
Context Sensitivity in Role-based Access Control

Arun Kumar; Neeran Karnik, Girish Chafle
IBM India Research Laboratory,

Block 1, Indian Institute of Technology,
Hauz Khas, New Delhi-ll0016, India.

Abstract

This paper describes an extended role-based access control (RBAC) model, which makes
RBAC sensitive to the context of an attempted operation. Traditional RBAC does not
specify whether the permissions associated with a role enable access to a particular object,
or to some subset of objects belonging to a class. We extend the model by introducing the
notions of role context and context filters. Context filters are Boolean expressions based on
the context of the user attempting the operation, as well as the context of the object upon
which the operation is attempted. By supplying context filters during the definition of a
role, a security administrator can easily limit the applicability of users' role memberships to
particular subsets of the target objects. We also describe our implementation of the model
in a web-services platform, to illustrate how this technique is particularly valuable when the
data is hierarchically structured.

1 I n t r o d u c t i o n

Role-based access control (RBAC) [SCFY96] is a popular methodology for specifying and apply-
ing authorization policies, to govern access to sensitive data. In RBAC, a security adminis t rator
assigns users to roles (see Figure 1). A role usually corresponds to an organizational function
(e.g. Team Leader, Manager, Auditor), and is assigned the appropriate set of permissions by
the security administrator. A permission can be thought of as the authori ty to perform an oper-
ation on one of the objects in the system. When a user a t tempts to perform some operation on
a target object, the access control system intercepts this a t tempt and only allows it to proceed
provided that the user is a member of some role that includes the necessary permission for that
operation. The main benefits of RBAC are the ease of administrat ion (permission assignment
and revocation) of the security policy, and its scalability [SCFY96, SFK00].

However, the RBAC model does not specify whether the permission is applicable to a par-
ticular target object 1 or to all instances of a class of objects [Tho01]. This is usually left to the
application to decide, and enforce. In most practical systems, the number of objects requiring
access control is huge, making it impractical to define permissions for accessing each of them.
The alternative therefore is to define permissions in terms of operations on classes of objects.

*All correspondence should be addressed to this author at kkaxun~in.ibm.com
1We use the terms instance and object interchangeably hereafter.

53

Figure 1: The basic Role Based Access Control model

For example, a permission may correspond to the read operation on the S t u d e n t T r a n s c r i p t

class.

However, some ambiguity still remains, regarding which instances of the class are made
accessible to a user by a permission. The user may be given the authority to assume a role
while interacting with the system, but in general, his role membership provides the associated
permissions only over a subset of the objects of a class. For example, a Student role has per-
mission to read a transcript, but implicitly, only his/her own. The Principal of the school also
has the same permission, but implicitly, over all students' transcripts, whereas a Teacher only
has access to some transcripts - those of his/her own students.

An implementation of RBAC needs to enforce these implicit subset constraints in some
application-specific manner. Various mechanisms have been used for this purpose, which we
shall describe in Section 2. Our goal however, is to extend the RBAC model with a single con-
struct that is powerful enough to encompass these disparate mechanisms. This would have the
benefit of providing a standard mechanism that is not application-specific, and allowing a clean
separation of access control code from the application logic. We start by categorizing earlier
approaches to this problem in Section 2, and then describe a typical web-services environment
that motivated this work, showing how plain vanilla RBAC is insufficient in that scenario. We
then describe our model - context-sensitive R B A C - in Section 3, and briefly describe how we
implemented it for our web-services system. A review of the related work follows, and finally
we present some conclusions.

2 B a c k g r o u n d

2.1 Earlier approaches

The problem of limiting a user's access to a subset of objects has been tackled previously in
various ways, which can be broadly categorized into the following:

• E n u m e r a t i o n involves a manual (and often static) specification of the subset of instances.
In the student transcripts example, for each member of the Teacher role, the access control
system may maintain a list of students in her class. The model described in [GMPT97]
maintains a list of valid values for each of the security-relevant properties of the object
classes in the system. These lists are effectively used to restrict the set of instances
over which the user's permissions apply. Barkley et al. [BBU99] introduce the notion of
relationships to determine whether a user's role-permissions hold good for a particular
instance. However, this information is maintained by each instance as a list of authorized

54

users. Such lists are unwieldy, especially in large organizations, where there may be
thousands of users and object instances. The implementat ion is also inefficient because
these large lists have to be stored and searched frequently. This approach therefore, does
not scale well.

O b j e c t g r o u p i n g involves creating groups of instances of the same class. A role-member
acquires the associated permissions only for a specific set of such groups. This is more
efficient and scalable than enumeration, since a list of groups is maintained rather than
a list of individual instances. The criteria for including an instance in a group may be
arbitrary, and the grouping is usually done manually, or outside the scope of the access
control system. For example, on a Windows machine, a user places some files in a shared
folder - - corresponding to placing instances in a group - - and gives certain roles access to
the folder. This is easier than setting up an access control list for each shared file. Groups
of objects may also be specified using wildcards, so that the membership of the groups
is determined at runtime. The Generalized RBAC[MA01] model employs object roles

that are basically groups of instances computed algorithmically on the basis of certain
security-related properties of the objects. Similarly, domains are defined in [YLS96] as
groups of objects over which a security policy applies, and roles are used for specifying
these policies.

C o n s t r a i n t s are conditions that an object must satisfy in order that the user's a t tempt
to perform an operation succeeds. These conditions involve security-relevant parameters
of the at tempted operation. This may include ixfformation gleaned from environment
(such as the t ime of day, or whether it's a holiday), or state contained in the target object
itself (e.g. a bank account's owner, its overdrawn status, etc.). These constraints are
distinct from those defined in the base RBAC model itself [SCFY96], which constrain role
definitions in order to avoid conflicting roles, promote separation of duties, etc. Systems
such as [MA01, CLS+01] allow constraints, in the form of environment roles, that are
purely dependent on external properties rather than the properties of the objects or
subjects involved in the operation. The Role Object Model in [LS97] defines a role as
a set of policies. Constraints involving properties of the objects are used to limit the
applicability of those policies over object instances.

We now illustrate with the help of a real-life example, the need for a unifying mechanism
that should be incorporated in the access control model itself, thereby relieving the application
from the burden of implementing it in some non-standard way.

2.2 A Motivating Example

Consider a service delivery platform - - an infrastructure for offering access to software in the
form of services delivered across the Internet, on a pay-per-use basis. An organization must
first register with the service provider (SP), thus becoming a cus tomer of the SP. A customer
can sign up for one or more of the services offered by the SP. Each such sign-up results in the
creation of a service instance - a virtual copy of the service, dedicated to that customer. Each
customer has its own users who may log in and use these service instances. The SP maintains
a configuration database that includes such information as customer details, a list of the users,

55

their individual profiles, configuration parameters for various service instances, etc. The service
delivery platform allows customers to administer their own details - e.g., creation of user pro-
files, configuration of service instances, etc. Therefore, an access control mechanism is needed
to ensure that only authorized users can perform such administrative operations.

Each customer has (at least) one privileged user - a C u s t o m e r A d m i n i s t r a t o r - wi th
overall authori ty over the customer's data. The customer administrator may designate some
users as U s e r A d m i n i s t r a t o r s . They have the author i ty to create, modify or delete user
profiles for that customer. Similarly, Se rv i ce A d m i n i s t r a t o r s may be designated, wi th the
authori ty to sign up for new services, configure existing ones, etc. A service adminis t ra tor
may designate a user as the administrator of one or more service instances. Such an I n s t a n c e
A d m i n i s t r a t o r can control and configure only those specific service instances.

In addition to these types of administrators, the SP may have one or more P l a t f o r m A d -
m i n i s t r a t o r s with superuser-like privileges, including the ability to edit customer profiles,
make new services available via the platform, etc. The SP may also have H e l p D e s k P e r s o n -
nel, who only have enough authori ty to enable them to assist customers in using the offered
services. For example, they may be allowed to reset passwords for certain customers' users, but
not to create new user profiles.

These categories of administrative users have well-defined permissions over specific classes
of objects in the SP database. They can therefore be natural ly modelled as roles in an I:tBAC
system. Roles may be simulated by maintaining groups of users, using programming constructs
such as arrays, sets, etc. In the service delivery platform however, it is not adequate to create
one group of say, User Administrators (UA). This is because a UA must only be allowed to
create or modify profiles for users belonging to the same customer as the UA himself. Therefore,
one such group of UAs is created for each customer, as shown in Figure 2. The application must
include the access control logic to ensure that the user a t tempt ing a c r e a t e - u s e r operat ion
belongs to the appropriate UA group. Object grouping is used implicitly here - all user profiles
of a customer consti tute one object group. A particular member of the UA group then has
access to the group of user profiles of that customer.

A more complex scenario arises when a user a t tempts to configure a service instance. In-
stance Administrators have this authority, but only for a specific subset of a customer 's service
instances. Therefore, the system needs to maintain one group of Instance Administrators per
service instance (e.g. the S ladmins group in Figure 2), and add the user to all such groups for
which he is authorized. When the operation is a t tempted, the application must ensure tha t the
user belongs to the same customer that owns the service instance, and further is an Instance
Administrator of that service instance. This creates two problems:

• the proliferation of such groups of users to represent roles, which affects manageabil i ty
(permission assignment, revocation and checking), and

• the embedding of access control logic in the application code.

This arises because of the limitation of I:tBAC identified in the previous section - the need

56

B,,-,customer=Customerl
E±]....ou=users

F.--user=userl
~-.-..-user=User2

fEI.,.,ou=groups
~,,,,ou=admingroups

i,--,-,cn= CUSTOME R ~.DMINS
i-.--.-c n= US ER_.ADMIN £
i,.,,-,cn= £E RVlC E.~.D MIN£
...... cn=USERS

~..-,ou=sen/icegroups
i-,,,,-cn=S1 users
L...cn=S1 admins

....... ou=usergroups
El....ou=sen,4ces

[~...sewice=S1
E~..,,ou=settings
EF,,ou=stats

[.~l.,.,c usto me m- C u stomer2
~,,.,custorner=Oustomer3

Figure 2: Customer data in the Service Delivery Platform

to identify a subset of instances to which a role membership applies. We now introduce an
extended RBAC model that addresses these problems.

3 The Context-sensit ive R B A C Model (CS-RBAC)

The previous section highlighted the need for support in the access control model to capture
additional information about target objects. We now propose a unifying RBAC model, which
not only captures such context information about target objects, but also does the same for
users. This provides a comprehensive context to each operation, using which the access control
system decides whether a role's permissions are valid for a given user-object pair.

In Context-sensitive RBAC (see Figure 3), we define a permission as the authority to per-
form a specific operation on a class of objects. In object-oriented systems, this corresponds
to a method defined on a class. A role is then defined as a collection of such permissions. A
user may be granted membership of a role, but the role membership is only valid within a
certain context. This role context is a new construct that limits the applicability of the role's
permissions to a subset of the instances. The advantage of this approach is that the role context
can be specified by the system administrator at the time of role creation, and remains valid
unless the role definition itself changes (a rare occurrence). Nevertheless, the decision whether

57

User Context i : Role Context : ', Object Context
l u g n u l u u u l . N n l u l U U l u l l n i l l l l ~ I n l l . U l l l n u w l . . . l l l

Figure 3: The Context-Sensitive RBAC Model

to allow/disallow an operation is made at runtime, based upon the current context at tha t time.

In order to define a role context, we first define two other forms of context. A user context
captures all security-relevant information about a particular user. In our service delivery plat-
form example, the user context includes the identity of the customer to which the user belongs.
More generally, it may describe the organizational hierarchy under which the user exists. In
similar fashion, the object context captures security-relevant information about the target ob-
ject. For example, the context of a S e r v i c e I n s t a n c e object in our platform has at t r ibutes
such as the identity of the customer that owns the service instance, the type of service, etc.

A role context can then be composed from user and object contexts by specifying a Boolean
constraint expression, which we call a context filter. The operands in this expression are the
attr ibutes available in the user and object contexts, while the operators include the s tandard
comparison 2 and logical 3 operators. In general, the at tr ibutes that consti tute the user and
object contexts are application-dependent. Therefore, we give the application developer the
flexibility to define any security-relevant at tr ibutes in these contexts. For example, it may
include an expiry da te / t ime in order to enforce a l imited-duration authorization of the user
account. A subset of these at tr ibutes can then be used in composing the context filter for a
role. The same filter is applicable to all users in that role. [The interested reader may refer to
Appendix A for a formal t reatment of the CS-RBAC model].

RBAC has traditionally been proposed as the appropriate model for large organizations,
because role hierarchies map natural ly onto the organizational hierarchy of the users in such
organizations. The CS-RBAC model inherits this benefit from RBAC, and is part icularly useful
in scenarios where the target objects are similarly hierarchically organized. Objects may have
hierarchical containment or ownership relationships amongst themselves. These can be easily
captured within the object context in CS-RBAC and used in the context filter for controlling
access. The filtering can be done by matching such at t r ibutes against specific values, or against
at tr ibutes in the user context that draw values from the same domain.

For example, in the service delivery platform, the application semantics demand that a
User Administrator only have access to user profiles belonging to the same customer as the
UA himself. The object context of a user profile includes an o~merId at t r ibute that identifies
the customer in the hierarchy to which the object belongs. The filter expression can compare
this o~raerId with the corresponding at t r ibute in the user domain - c u s t I d - in order to limit

2Comparison operators include =, ! =, <, >, <=, >=
3Logical operators are the Boolean AND, OR and NOT

58

ame J

User Context
Value

value

T
User Context

Variable
name

~ Role Member ~ Role J Permission ~ Object Class
I rolename ,~ perm id classname

filter / operation

t Object
objectid

LEGEND:

Object Context
A ~ B one-many relationship between A and B Value

one-many relationship between A and B, va ue
A , I ~ B a~so B is identified by A

Object Contexl
Variable

name

Figure 4: A da ta model for implementing CS-RBAC

a specific UA's access. However, a user in the HelpDesk role needs to perform the same task
for users belonging to several customers. This could be implemented by providing an a t t r ibute
in the user context that enumerates these customers. The context filter can then compare the
ownerId of the object with each of the customers listed in the user context.

This context-sensitivity has the benefit of simplifying access control policy. The context
filters can be easily replaced in a running system when the policy needs to be changed, and the
change takes effect immediately. Further, the use of object groups or enumerations is limited
in scope, to sub-trees in the object hierarchy - thus improving the scalability of the system as
well.

4 Enforcement of C S - R B A C

We now describe how an access control subsystem can enforce the model described in Section 3.
Figure 4 shows a schema for the access control da ta that needs to be maintained. The basic
entities in the model are the User, Role and Permission. A Permission is defined as an opera-
tion on an ObjectClass, and a Role is then defined as a collection of Permission entities. The
Role also contains the context filter expression. When a security administrator assigns a user
to a role, a corresponding RoleMember entity is created. The user and object contexts are
stored in the form of name-value pairs. The names of these context variables are determined

59

by the application and used in defining the filter. The values are supplied to the access con-
trol subsystem at runtime, when it is invoked to check an attempted operation. This access
control check is modelled as a function call (see Figure 5). The application passes the name
of the attempted operation, the caller and the target object to this function, and receives a
Boolean value in return - indicating whether the attempted operation should be allowed, or not.

f u n c t i o n allow0p (ope ra t i on , c a l l e r , t a r g e t _ o b j e c t)
begin
- P = p e r m r e q d (ope ra t ion)

- RP = roles_with(P)

- RU = roles(caller)

- R = intersection(RP,RU)

- allowFlag = false

- For each role r in R

: boolean

// the permission required for

// the attempted operation

// set of roles that have

// permission P

// set of caller~s active roles

o U C = u s e r _ c o n t e x t (c a l l e r)
o 0C = o b j e c t _ c o n t e x t (t a r g e t _ o b j e c t)
o Evaluate CF(r, UC, 0C) / / CF i s the con tex t f i l t e r
o i f r e s u l t = t r u e

begin

allowFlag = true

exit the loop

end

- return allowFlag

end

Figure 5: Algorithm for enforcing CS-RBAC

The access control system first identifies the user's role memberships that permit the at-
tempted operation. For each such role, the corresponding role context is populated by plugging
in values from the calling user's and target object's contexts, and its context filter is evaluated.
If any of the filters evaluates to t rue , the operation is allowed to proceed.

The expression language used for defining context filters includes two keywords - 0bj ec tContex t
and UserContext. A variable in the object context would be represented in the filter as
0b jec tCon tex t . < n a m e > . The expression language should include the usual comparison and
logical operators, as well as any others that the implementation of CS-RBAC may choose to de-
fine. The Evaluate CF() function referred to in Figure 5 incorporates an expression evaluator
for this language.

50

5 An Implementat ion of C S - R B A C

We implemented the CS-RBAC model in the web-services scenario discussed in Section 2.2.
CS-RBAC is used to control access to the customer database - an LDAP 4 [WHK95] directory.
The implementation setup is shown in Figure 6. The service delivery platform is accessed by
users of various customers via a web interface, written using JSPs and servlets running on a
Tomcat web server. These web operations are then translated into SOAP 5 [BEK+00] calls on
the administrative server. The administrator server validates each SOAP call using the access

controller object, before performing the appropriate operations on the customer database. The
access controller maintains an A CL database that stores access control information using a
schema similar to that shown in Figure 4.

I Browser I
.

i Wo ,n,o, co 1 Platform

SOAP

I Administrative J.~,l~l Access I
server Control ler

llmlmmmmilmlmmimmmlmlmlmmlmmlmmmmmmllmlmmmmlil~Imll

Figure 6: The implementation setup

We now describe how CS-RBAC was implemented, using an example from this web-services
scenario. Consider the Service Administrator role defined in Section 2.2, which enables a user
to sign up for new services and perform configuration-related operations on service instances.
The permissions for this role are defined in terms of operations such as c r e a t e () , d e l e t e ()
and setUserLimit () on the ServiceInstance class.

The user and object contexts supplied by the application are implemented as Hashtables,
containing name-value pairs. The user context includes cusl;Id - the name of the customer to
which the user belongs. The object context for the service instance object contains ownerld

4Lightweight Directory Access Protocol
5Simple Object Access Protocol

61

- the customer that owns the service instance. Thus, we can specify the context filter for the
Service Administrator role using this simple expression:

ObjectContext.ownerId = UserContext.custld

When the user logs on through the web interface, the system determines her set of roles.
Assume that the user invokes the d e l e t e () operation on a service instance object. The appli-
cation then populates the user and object contexts with values corresponding to the variable
names defined above, and invokes the access controller. The access controller executes the al-
gori thm shown in Figure 5, and determines whether the operation should be allowed. If the
algorithm returns t r u e , the service instance is deleted. Otherwise, an error message indicating
authorization failure is displayed.

6 Related Work

Context sensitivity has been explored for workftow and collaborative tasks in [CBE00] [Wan99],
where c o n t e x t refers to the state of the workflow or task. In this section, we only consider
related work that aims to restrict the applicability of roles over object instances.

The model proposed in [GMPT97] is intended to provide RBAC based permission assign-
ment on object types at an enterprise level, and yet be able to activate and control permissions
on individual users and object instances at a later time. However, the notion of a t e a m - which
is a set of users in various roles needed for a task - is the central and governing concept in the
system. Their user context and object context are also defined for a team rather than a role.
A team context, expressed in terms of ranges of values for certain security-relevant at tr ibutes,
is used to restrict the object instances over which the permissions of a user apply. However,
the valid ranges of values are maintained as lists, which essentially is enumerat ion and does not

scale up.

Barkley et al. [BBU99] use the concept of relationships to identify whether a user U having
a role It, that applies over a part icular object type O, has an active relation with the instance
of O under consideration. The requested operation is allowed only if the set of active relations
between U and O contain the one required by the access control policy. However, their imple-
mentat ion also uses enumerat ion as the means to capture the relationship information.

The Policy based role object model presented in [LS97] defines a Role as a set of policies,
where each policy represents an obligation or an authorization of a user over an object. Objects
may belong to d o m a i n s , which are groups formed for the purpose of management, configuration
etc. These domains appear to be statically defined, as they are not programmatically computed
at runtime. Constraints are used to restrict the applicability of the policies in a role, to a subset
of objects in a domain. The users are not grouped and are not captured in the constraints.
Therefore, the model fails to satisfy the requirements of the scenario described in Section 2.2.
For example, the access control system cannot check tha t a user requesting a c r e a t e - u s e r

operation is a UA of a specific customer. Each constraint applies to a single permission ra ther
than a whole object. While this permits fine-grained control, it makes for a large and unwieldy

52

access control policy overall.

The Generalized RBAC model [MA01] introduces the notion of Object roles, Subject Roles
and Environment Roles. Subject roles are traditional RBAC roles for users whereas object
roles are basically groups of object instances computed algorithmically on the basis of certain
security-related properties of the objects. Environment roles capture access-control relevant
information from the environment, such as time of day, system load etc. The use of t ransduc-

ers [GJSTgl] is suggested to algorithmically compute the properties of an object. This enables
automatic assignment of membership to object roles instead of having to do it manually. How-
ever, this technique only allows physical and temporal properties of an artifact (such as a file
on disk) representing the real life entity to be captured, not the security-relevant properties
contained by the entity itself. The automatic computation of properties does not address our
requirements, which need the automatic computation of target objects based on their prop-
erties. The alternative is to define the object roles manually, resulting in loss of scalability.
Furthermore, the model supports separate policies for users and objects. This leads to poten-
tial conflicts, and requires extra support that adds overhead.

The environmental context, as in GRBAC above, can be captured in our model through
additional variables supplied by the application via object context or user context. The role
context itself could be easily extended to include an environment context. Alternatively, key-
words could be added to the filter language to allow environmental variables to become part
of the filter expression. Since obtaining the values of these environmental variables would be
platform-specific and is not the function of the access control subsystem, the onus of supply-
ing their values lies on the application. We opted not to incorporate a separate environment
context, in order to maintain the simplicity of the model.

7 Conclus ions

We have proposed CS-RBAC - - a unifying model that extends RBAC to make it sensitive to
the contexts of both the user and the target object. This addresses the ambiguity in RBAC of
identifying the subset of objects of a particular type, to which a permission should apply. In
doing so, it encompasses implementation-dependent techniques such as enumeration and object
grouping used in earlier efforts. In addition, it enables the filtering of access based upon the
context of the user as well. This allows us to easily capture users' organizational hierarchy and
objects' ownership hierarchy, as illustrated using the example of a service provider's database.
The resultant access control policies are flexible, since context filters can be easily replaced in
a running system. By extending the language used to define context filters, we can incorporate
environmental information into the decision-making process as well.

An effort has been initiated recently to standardize various aspects of Role Based Access
Control [SFK00]. The authors observe that the standardization of permissions is beyond the
scope of a general purpose access control model. Providing support for context-sensitivity in
the standard model, as proposed in this paper, would strengthen the expressiveness of RBAC
policies.

63

In future, we plan to demonstrate the power of context sensitivity in RBAC for the ad-
ministration of roles themselves. As noted in [SCFY96], RBAC can be used to manage RBAC
itself. We believe that the scoping of authority of administrative roles can be easily captured
using the proposed model.

Acknowledgements
We thank B. Nagender Reddy and Matulya Bansal of the Indian Institute of Technology,

Guwahati, for their role in the initial stages of this work. We also extend our thanks to Ruby
Arora of IBM India Research Lab., for her valuable help in implementing the model.

References

[BBU99] J. Barkley, K. Beznosov, and J. Uppal. Supporting RelationsMps in Access Control
Using Role Based Access Control. In Proceedings of the fourth A CM workshop on
Role-based access control, October 1999.

[BEK+00]

[CBE00]

Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Nielsen, Satish Thatte, and Dave Winer. Simple Object Access Protocol
(SOAP) 1.1. http://www.w3.org/TR/SOAP, May 2000.

D. G. Cholewka, R. H. Botha, and J. H. P. Eloff. A Context Sensitive Access
Control Model and Prototype Implementation. In Proceedings of the IFIP TCll
15th International Conference on Information Security, Beijing, China (2000), pp.
3~1-350., 2000.

[CLS+01] M. J. Covington, W. Long, S. Srinivasan, A. K. Dey, M. Ahamad, and G. D. Abowd.
Securing Context-Aware Application Using Environment Roles. In Proceedings of
SACMAT, May 2001.

[GJST91] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W.O. Toole. Se-
mantic file systems. In Proceedings of A CM SIGOPS Symposium on Operating
Systems Principles, October 1991.

[GMPT97]

[LS97]

C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K. Thomas. Flexible Team-
Based Access Control Using Contexts. In Proceedings of ACM RBAC97, 1997.

Emil Lupu and Morris Sloman. Policy Based Role Object Model. In Proceedings
of the Enterprise Distributed Objects Conference, October 1997.

[MA01] M. J. Moyer and Mustaque Ahamad. Generalized Role Based Access Control.
In Proceedings of the International Conference on Distributed Computing Systems,
October 2001.

[SCFY96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role Based Access
Control Models. In IEEE Computer, Volume 29, Number 2, pages 38-47, February
1996.

64

[SFK00]

[Tho011

[Wan99]

[WHK95]

[YLS96]

R. Sandhu, D. Ferraiolo, and R. Kuhm The NIST Model for Role-Based Access
Control: Towards A Unified Standard. In Proceedings of the fifth A CM workshop
on role-based access control on Role-based access control, July 2000.

R. K. Thomas. Team-Based Access Control: A primitive for applying role-based
access controls in collaborative environments. In Proceedings of SACMAT, May
2001.

Weigang Wang. Team-and-Role-Based Organizational Context and Access Control
for Cooperative Hypermedia Environments. Proceedings of ACM HyperText'99,
February 1999.

W.Yeong, T. Howes, and S. Kille. Lightweight Directory Access Protocol.
http://www.ietf.org/rfc/rfc1777.txt, March 1995.

N. Yialelis, E. Lupu, and M. Sloman. Role-based Security for Distributed Ob-
ject Systems. In Proceedings off the IEEE fifth Workshop on Enabling Technology:
Infrastructure for Collaborative Enterprises, WET ICE, June 1996.

65

A A formal model for C S - R B A C

A formal definition of context-sensitive RBAC model is presented below :
R = set of roles defined in the system
U = set of users (subjects) of the system
C = set of classes of objects (targets) in the system
M = set of methods /opera t ions on the object classes in C
O = set of all object instances
Oz = set of instances/objects of class Z

P C M x C, i.e. { (m,c) I m E M, c E C, m E methods(c) }, is the set of permissions
PA C P x It, the many- to-many permission-to-role assignment relation
UA C U x R, the many- to-many user-to-role assignment relation
UC = the set of all security-relevant a t t r ibutes of the user,
i.e. the user context
OC = the set of all security-relevant a t t r ibutes of all target object classes
OCz = the set of all security-relevant a t t r ibutes of target object class Z,
i.e. the object context

Contextual Constraint CC: U { 2UCx2OCL } ~ 2 U x ° , is a function, for a role, mapp ing a
LEG

pair of user context and object context to a set of individual (user, object) pairs

Role Context t hen is defined as R C = <UC, OC, C F > , a three-tuple consisting of the user-
context, the object-context and Context Filter, where

Context Filter CF: U x O --~ {0,1}, is a function, tha t re turns true if, for a role, the given (user,
object) pair belongs to the set of (user, object) pairs allowed by the contextual constraint CC
of that role.

i . e . , V u E U , o E O,

C F (u , o) = 1, if (u,o) e CC(uc,oc) where { ucluc = UC(u)} A { ocloc = OC(o)}

= 0, otherwise

A Context-Sensitive Permission S is, therefore, defined over U x P x O as
{(u, p, o) 13 r E roles(u) such tha t (p, r) E PA A CF(u, o) = t rue A u e U A o e O A p =
{(m,c) I m = m e t h o d (c) and c=class(o)} }

66

