In the extended model, we must take account
of parameters, and also handle the term algebra. We need an interpretation that
assigns a concrete object of appropriate type to each syntactic element and we
must then define satisfaction based on this assignment. The treatment applies
equally to role activation rules, validity rules and authorization rules.

In the discussion that follows, we first show how parameter binding is man-
aged within the framework of a general rule. The only tricky case is that of envi-
ronmental predicates, which can contain both in- and out-parameters. We show
how to model environmental predicates by environment queries, which update a
table of variable bindings specific to the rule that is being interpreted. The order
of evaluation of environmental predicates may be determined statically within
any given rule. We next show how within a specific context to evaluate terms
that contain only constants and function symbols; we are then in a position
to interpret each predicate expression as a concrete instance of some element
of the access control system, and thus determine whether a particular rule is
satisfied. The interpretation developed in this section therefore deals with:

— Interpreting environmental predicates as queries
—Parameter binding and the order of evaluation of predicates
—Term evaluation

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 523

— Interpreting predicate expressions
—Validity rules for appointments
—Role activation rules

— Authorization rules.

The interpretation is based on the presentation in terms of propositions de-
veloped in Section 4.3 in the sense that we evaluate each rule within a snapshot
of the system. For an implementation based on active platforms, this snapshot
semantics is sufficient, since it gives a strong guarantee of the state of a system
at each decision point, and valid state transitions are enforced by active noti-
fication. The details of the design of an event platform that will support this
semantics can be found in Bacon et al. [2000].

Definition 5.11 (Interpretation). An interpretation with respect to a user
session u, I, is a triplet (D, U, M), where:

—D is a nonempty set of typed values, called the value domain. The subset of
D of all values of type ¢ is denoted D;.

—U is a nonempty set of access control system entities, called the universe.
Distinct subsets of U correspond to role instances, appointment certificates,
environmental queries and privilege instances.

— M is a mapping from syntactic elements to typed values, functions or access
control system entities, which assigns a meaning to each element of a rule.

The initial implementation protects SOAP services, and values have an
associated XML/Schema type. There is also an essentially complete Java
implementation.

5.6.1 Environment Queries. Rules of all three kinds may contain environ-
mental predicates. In each case, other predicates in the rule may contain either
in- or out-parameters, but never both. Before an environmental predicate is
evaluated, the value of any in-parameter must be bound; the process of evalu-
ation returns (a sequence of) sets of bindings for the out-parameters. Suppose
that an environmental predicate expressione = €(uq, ..., u,) for some predicate
symbol € € £, where each uf" is either an out-parameter y% ? or a term of type
t;. We assume that the value of each in-parameter is known, hence each term
can be evaluated. The predicate can then be decided by a query that applies a
filter specifying the value of each known parameter (cf. a WHERE clause in
SQL); the query returns all possible sets of bindings for the out-parameter po-
sitions such that the predicate evaluates to true. Our extension to PostgreSQL
supports active queries, which have the property that the requester is notified
if the result should subsequently change.

Definition 5.12 (Environment Query). An environment query E € U is an
implementation of an environmental predicate ¢ € £. If the signature X(¢) =
(t1 X - - x ty) = bool, then E will accept filter expressions that specify correctly
typed values for some subset of the arguments, and return as result the possible
extensions for which the predicate holds.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

524 o J. Bacon et al.

In a practical implementation of an environmental predicate, only certain
subsets of the arguments will define valid filter expressions. In particular, it
is possible to ensure that if a variable binding exists, then it is unique. Some
predicates may be valid only if every parameter is an evaluated term, for ex-
ample the binary predicate LT; which compares the order of two values of type
t. We do not go into details.

5.6.2 Parameter Binding and the Order of Evaluation of Predicates. Sup-
pose that a rule takes the form:

(xl,xz""7xm’ €1,...,€n = p)y

where each x; for 1 < j <m is a predicate expression derived from some pred-
icate symbol in the universe (RUS), and each e; for 1 <i <n is a predicate
expression derived from a predicate symbol in the universe £.

We require that there are no free parameters in the rule. The tar-
get predicate expression p contains only in-parameters in a role activa-
tion rule, and only out-parameters in an authorization rule. Each of the
predicate expressions x; also contains only out-parameters. Variable binding
is therefore straightforward with one exception. We first bind all out-
parameters associated with preconditions x; or with a target privilege ex-
pression. Once binding is complete we can set the parameters in a tar-
get role expression. In what order should we evaluate the environmental
predicates?

Note that once a particular variable is bound to some value any later bind-
ing of the same variable must yield the same value; if an earlier evalua-
tion was multi-valued we can backtrack, otherwise the predicate is false.
Our aim is to order the evaluations of {e;|1 < i < n} so that whenever
a variable occurs as an in-parameter it has already been bound. The algo-
rithm is similar to a topological sort, with the slight complication that a
variable may have more than one occurrence as an out-parameter among
environmental predicate expressions. The rule parser should reject as ill-
formed any rule in which there are cyclic dependencies between the parameter
occurrences.

In this way, each rule stored at a service may be annotated with the (partial)
order of predicate evaluation. During interpretation of the rule we maintain a
list of variable bindings. When interpreting an environmental predicate expres-
sion, we use the current list to set up the filter expression for the corresponding
environment query. If there are out-parameters to be set, the filter query yields
a list of additional variable bindings that satisfy the predicate; provided there
is no conflict the list of variable bindings is extended and evaluation moves to
the next predicate. In the case of conflict, we first look for a new set of bindings
for the same filter; otherwise, we backtrack if possible. In what follows, we as-
sume that before interpreting a predicate expression we have evaluated all the
terms.

The rest of this section mirrors the organization of Section 5.1, in that we
show how to interpret each syntactic element and hence give a complete account
of what it means for a rule to be satisfied.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 525

5.6.3 Term Evaluation. We first define the meaning of typed terms in the
many-sorted algebra. The bindings of variables are established through the
implementation, and the meaning of an in-parameter that occurs in a term is
therefore an element of the value domain.

—If ¢ is a value of type ¢, M[c] € D;.
—If u! is an in-parameter of type ¢ that is bound to value d;, M[u!] = d; € D;.

—If f is an n-ary function symbol with X(f) = (¢; x --- x ;) — ¢, M[f] €
(D, x -+-x Dy) — Dy.

The implementation M| /] of a function symbol f may be context-sensitive.
In particular, a 0-ary function may not yield the same value in every context,
consider for example current_user and current_time. The meaning of each term
can now be defined in the obvious way.

5.6.4 Interpreting Predicate Expressions. If p c(RUQUPUE) is a predi-
cate symbol of signature (¢, x --- x t,) — bool and u1, ..., u, are expressions of
types ti,..., t,, then ¢(uq, ..., u,) is an n-ary predicate expression.

If p e R, M[¢p]e U identifies some role of the access control system that we
are modelling. Parameter values correspond to parameters in the associated
RMCs.

If ¢ € 2, M[¢] € U identifies some appointment type of the access control sys-
tem. Parameter values correspond to parameters in the associated appointment
certificates.

If p e P, M[¢p] e U identifies some privilege of the access control system. Pa-
rameter values identify a concrete privilege instance.

If p € £, M[¢] € U identifies the corresponding environment query. We have
already explained how parameters and variable bindings will be managed in
this case.

We next consider what it means for a particular predicate expression to be
satisfied within some rule. We have already described the order of evaluation,
and can assume that evaluation takes place in the context of a list of bindings
of variables v? of type ¢ to values d; € D;, and that the rule checker can inspect
the access control environment. We do not consider the mechanics by which
RMCs and appointment certificates are made available during role activation
and service invocation.

Prerequisite RMCs, appointment certificates and privilege instances are all
available during rule checking as concrete tuples of type (Dy, x --- x D;,) say.
The only parameter types permitted in a corresponding predicate expression
defined in a rule are out-parameters and constant values of the appropriate
type. We define what it means for such a predicate to be satisfied within a
particular interpretation.

Definition 5.13 (Predicate Satisfaction). Given an interpretation I, = (D,
U, M) with respect to a user session u and an n-ary predicate expression ® =
¢(ut11, ..., ul), we say that I, satisfies ®, written as I, = ®, if there is a concrete
instance of the access control entity M [¢] whose fields (d4, ..., d,) are such that
whenever 1} = c’ is a constant of type ¢;, then M[c%] =d;.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

526 o J. Bacon et al.

When during the interpretation of some rule such a predicate expression
® is satisfied, the variable list is updated for each out-parameter ui«j = yli?
by binding variable y to value d;. If this binding produces conflict, then rule
interpretation backtracks if possible; otherwise, the rule is not satisfied in the
interpretation I,,.

It is now easy to define satisfaction for rules of each kind. For simplicity, we
begin with the case of a validity rule for an appointment certificate.

5.6.5 Validity Rules for Appointments. The issuer of an appointment cer-
tificate can restrict the contexts in which its use is valid by specifying both
prerequisite roles and environmental predicates. The form of a validity rule is
therefore:

(X1, %2, ..., X, €1,...,€5),

where each x; for 1 < j < m is a predicate expression derived from some role
symbol in the universe R, and each ¢; for 1 < i < n is a predicate expression
derived from an environmental predicate ¢; € £.

Note that the validity rule is specified explicitly by the issuer and forms an
extension of the appointment certificate, hence the values of any fields in the
validity rule are bound at the time of issue. During role activation the appoint-
ment certificate is sent to the issuer for validation; in addition to checking the
signature the issuer ensures that the validity conditions are satisfied. Note
that the naming of roles and environmental predicates is interpreted within
the issuer’s context.

Validation of the conditions is straightforward. First, ensure that each of
the prerequisite role conditions x; is satisfied according to Definition 5.13. The
check includes validating the RMC with the issuing service. Assuming that
there has been no conflict of bindings we derive a list of variable bindings in
whose context the environmental predicate conditions e; can be verified through
a sequence of environment queries, see Definition 5.12. The validity rule of the
appointment certificate is satisfied if each validity condition is satisfied.

The issuer can specify that some subset of the validity conditions are mem-
bership conditions. We discuss the semantics in Section 5.7.

5.6.6 Role Activation Rules. We can now define the semantics of role acti-
vation rules. The syntax of an activation rule is as follows:

(xlny’“"x(’ Y1, Y25 ---5Yms €1,...,€n - r)7

where each x; for 1 < j < {is a predicate expression derived from some role
symbol in the universe R, each y, for 1 < &k < m is a predicate expression
derived from some appointment symbol in the universe €2, and each ¢; for 1 <
I < nis a predicate expression derived from an environmental predicate ¢; € £.
r is the target role expression.

The activation rule is satisfied whenever there is a list of variable bindings
with respect to which each of the predicate expressions on the left-hand side
evaluates to true. We defined what it means for a role condition to be satisfied in
the previous section. For an appointment condition we present the appointment

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 527

certificate to the issuer for validation; the issuer checks the signature, and also
verifies the validity conditions (if any). If each of these conditions is satisfied,
we can proceed to check the environmental predicate conditions exactly as for
a validity rule. The role activation rule is satisfied if each of the preconditions
is satisfied.

When the role activation rule is satisfied, each of the variables occurring on
the left-hand side is bound. Each of the terms defining a parameter of the target
role expression can therefore be evaluated. The target RMC is instantiated and
returned to the user.

5.6.7 Authorization Rules. The interpretation of authorization rules dif-
fers in one important respect. When a request is made to a service the access
control monitor determines what specific privilege instance, say P(dy,...,d,),
the user requires (see Section 5.5). This privilege instance, the target privilege,
isregarded as the goal. If P = M [x], then it is essential to find an authorization
rule of the form

(r,e1,e9,...,e;m = p),

where p = n(uy, ..., u,). If I, satisfies such a rule for some authorizing role
instance held within the user session u, then the access is authorized and the
request proceeds.

The authorization rule is satisfied whenever there is a list of variable bind-
ings with respect to which each of the preconditions evaluates to true, and
such that if an out-parameter y ? appears on the right-hand side as u;, then
y is bound to the corresponding value d; in the target privilege. We check
whether each of the conditions on the left-hand side is satisfied exactly as we
did for a validity rule; the order of evaluation of the predicates is established
by the parser at the time the rule is defined.

5.7 Role Deactivation

Each role activation rule can specify a set of membership conditions whose
enforcement is active, see Section 5.2. If a membership condition is a prereq-
uisite role, then an event channel will be set up when the RMC is validated,
and the activating service will be notified should the prerequisite role be relin-
quished. For environmental predicates, the implementation is equivalent; an
environment query E is executed during role activation, and an event channel
is established to notify the activating service of any change.

For appointment certificates, the situation is complicated by the validity
rules. An appointment certificate that is not a membership condition need
only be valid at activation time; the issuing service checks the signature and
enforces the validity rules, but there is no need to establish an event channel.
For membership conditions, we need an event channel, since the picture may
change in two ways. First, the appointment certificate may be revoked; the
revocation is flagged in the persistent data structure recording its issue, and
sessions in which it has served as a membership condition are notified. Second,
there may be one or more active validity conditions associated with its contin-
uing use. When the issuing service checks an active validity condition an event

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

528 o J. Bacon et al.

channel is established; should the condition become false the issuing service is
notified, and then in turn the service that presented the appointment certificate
for validation. Note that in the latter case the appointment certificate remains
valid, and the persistent data structure is not altered.

6. CASE STUDIES

6.1 Support for Anonymity

Suppose that privacy legislation has been passed whereby someone who has
paid for medical insurance may take certain genetic tests anonymously. The
insurance company’s membership database contains data about policy holders;
the genetic clinic has no access to this and the insurance company may not
know the results of the genetic test, or even that it has taken place. To meet
these requirements, it is essential for the system to refer to an individual by a
pseudonym that cannot be linked to the identity of the individual. In OASIS,
it is possible to use a role as a pseudonym so long as there are no links back to
the identity of its holder. In the clinic, we define a role paid_up_patient.

Name Type | Meaning
paid_up_patient | role | authenticated patient to the clinic

The clinic, for accounting purposes, must ensure that the test is authorized
under the scheme. Depending on the clinic’s policy, this can be done manually or
automatically. We assume that a member of the insurance scheme is issued with
an anonymous membership card showing the expiry date. If the clinic follows
the manual approach, the card is checked manually and a role paid_up_patient
is assigned to the patient. This assignment is expressed as an initial role

F paid_up_patient.

For greater security, the insurance scheme membership card could contain a
computer-readable appointment certificate and expiry date. The clinic’s authen-
tication process can then be automated to use appointment and environmental
predicates, such as:

Name Type Meaning
insurance_membership(...,t,...) | appointment | ¢: expiry date
LT time(¢1,t2) environment | ¢1,{2: timestamps

The appointment certificate insurance_membership may contain a number of
parameters, one of which is the expiry time of the membership. The environ-
mental predicate LT _time compares two parameters of type timestamp. The
policy could then be expressed as follows:

insurance_membership (..., t?,...), LT time(current_time,t)
F paid_up_patient.

A patient can become active in the role paid_up_patient if and only if her mem-
bership of the insurance company is valid, which is proved by validating the

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 529

appointment certificate and checking whether the membership has expired.
Note that an instance of the active role paid_up_patient cannot be used to trace
back the identity of the patient, since all such instances are identical from the
system’s perspective.

6.2 Multidomain Healthcare System

As indicated in Section 5, a distributed electronic health record (EHR) system
has been a motivating case study during the deployment of OASIS. Some of the
engineering issues for this system have been discussed in Bacon et al. [2001b];
here we will model a simplified subset of the policies.

We assume that there are a number of interacting domains, including the
General Medical Council (GMC) domain, a national EHR domain and many
hospitals and research institutes. Each domain is autonomous and has the au-
thority to define its own roles, appointments and policies. Domains may form
cooperative relationships by entering service-level agreements (SLAs) that de-
fine standards for interoperation. SLAs will typically involve a set of roles,
appointments, environmental predicates and privileges, and will indicate how
these entities are to be used in services’ activation and authorization rules.
SLAs may also define attributes such as degree of trust, responsibilities and
liabilities but we shall not go into these aspects here.

The GMC is the official body for regulating doctors’ qualifications. We as-
sume that the GMC domain issues a qualified appointment certificate for every
doctor who meets their academic and professional requirements. This may be
stored in a smartcard and is intended to have a life-long duration. It will con-
tain basic information such as the name, date of certification and specialism
of the doctor together with a unique identifier gmc-id. The GMC provides an
environmental predicate not_revoked for checking the validity of the qualifica-
tion identified by gmc_id. Both qualified and not_revoked form part of the SLA
for interworking with the GMC domain and are available in every healthcare
domain. A summary follows:

Name Type Meaning

qualified(gmc_id, sn, fn, ...) | appointment | Certify the named
individual (sn, fi) (surname,
forename) as a doctor. The
certificate has a unique
identifier gme_id.
not_revoked(gmc_id) environment | Returns true if the
certificate with identifier
gmec_id has not been
revoked, or false otherwise.

The national EHR domain consists of a reliable, replicated EHR service,
which maintains a virtual health record for each individual. A health record
comprises an index of the treatment history of that patient together with a
nonconfidential header, including name and address, and emergency informa-
tion such as blood group, allergies and current medications. We make use of a

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

530 o J. Bacon et al.

subset of access control policies for health records which are likely to be specified
by law:

—A doctor of a patient may view the header of the patient’s EHR.

—A doctor treating a patient may submit the record of treatment to be ap-
pended to the patient’s EHR.

—Particular individuals may be excluded from accessing a patient’s EHR. This
could create an exception to the general policy and in this case will override
it.

To implement these policies, the national EHR domain defines a SLA, to which
all healthcare domains that wish to access patient records must comply. The
SLA requires interoperating domains to export a role local_doctor(doc_nhs_id,
pat_nhs_id) to identify the treating doctor doc_nhs_id of patient pat_nhs_id.
Both are national health-service identifiers. Patients can express a wish to
exclude particular individuals from accessing their EHRs; this information is
transmitted to the national EHR domain which maintains a database. Exclu-
sion lists are implemented by consulting this database. Database lookup is
abstracted using an environmental predicate not_excluded (owner, requester),
which returns true if the requester is not explicitly excluded from accessing the
EHR of owner and false otherwise.

The operations available to clients include get_header and append_treatment,
which are expressed by abstract privileges with the same names. An abstract
privilege may not always have an identical form to the actual method invo-
cation; for example, a request to append_treatment will submit the details of
treatment as well as parameters such as doc_nhs_id and pat_nhs_id, but only
the last two are needed to identify the specific privilege instance. The definitions
of these components of the EHR domain are summarized below:

Name Type Meaning
not_excluded (owner, requester) environment | Returns true if
requester is not
restricted from
accessing the
EHR of owner.
get_header(doc_nhs_id, pat_nhs_id) privilege Retrieve
header of the
EHR of patient
pat_nhs_id

for doctor
doc_nhs_id
append_treatment(doc_nhs_id, pat_nhs_id) | privilege Submit details
of treatment
of patient
pat_nhs_id

by doctor
doc_nhs_id.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 531

We can now specify the authorization rules for the EHR domain.

@.local_doctor (doc_nhs_id?, pat_nhs_id?), not_excluded (pat_nhs_id,

doc_nhs_id) + get_header(doc_nhs_id, pat_nhs_id) (1)
@.local_doctor (doc_nhs_id?, pat_nhs_id?), not_excluded (pat_nhs_id,
doc_nhs_id) + append_treatment (doc_nhs_id, pat_nhs_id) (2)

We refer to components defined in other domains using a dot-notation, for ex-
ample domain.rolename, with the @ symbol meaning any domain. The inter-
pretation of any is domain-specific; in this case the EHR service might check
the originating domain against a list of participating medical domains.

A hospital is a domain comprising several services such as pharmacy
and X-ray and, in particular, a local EHR service for interacting with the
national EHR service. Suppose that the hospital has a prior agreement
with both the GMC and the national EHR domains. The hospital issues an
employed (h_id) appointment certificate for each member of staff with a hos-
pital identifier A_id. This is used as a credential for activating roles in the
hospital. In practice, this may be contained in a smartcard or a name tag
carried by all staff. Before hiring a new doctor, the hospital checks the ap-
plicant’s medical qualifications with the relevant authority, typically the GMC
for those who trained in the UK. An entry is made in a database to record
the gmec_id of the new doctor, and this can be recovered by the environmental
predicate map_gmec_id (h_id,gmc_id). By agreement, the GMC domain includes
an environmental predicate not_revoked(gmc_id) that checks that the doctor
identified has not been struck off. For extra security, this check may be (part
of) the validity rule for the employed appointment certificate issued to each
doctor:

GMC.not_revoked (GMC_ID) . 3)

This rule is associated with the particular employed appointment certificate is-
sued to the new doctor, whose GMC serial number is known at the time of issue.
We expect a similar validity rule to be defined for an appointment certificate
issued to a qualified nurse. We assume that an employed appointment certifi-
cate captures the nature of the employment, as a doctor, nurse, consultant in
some specialism, etc. This might be in the form of additional parameters in a
generic employment certificate or by having differently named certificates for
different categories of employees.

A doctor coming on duty may activate a role doctor_on_duty(h_id, dept),
where h_id is the doctor’s hospital identifier and dept is the department to
which she is assigned. The activation rule for this would be:

employed (h_id?), is_doctor (h_id, dept?)* + doctor_on_duty (h_id, dept). (4)

We use an environmental predicate is_doctor in the above rule, implemented
as an environment query which checks that the user A_id is a doctor and if so
sets variable dept to the department to which she is assigned. As a notational
shorthand, we denote membership conditions by asterisks. Suppose that in
a particular case a doctor with hospital identifier H_ID comes on duty in the

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

532 o J. Bacon et al.

A&E department, indicated by AE. In activating this rule, is_doctor (H_ID, AE)
becomes a membership condition for the RMC doctor_on_duty (H_ID, AE).

In an A&E department, there is a specific policy under which a nurse on-duty
may become a screening nurse responsible for checking in new patients and
assigning each to a doctor. Assignment of a patient could be handled through
an appointment AE _patient, with the appointer role being screening_nurse. It
carries two parameters, the local identifier 4 _id of the doctor assigned and the
national health service ID of the patient, pat_nhs_id. Once assigned to a patient,
a doctor on duty in A&E may activate the treating_doctor role, here extended
with an additional parameter dept to indicate the department, in this case AE.

doctor_on_duty (h_id?,AE)*, AE_patient (h_id, pat_nhs_id?)*
b treating_doctor (h_id, pat_nhs_id,AE) (5)

Note that the *-denoted conditions are membership conditions, that is, accord-
ing to this policy the treating_doctor role is revoked when the doctor goes off-
duty and/or the patient assignment is withdrawn.

Consider a scenario where a patient arrives in A&E and has been assigned
to a doctor after being screened. The treating doctor needs to refer to the emer-
gency information in the patient’s EHR and makes a request to the EHR ser-
vice in the local hospital domain with a credential asserting membership of
the role treating_doctor. Because the SLA with the national EHR requires a
role local_doctor to be exported, the local EHR service maps an instance of
treating_doctor into local_doctor, expressed in the following activation rule:

treating _doctor (h_id?, pat_nhs_id?,dept?), map_nhs_id (h_id,doc_nhs_id?)
F local_doctor (doc_nhs_id, pat_nhs_id). (6)

No mapping is required for the patient identifier, as we have used the patient’s
health-service identifier throughout. The dept parameter is a place holder, of no
interest at national level. Having mapped the role (by activating it), the local
EHR service acts as an agent and sends the request to the national service. Ac-
cess would be authorized by rule (1) if the treating doctor is not on the patient’s
exclusion list.

Suppose that the treating doctor decides to order some medication for the
patient. She would first need to check the patient’s allergies and current medica-
tion. This information is available in the emergency part of the EHR, which has
already been fetched. The doctor will appoint someone to collect the drugs from
the pharmacy. The details of the drugs, authorizer and collector are recorded
in the pharmacy database for audit.

The doctor must at once record the new medication in the EHR header so that
the emergency information is up-to-date. Also, when treatment is complete, she
will submit the record of treatment to be appended to the patient’s EHR. The
process is similar to that of retrieving an EHR; a request is made to the local
EHR service in the hospital domain, which acts as an agent for the requesting
doctor to the national EHR service.

The components we have defined in this hospital domain example are shown
in Figure 1 for reference.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 533

Name Type Meaning

employed(h_id) appointment | Proof of employment of local user
h_id.

AE _patient(h_id, pat_nhs_id) appointment | A&E patient pat_nhs_id is assigned
to doctor ~_id.

map_gmc_id(h_id, gme_id) environment | Mapsbetween alocal userid ~_id and
a GMC serial number gmc_id.

map_nhs_id(h_id, doc_nhs_id) environment | Maps between a local user id A_id

and a national health-service (NHS)
id doc_nhs_id.

is_doctor(h_id, dept) environment | Returns true if user A4_id is a doctor
assigned to department dept; false
otherwise.

doctor_on_duty(h_id, dept) role User h_id is a doctor on duty in
department dept.

treating_doctor(h_id, pat_nhs_id, dept) | role Doctor h_id is treating patient

pat_nhs_id in department dept.
local_doctor(doc_nhs_id, pat_nhs_id) role (public) | Adoctortreating a patient, each iden-
tified by an NHS id. Complies to the
SLA of the national EHR.

Fig. 1. Definitions of the components in a hospital domain.

7. RELATED WORK

There have been a number of proposals to extend RBAC to meet the strin-
gent requirements of active security. This means including context in some way
in order that access control decisions can be based on attributes in addition
to simple subject/object pairs. We compare OASIS with temporal access mod-
els, team-based models, content-based access control and generalized role-based
access control models. OASIS can meet most of the requirements that these
models address in a conceptually uniform manner through its support for
parametrization and application-defined environmental predicates. The logic-
based approach that we adopt allows a level of static verification. We believe
that such an approach is vital in order to maintain the consistency of policies
within large organizations and across distributed systems.

Bertino et al. proposed a temporal extension to RBAC called Temporal
RBAC (TRBAC) [Bertino et al. 2000] based on their earlier work on temporal
authorization in database systems [Bertino et al. 1996]. TRBAC introduces
periodic activation and deactivation, and role triggers for expressing temporal
dependencies. Periodic activation and deactivation support time-limited au-
thorization. In OASIS, such requirements can be met by using environmental
predicates to test timestamps in authorization and membership rules. There
is no notion equivalent to TRBAC’s role triggers in OASIS. Role triggers in
TRBAC are used to express temporal inter-role dependencies, which enable a
chained combination of activations or deactivations. In OASIS, we support a
more general form of inter-role dependency based on activation and member-
ship conditions. A similar effect to role triggers could be achieved in OASIS
with some additional implementation effort, subject to the proviso that a role
can only be activated within an authenticated session. We believe however

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

534 o J. Bacon et al.

that the OASIS model on its own is sufficiently powerful for most applications,
and such an extension would rarely be needed.

An abstraction of the context of an application can be expressed through the
notion of teams, see the work of Thomas et al. on Team-Based Access Control
(TMAC) [Thomas 1997; Georgiadis et al. 2001]. A team is a group of users in
specific roles, collaboratively working on a common task. Contexts in TMAC
are directly associated with a team, and the privileges that a user has are de-
termined by her current team. This is appropriate if a task that requires collab-
oration is performed repeatedly, so that it makes sense to specify the privileges
of a team that can carry it out, identifying the responsibilities of each individ-
ual member. In TMAC, the privileges that a user possesses are those directly
assigned to her roles, combined with those of her team members using an op-
erator (e.g. union), filtered by some context of the team. It is thus possible for a
user to gain privileges through her teammates beyond those that she needs for
her part in the task. Although this can be prevented by tightening the filtering
context to identify individual team members, this defeats the purpose of RBAC.
In OASIS, privileges are authorized by rules which can test application specific
environmental predicates, and we could handle team membership in this way.
Since activation and authorization rules have a uniform logical structure it
is possible to reason about the propagation of privileges, at least in principle.
In practice, such analysis will succeed only to the extent that environmental
predicates are decidable.

Interesting research that is closely related to OASIS is the work on
content-based access control described in Giuri and Iglio [1997]. They propose
parametrization of roles through the use of role templates. Although their
parametrization technique appears similar to ours, there are a number of
crucial differences. Their work is based on extending privileges to include
parametrized constraints that are evaluated at access time. A role is regarded
as a set of privileges, so the parameters of a role template correspond to those of
its privileges. In OASIS, roles are organizational entities, corresponding to spe-
cific tasks or positions. Parameters of a role are selected because they are likely
to be useful when expressing policy. Indeed, a role may have apparently redun-
dant parameters, not used directly within the issuing domain. Such parameters
might be included to allow for more sophisticated policies in some future re-
lease. In Giuri’s model, the constraints of a privilege are evaluated against the
content of the requested object and the requesting subject only. OASIS, on the
other hand, allows access decisions to be based on a combination of subject
and application-defined environmental predicates, which may include object
attributes, temporal conditions, or any other attributes. Our model is more flex-
ible and expressive than content-based access control, since role activation can
itself be made conditional on environmental predicates. OASIS also supports
the notions of session and appointment which are absent from Giuri’s model.

OASIS is designed to be general and flexible in order to support a wide
variety of active applications, unlike most other contextual access control
models. An exception is Generalized RBAC (GRBAC) [Covington et al. 2000,
2001], which is also generic. GRBAC extends traditional RBAC by introducing
object roles and environment roles in addition to subject roles. An object role

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 535

represents a facet of the requested object, for example, date of creation; an en-
vironment role represents some environmental condition at the time of access.
These roles are activated automatically by the system. We believe that the use
of the term role for these purposes is counterintuitive, and that a view based
on attribute values is more natural. In OASIS, we use the uniform abstraction
of environmental predicate for testing parameters of both of these kinds.

In GRBAC, context is checked only on object access, whereas in OASIS en-
vironmental predicates can be included in role activation rules as well as in
authorization rules. GRBAC is potentially more expensive to implement than
OASIS because a GRBAC system must keep track of all relevant active object
and environment roles using its Role Activation Service. In OASIS, role activa-
tion is potentially conditional on the context, which allows tests to be performed
once per session rather than at each access. OASIS was designed to be scalable
from the start, and only minimal state has to be maintained in our implemen-
tation based on active platforms. The validity of environmental predicates in
membership rules is ensured through active notification, which further reduces
the unnecessary use of resources. We believe that the real test of architectures
such as GRBAC and OASIS will come through implementing substantial appli-
cations in which both policy specification and services are distributed; we have
done our best to ensure that our design will prove both scalable and manageable.

8. RELATING THE IMPLEMENTATION TO THE MODEL

We have worked on OASIS for some time and have presented its architecture,
design and distributed system engineering issues in Hayton et al. [1998], Bacon
et al. [2000, 2001b], Hine et al. [2000], and Bacon and Moody [2002]. Wide
area, multidomain applications are becoming increasingly common, and there
is a need to federate policy as expressed by administrators in cooperating, yet
autonomous domains. A coherent, logical model is essential in order to achieve
this, but a model is useful only if it represents the semantics of the access control
system faithfully. We have developed the model in part because we recognized
that it was important to base the implementation on a clear formal specification,
and we are at present using the model as a reference while creating tools to
manage access control policy.

In systems where confidential data is transferred across networks security
is a crucial requirement; that is, secure communication, authentication, ac-
cess control and audit. A great deal of work has been carried out on some of
these aspects of security and it is possible to build a secure communications in-
frastructure, with authenticated principals, from standard products. We have
integrated RBAC with a public key infrastructure (PKI) [Bacon et al. 2001b].

One of the aims of OASIS that is addressed in the formal model presented
here is to provide active support for context-sensitive access control. Both role
activation and authorization rules can include environmental predicates, which
test aspects of the context in which the rule is validated. In the case of acti-
vation rules, an environmental predicate can be declared a membership condi-
tion, which must continue to hold while the role is active. Requests for service
invocation must satisfy the service’s authorization policy, which will require
the presentation of an appropriate role membership certificate (RMC). At each

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

536 o J. Bacon et al.

invocation, the RMC must be validated by the issuing service, which has to
check in particular that none of the membership conditions has been violated.
Checking these conditions may involve other services, possibly in external do-
mains. To avoid external validation on every invocation, RMCs may be cached by
the authorizing service between invocations. If the certificate becomes invalid,
for example because some membership condition is violated, then the service
that issued the RMC notifies the authorizing service. Distributed systems are
subject to partial failures and partitions. If an external validator cannot be
contacted, or an event channel to it ceases to deliver heartbeats, then the ser-
vice must follow its policy on whether to allow invocations that are affected to
proceed. This policy will reflect the service’s chosen trade-off between paranoia
and the desire to support continuing availability.

Designing an architecture, specifying a model and building an implementa-
tion are only part of the story. The real test of the OASIS system will come when
it can be evaluated in a live application. We are continuing to interact with the
Eastern Region Electronic Health Record Consortium (EREHRC), a group that
includes a number of senior managers in the Eastern Region of the UK National
Health Service. EREHRC is hoping to develop a prototype system for managing
EHRs in the Eastern Region, and we shall experiment with the use of OASIS to
provide access control. It is essential that there are tools to manage, configure
and deploy access control policy so that domain administrators can be sure that
our software enforces their intentions.

We have built an extension to the PostgreSQL Object-Relational Database
Management System that supports active predicates, which we are using both
for environmental predicates and for active policy management. The result of
an environmental predicate that depends on database lookup can be cached
at the authorizing service, which is notified if the predicate becomes false.
Each administrative domain has a policy store that holds metadata describ-
ing the access control structure of each service managed by OASIS: role names,
appointments, privileges, environmental predicates and the sets of rules that
cover both role activation and authorization. We are at present designing the
naming scheme that will bind the entities of the formal model into the runtime
environment.

9. CONCLUSIONS AND FUTURE WORK

OASIS is an access control system for open, interworking services in a dis-
tributed environment. Services may be developed independently, as part of a
loose federation of administrative domains, but service level agreements (SLAs)
allow their secure interoperation. OASIS is closely integrated with an active,
event-based middleware infrastructure. In this way, we continuously monitor
applications within their environment, ensuring that security policy is satisfied
at all times. We therefore address the needs of distributed applications that re-
quire active security. Any formalization must take account of the relationship
between OASIS and the underlying active platform.

In this article, we have formalized the OASIS model. OASIS is role-based:
services name their client roles and enforce policy for role activation and service

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 537

invocation, expressed in terms of their own and other services’ roles. A signed
role membership certificate is returned to the user on successful role activation
and this may be used as a credential for activating other roles, according to
policy.

We do not use role delegation. Instead, we have defined appointment, which
we believe to be both more intuitive and more applicable in practice. Appoint-
ments may be long-lived, such as academic and professional qualifications, or
transient, such as standing in for a colleague who is called away while on duty.
On appointment, the appointee is issued with an appointment certificate that
may be used, together with any other credentials required by policy, to activate
one or more roles.

In addition to role membership certificates and appointment certificates, role
activation rules may include environmental constraints. Examples are user-
independent constraints such as time of day and conditions on user-dependent
parameters. For example, it may be necessary to perform database lookup at a
service to ascertain that the user is a member of some group. Alternatively, a
simple parameter check may ascertain that the user is a specified exception to
a general category who may activate the role.

The membership rule for a role indicates those security predicates for ac-
tivating the role that must remain true while the role is active. Event chan-
nels are set up between services to monitor membership conditions of the rule.
Should any condition become false this triggers an event notification to the
role-issuing service and the role is deactivated for that user session. By this
means, we maintain an active security environment.

OASIS is session based. Starting from initial roles, such as “authenticated,
logged-in user,” a user may activate a number of roles by submitting the cre-
dentials required to satisfy an activation rule. The activated roles therefore
form trees dependent on initial roles. Should any membership condition for
any role become false the dependent subtree is collapsed. If a single initial role
is deactivated (the user logs out), all the active roles collapse and the session
terminates.

Our application domains require parametrization of roles. For example, in
the healthcare domain a patient might specify “all doctors except my uncle
Fred Smith may read my health record”. For a filing system, it is necessary to
indicate individual owners of files as well as groups of users. In this article, we
have extended Yao et al. [2001] with the detailed modelling of role parameters.

In practice, distributed systems comprise many domains; for example, the
healthcare domain comprises hospitals, primary care practices, research insti-
tutes, etc. We will generalize our naming structure to include domains explicitly.
We are working on the management of policy for role activation and service use.
Policy may derive from local and national sources and will change over time.
Policy stores will be managed using OASIS in our active environment. The for-
malization of OASIS will provide a firm basis for requirements such as checking
the consistency of policies.

Formal specification is crucial in order to manage access control policy for
future, large scale, widely distributed, multidomain systems. A formal model
allows policy components established across a number of domains to be checked

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

538 o J. Bacon et al.

for consistency. This is necessary, since, otherwise, policy cannot be deployed by
domains acting autonomously; for example, a government edict might require
changes of policy across heterogeneous healthcare domains. Automation is es-
sential to minimise human error, and it can only be used safely when there is
a formal model. We are experimenting with the use of metapolicies that will
enable SLAs between domains to be developed automatically [Belokosztolszki
and Moody 2002].

A major advantage of a formal model is that it becomes possible to reason
about the relationship between a specified policy and its implementation. If role
activation and authorisation rules are correctly implemented then the speci-
fied policy will be enforced. There are two particular difficulties in verifying
the correctness of an application protected by OASIS: first, OASIS security is
active, and it is necessary to reason about the handling of membership condi-
tions; second, in addition to checks on access control entities, rules can include
environmental predicates, whose evaluation can in principle involve an arbi-
trary computation, with possible side effects on the access control regime itself.
We intend to reason about the state of an application’s access control system
by considering snapshots of state taken between occurrences of role activation
and role deactivation. Explicit deactivation occurs when a role issuing service
is notified that a membership condition no longer holds. If the heartbeat to an
external service responsible for a membership condition is lost, then the issu-
ing service must decide what action to take. Any formal proof of correctness
will be relative both to the properties of the code that evaluates environmental
predicates and to the implementation of the active platform.

ACKNOWLEDGMENTS

We acknowledge the support of the Engineering and Physical Sciences Research
Council (EPSRC) under the grant OASIS Access Control: Implementation and
Evaluation (GR/M75686/01). Members of the Opera research group in the Com-
puter Laboratory made helpful comments on earlier drafts of this article. We
are grateful to Jon Tidswell whose guidance improved [Yao et al. 2001] consider-
ably, and to Trent Jaeger and Ravi Sandhu for many helpful comments during
the preparation of the final version. The ideas that lie behind Definition 5.8
were introduced by John Hine [Hine et al. 2000].

REFERENCES

AnN, G.-J. AND SANDHU, R. S. 2000. Role-based authorization constraints specification. ACM Trans.
Inf Syst. Sec. 3,4 (Nov.), 207-226.

Bacon, J. M., LLoyp, M., AND Moopy, K. 2001a. Translating role-based access control policy within
context. In Policy 2001, Workshop on Policies for Distributed Systems and Networks. Lecture Notes
in Computer Science, vol. 1995. Springer-Verlag, Heidelberg and New York, 107-119.

Bacon, J. M. anp Moopy, K. 2002. Toward open, secure, widely distributed services. Commun.
ACM 45, 6 (June), 49-53.

Bacon, J. M., Moopy, K., Batgs, J., Havron, R. J., Ma, C., McNEmL, A., SEDEL, O., AND SpiTERI, M. D.
2000. Generic support for distributed applications. IEEE Comput. 33, 3 (Mar.), 68-76.

Bacon, J. M., Moopy, K., AND Yao, W. T. M. 2001b. Access control and trust in the use of widely dis-
tributed services. In Middleware 2001. Lecture Notes in Computer Science, vol. 2218. Springer-
Verlag, Heidelberg and New York, 300-315.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Role-Based Access Control for Active Security . 539

Barka, E. anp SanpaU, R. S. 2000a. A role-based delegation model and some extensions. In Pro-
ceedings of the 23rd National Information Systems Security Conference (NISSC 2000) (Baltimore,
Md., Oct. 16-19). See http://csrc.nist.gov/nissc/2000/proceedings/toc.pdf.

Barka, E. AND SanDHU, R. S. 2000b. Framework for role-based delegation models. In Proceedings
of the 16th Annual Computer Security Applications Conference (ACSAC 2000) (New Orleans, La.
Dec. 11-15). IEEE Computer Society Press, Los Alamitos, Calif,, 168-177.

BrLokoszroLszki, A. AND Moopy, K. 2002. Meta-policies for distributed role-based access control
systems. In Proceedings of the 3rd International Workshop on Policies for Distributed Systems and
Networks (Policy 2002) (Monterey, Calif., June 5-7). IEEE Computer Society Press, Los Alamitos,
Calif,, 106-115.

Bertivo, E., BETTINI, C., FERRARI, E., AND SAMARATI, P. 1996. A temporal access control mechanism
for database systems. IEEE Trans. Knowl. Eng. 8, 1 (Feb.), 67-80.

Bertivo, E., BonarTi, P. A., aND FERRARI, E. 2000. TRBAC: A temporal role-based access control
model. In Proceedings of the 5th ACM Workshop on Role-Based Access Control (RBAC’00) (Berlin,
Germany, July 26-27). ACM, New York, 21-30.

BerTiNO, E., FERRARI, E., AND ATLURI, V. 1997. A flexible model for the specification and en-
forcement of role-based authorizations in workflow management systems. In Proceedings of the
2nd ACM Workshop on Role-Based Access Control (RBAC ‘97) (Fairfax, Va., Nov. 6-7). ACM,
New York, 1-12.

Biron, P. AND MALHOTRA, A. 2001. XML schema part 2: Datatypes. World Wide Web Consortium
(W3C) recommendation 02 May 2001. Available at http:/www.w3.org/TR/xmlschema-2/.

Box, D., EHNEBUSKE, D., Kakivava, G., LaymaN, A., MENDELSOHN, N., NiELsEN, H. F., THATTE, S., AND
WIiNER, D. 2000. Simple Object Access Protocol (SOAP) 1.1. World Wide Web Consortium (W3C)
note 08 May 2000. Available at http://www.w3.org/TR/SOAP/.

CovingTon, M. J., Long, W., SriNtvasan, S., Dey, A., Aramap, M., anp ABowp, G. 2001. Securing
context-aware applications using environment roles. In Proceedings of the 6th ACM Symposium
on Access Control Models and Technologies (SACMAT 2001) (Chantilly, Va., May 3-4). ACM,
New York, 10-20.

CovingTon, M. J., Mover, M. J., AND AHAMAD, M. 2000. Generalized role-based access control for
securing future applications. In Proceedings of the 23rd National Information Systems Security
Conference. (NISSC 2000) (Baltimore, Md., Oct. 16-19). See http://csrc.nist.gov/nissc/2000/
proceedings/toc.pdf.

Crispo, B. 1998. Delegation of responsibility. In Proceedings of the 6th International Security
Protocols Workshop (Cambridge, UK, Apr. 15-17). Lecture Notes in Computer Science, vol. 1550.
Springer-Verlag, Heidelberg and New York, 118-130.

FERrrAIOLO, D. F., BARKLEY, J. F., AND Kunn, D. R. 1999. A role-based access control model and
reference implementation within a corporate intranet. ACM Trans. Inf. Syst. Sec. 2, 1 (Feb.),
34-64.

GEORGIADIS, C., MavriDIS, 1., PANGALOS, G., AND THOMAS, R. K. 2001. Flexible team-based access
control using contexts. In Proceedings of the 6th ACM Symposium on Access Control Models and
Technologies (SACMAT 2001) (Chantilly, Va., May 3—4). ACM, New York, 21-30.

Grurt, L. anD Icruio, P. 1997. Role templates for content-based access control. In Proceedings of
the 2nd ACM Workshop on Role-Based Access Control (RBAC ‘97) (Fairfax, Va., Nov. 6-7). ACM,
New York, 153-159.

GLIGOR, V. D., GAVRILA, S., AND FERrRAIOLO, D. 1998. On the formal definition of separation of duty
policies and their composition. In Proceedings of 1998 IEEE Symposium on Security and Privacy
(Oakland, Calif., May 3-6). IEEE Computer Society Press, Los Alamitos, Calif., 172-183.

Gong, L. 1989. A secure identity-based capability system. In Proceedings of 1989 IEEE Sympo-
stum on Security and Privacy (Oakland, Calif., May). IEEE Computer Society Press, Los Alamitos,
Calif., 56-63.

Havron, R. J., Bacon, J., anpD Moopy, K. 1998. OASIS: Access control in an open, distributed
environment. In Proceedings of 1998 IEEE Symposium on Security and Privacy (Oakland, Calif,,
May 3-6). IEEE Computer Society Press, Los Alamitos, Calif., 3-14.

Hing, J. H., Yao, W. T. M., Bacon, J. M., aND Moopy, K. 2000. An architecture for distributed OASIS
services. In Middleware 2000 (Palisades, N.Y., Apr. 4-8). Lecture Notes in Computer Science, vol.
1795. Springer-Verlag, Heidelberg and New York, 104—-120.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

540 o J. Bacon et al.

JarcEr, T. 1999. On the increasing importance of constraints. In Proceedings of the 4th
ACM Workshop on Role-Based Access Control (RBAC ‘99) (Fairfax Va., Oct. 28-29). ACM,
New York, 33-42.

KanpaLA, S. AND SanDHU, R. S, 2002. Secure role-based workflow models. In Proceedings of the
15th IFIP WG 11.3 Working Conference on Database Security (Database and Application Security
XV: Status and Prospects) (Niagara on the Lake, Canada, July 15-18, 2001). Kluwer Academic
Publishers, Dordrecht, The Netherlands, 45-58.

Kunn, D. R. 1997. Mutual exclusion of roles as a means of implementing separation of duty in
role-based access control systems. In Proceedings of the 2nd ACM Workshop on Role-Based Access
Conirol (RBAC ‘97) (Fairfax, Va., Nov. 6-7). ACM, New York, 23-30.

Monuian, B. 2000. PostgreSQL: Introduction and Concepts, ISBN: 0-201-70331-9. Addison-
Wesley, Boston, Mass.

NvancHAMA, M. AND OsBORN, S. 1995. Access rights administration in role-based security systems.
In Proceedings of the 8th IFIP WG 11.3 Working Conference on Database Security (Database
Security VIII: Status and Prospects) (Bad Salzdetfurth, Germany, August 23—26). North-Holland
(Elsevier), Amsterdam, The Netherlands, 37-56.

NvancHAMA, M. AND OsBoORN, S. 1999. The role graph model and conflict of interest. ACM Trans.
Inf. Syst. Sec. 2, 1 (Feb.), 3-33.

Om, S. aAND SanpHU, R. S. 2002. A model for role administration using organization structure. In
Proceedings of the 7th ACM Symposium on Access Control Models and Technologies (SACMAT
2002) (Monterey, Calif., June 3—4). ACM, New York, 155-162.

SALTZER, J. H. AND SCHROEDER, M. D. 1975. The protection of information in computer systems.
Proc. IEEE 63, 9 (Sept.), 1278-1308.

SanpHU, R. S., BHAMIDIPATI, V., AND MUNAWER, Q. 1999. The ARBAC97 model for role-based ad-
ministration of roles. ACM Trans. Inf. Syst. Sec. 2, 1 (Feb.), 105-135.

SanpHU, R. S., CovnE, E. J., FEINsTEIN, H. L., AND YouMaN, C. E. 1996. Role-based access control
models. IEEE Comput. 29, 2 (Feb.), 38—47.

Smvon, R. T. aND Zurko, M. E. 1997. Separation of duty in role-based environments. In Proceedings
of the 10th IEEE Workshop on Computer Security Foundations (Rockport, Mass., June 10-12).
IEEE Computer Society Press, Los Alamitos, Calif., 183—-194.

TroMmas, R. K. 1997. Team-based access control (TMAC): A primitive for applying role-based
access controls in collaborative environments. In Proceedings of the 2nd ACM Workshop on Role-
Based Access Control (RBAC ‘97) (Fairfax, Va., Nov. 6-7). ACM, New York, 13-19.

Tromas, R. K. AND SanDHU, R. S. 1997. Task-based authorization controls (TBAC): A family of
models for active and enterprise-oriented authorization management. In Proceedings of the 11th
IFIP WG 11.3 Workshop on Database Security (Database Security XI: Status and Prospects) (Lake
Tahoe, Calif., Aug. 10-13). Chapman and Hall, 166-181.

TraoMpsoN, H. S., BEecH, D., MALONEY, M., AND MENDELSOHN, N. 2001. XML Schema Part 1:
Structures. World Wide Web Consortium (W3C) recommendation 02 May 2001. Available at
http://www.w3.org/TR/xmlschema-1/.

Wang, W. 1999. Team-and-role-based organizational context and access control for cooperative
hypermedia environments. In Proceedings of the 10th ACM Conference on Hypertext and Hyper-
media (Hypertext’99). ACM, New York, 37-46.

Yao, W. T. M., Moopy, K., aND Bacon, J. M. 2001. A model of OASIS role-based access control
and its support for active security. In Proceedings of the 6th ACM Symposium on Access Control
Models and Technologies (SACMAT 2001) (Chantilly, Va., May 3-4). ACM, New York, 171-181.

Received October 2001; revised January 2002, February 2002, July 2002; accepted July 2002

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

