
COMMUNICATIONS OF THE ACM June 2002/Vol. 45, No. 6 59

The public is aware of computer network-
ing because of the Internet-based Web and
the multitude of services provided via
Web browsers, irrespective of national

boundaries. This awareness profoundly influences
everyone’s expectations, including those of officials
who set policy on behalf of public institutions and
businesses. They assume that the
process of designing and deploying
large-scale, network-based distributed
systems is straightforward. But many
do not realize that earlier complex sys-
tems like the worldwide telephone net-
work had time to evolve, growing by
increments and incorporating new
technology as it became available.
Today, however, the rapid and contin-
uing evolution of computer technol-
ogy, and its ubiquitous, networked deployment, has
created a situation beyond the experience of even
well-versed system designers.

The Opera research group at the University of
Cambridge Computer Laboratory works on the
design and deployment of large-scale, widely distrib-
uted systems, modeling them as domains of services.
An example is a national Electronic Health Record
(EHR) service for the U.K., with a central EHR man-
agement domain and thousands of client domains
(including hospitals, clinics, research institutes, and
primary care practices) serving millions of patients
throughout the U.K.

Computer science research has made good progress
toward the design of complex, large-scale, distributed
systems. Over the past 20 years, we’ve learned how to
design naming schemes for components and partici-
pants and how to perform name-to-location map-
ping. We know how to replicate services to achieve
24-hour availability, and we understand the trade-offs

between strong and weak consistency of
replicated data. We can select a suitable,
secure communications infrastructure.
What remains is to incorporate these
results into the design of total systems
and provide tools for managers to con-
figure and adapt them.

Heterogeneity must also be possible
to allow independently developed and
legacy software to work together. We
support diversity with service-level

agreements (SLAs) between these components. Incre-
mental deployment of new components is also essen-
tial for large-scale systems; no such system begins
atomically with a big bang.

Our research focuses on two remaining areas of
distributed systems development: timely interac-
tion and access control. The latter includes
enabling nonexpert administrators to use tools to
express and modify access-control policies, so such
policies can be automatically checked for consis-
tency and enforced. Here, we outline our work on
event-based middleware, then describe OASIS
(Open Architecture for Secure, Interworking Ser-

The OASIS open architecture controls the interoperation
of independent services in distributed environments, including
the constant monitoring of security conditions, as illustrated
by a U.K. application in health-record management.

Toward Open, Secure,
Widely Distributed

Services

Jean Bacon and Ken Moody
TE

R
R

Y
M

IU
R

A

vices), along with related work on access-control
policy expression and enforcement.

Event-based Middleware
Asynchronous, event-based middleware is needed
for many existing and emerging large-scale distrib-
uted applications, including the management of
mobile objects in sensor-rich environments (an

aspect of pervasive comput-
ing), to provide timely
response to fault and alarm

conditions and manage multimedia and group com-
munication. Since the early 1990s we have sought to
extend standard middleware platforms with asyn-
chronous communication in the form of events [1].

Figure 1 shows the components of the Cambridge
Event Architecture (CEA). Objects that are event
sources publish the event types they are prepared to
notify. Clients invoke the register method at an event
source indicating the event name of interest and the
required parameter values or wild cards. Subse-
quently, when events occur, the source matches each
event occurrence against client registrations and noti-
fies interested parties. Note that because filtering is at
the source side only events of interest are notified.

Along with direct communication between event
sources and sinks, the architecture includes event
mediators, event correlators (also known as compos-
ite event services), event gateways, and event stores.
An event mediator is useful for presenting the infor-
mation of a primitive event source, such as a simple
sensor, through a higher-level interface than the
source alone could offer. For example, a mediator
may support an event seen(person, room), whereas a
sensor may work in terms of lower-level sensor and
badge identifiers.

A mediator is concerned with basic events, whereas
a correlator is concerned with the live detection of
patterns of events that might indicate some alarm
condition or suspicious behavior. Composite events
are created from streams of basic or composite events,
combined using event operators. Event gateways are
concerned with federating event systems. Event stores
are necessary for logging and audit. An event store
component may register interest in selected events
using the standard CEA mechanism and receive
streams of notifications. A query interface allows
interrogation to find occurrences and patterns of
interest; a promising commercial application is fraud
detection in financial systems.

CEA is middleware-platform-independent; our
work shows how any widely used platform, including
the Object Management Group’s Common Object
Request Broker Architecture (CORBA), Sun Microsys-
tems’ Java Remote Method Invocation (RMI), and
Microsoft’s Distributed Component Object Model
(DCOM), can be extended to support asynchronous
operation.

Our first implementation of CEA in 1997 used
CORBA’s standard type system, namely the CORBA
Interface Definition Language (IDL). The advantage
was that commonly used programming languages
have bindings to CORBA IDL, so heterogeneous
operation is supported. In order to handle transmit-
ted and persistent (stored) events consistently we used
the Object Data Management Group’s (ODMG)
Object Definition Language (ODL), which is a
superset of IDL and supports the Object Query Lan-
guage (OQL) for querying event stores.

If the OMG/ODMG standardization approach
had gained wide acceptance, applications would have
been able to work with an efficient implementation of
a well-defined, rich, type system supporting heteroge-
neous interoperation. Instead, the advent and enor-
mous worldwide popularity of the Web transformed
the nature of access to distributed information.
Object-oriented middleware evolved from a program-
ming language focus on distributed-system design via
early remote procedure call systems like OSF’s DCE,
ISO’s RM-ODP, and Xerox’s Courier, as well as those
from a number of research teams, including Amoeba
and Mayflower.

The alternative approach was to build distributed
systems bottom-up from the communication of
packets of bytes, an effort that led to message-ori-
ented middleware, or MOM. MOM, such as that
from IBM (MQseries) and Tibco Software (Ren-
dezvous) was developed in parallel with object-ori-
ented middleware but employed a less well-defined
type system and an asynchronous communication

60 June 2002/Vol. 45, No. 6 COMMUNICATIONS OF THE ACM

Figure 1. The Cambridge
Event Architecture.

event client
event source

event store

notifynotification
interface

distributed
event clients

distributed
event sources

query
interface

event
mediator

or
correlator

asynchronous notification
of matching event(s)

register

notify

notify

notify

notify

notify

register

register

register

register

register interest in named event(s)
indicating event type and parameter values registration/

deregistration
interface

model. More recently, the widespread use of the
Web-services model has led to the remarkable accep-
tance of a middleware technology derived from doc-
ument definition.

The Extensible Markup Language (XML) is a sub-
set of the Standard Generalized Markup Language
(SGML) document standard of 1985. The Simple
Object Access Protocol (SOAP) defines object invo-
cation using XML for transferring typed data (see the
World Wide Web Consortium; www.w3.org). MOM
today is being redesigned to use XML to define the
structure of messages, including types of arguments

and presentation format.
More recently, we have produced an XML-based

implementation of CEA, generalized for greater scal-
ability and wide-area operation. Like ODL, XML
may be generated automatically from programming
language types for transmission in messages, though
its use in message communication was not the inten-
tion of its original designers. Not surprisingly, XML’s
type system is weaker than that of programming lan-
guages, and transmitting and storing string-based
data is inefficient and at present gives poor support
for querying. Despite these shortcomings, XML’s
wide acceptance makes it a reasonable choice for
large-scale interoperation.

OASIS Access Control
OASIS is a role-based access control (RBAC) architec-
ture used to deliver secure interoperation of indepen-
dently managed services in open, distributed

environments [3, 7]. Associating privileges with roles,
RBAC provides a means of expressing access control
requirements that is scalable to large numbers of prin-
cipals and objects within a system. A notable advan-
tage is the avoidance of the detailed management of
large numbers of access control lists when people
change their employment or function. Decentralized,
domain-level RBAC is an effective approach for large-
scale, widely distributed systems. For example, it is not
necessary for the U.K. National Health Service (NHS)
to register all doctors nationally; a hospital domain
may define a role doctor for its employees, with corre-

sponding privileges. The NHS can
then recognize the local role under
an appropriate SLA.

RBAC is also likely to corre-
spond well with policy expressed
in legislation. Such policy may also
require the expression of relation-
ships, such as the registration of a
patient with a particular doctor. It
may also allow individual exclu-
sions; for example, my uncle may
be a doctor allowed—by generic
policy—access to my EHR,
through under the Patient’s Char-
ter I can forbid that access. Pure

RBAC associates
privileges only
with roles, whereas
OASIS roles are
parameterized so
these additional
requirements can

be captured and checked.
OASIS services name their client roles and enforce

policy for role activation and service invocation (see
Figure 2a). The encryption-protected role member-
ship certificate (RMC) returned to the user on suc-
cessful role activation may be used as proof of
authorization to use this and other services and as a
credential for activating other roles, depending on the
policy of each service.

Unlike many RBAC schemes, OASIS does not
support the delegation of privileges. Instead, it uses
“appointment,” whereby a function of certain roles is
to issue appointment certificates that may be used
(with any other credentials required by policy) to acti-
vate one or more roles. There is no reason why the
holder of the appointer role should be entitled to the
privileges conferred by the certificates. For example,
although hospital administrators need not be quali-
fied to practice medicine they can issue appointment
certificates in the form doctor(hospital-id) to indicate a

COMMUNICATIONS OF THE ACM June 2002/Vol. 45, No. 6 61

credential records
(status of RMCs of

this and other services) OASIS
secured
service

Service X

4

4

1 2

1,2

1,2

3,4

3,4

3

3

credentials

invoke service

activate
role

service asks
CIA to
validate
certificateRMC (role membership certificate)

 role activation

 service invocation

 policy and RMC validity checking

principal

RMC RMC

role-activation
policy

role
activation access control

a) Architecture of a standalone OASIS service b) Per-domain, certificate issuing and
authentication (CIA) service

authorization
policy

Service X

credential records
(status of RMCs of

this and other services)

role-activation
policy

role activation

other services

access control

principal

certificate validation

Service X

authorization
policy

OASIS
secured
service

Figure 2.
OASIS service
architecture and
per-domain
engineering.

doctor is employed at a particular hospital.
Appointment meets the requirement for long-

lived credentials; in contrast, privileges are associated
with roles, which are activated in the context of an
authenticated session. The fact that sessions are of
short duration promotes an active security environ-
ment in which role-membership conditions are mon-
itored and breaches notified. OASIS is closely

integrated with our active
event-based middleware
infrastructure (CEA), mak-

ing it possible to ensure that security policy is satis-
fied at all times.

Within an OASIS session, it is often necessary to
make cross-domain invocations of remote services.
For example, if a doctor, away from his or her usual
practice, has to perform an operation, he or she will
need access to the patient’s health records. This access
is easily authorized through cross-domain SLAs—the
agreement of the patient’s local domain to recognize
an appointment certificate issued by the doctor’s base
domain as a credential for activating a role, such as
visiting-doctor(home-id, away-id). The result is that
although OASIS is role-based it involves important
differences from other RBAC schemes, including the
seminal work of [9]:

• Roles are service-specific; there is no need for
globally centralized administration of role naming
and privilege management.

• Roles may be parameterized, as required by appli-
cations.

• There is no explicit role hierarchy, hence no
inheritance of privileges.

• Roles are activated by presenting the credentials
specified by policy.

• Roles are activated within sessions, providing
good security.

• As in traditional RBAC, all privileges are associ-
ated with roles. OASIS uses appointment instead
of privilege delegation; activation conditions of
roles, conveying whatever privileges are granted,

may require appointment cer-
tificates, which can be persis-
tent.

• OASIS provides an active
security environment facili-
tated by session-limited privi-
lege allocation. Conditions
checked during role activation
can include constraints on the
context; the role is deactivated
if any membership condition
subsequently becomes false.

Figure 2a outlines the architec-
ture of an OASIS service that
defines roles. A client activates a
role by presenting “credentials”
to a service, thus enabling it to
prove the client conforms to its
policy for entry to that role (path

1). The service validates the credentials, possibly
checking back with certificate-issuing services and
establishing environmental constraints. If all checks
succeed, an RMC is issued (path 2) and the service
creates a credential record corresponding to it.

The RMC may be presented with subsequent
requests to use that service (path 3). The service vali-
dates the RMC, checks any environmental con-
straints required by authorization policy, and, if all is
well, lets the invocation proceed (path 4). Activation
of any role in OASIS is controlled explicitly by a role-
activation rule specifying, in Horn clause logic (a con-
junctive formal notation), the conditions users must
meet to activate the role. Conditions may include
prerequisite roles, appointment certificates, and envi-
ronmental constraints. For more on the OASIS
model, including its formal semantics, see [5].

OASIS engineering. It is unlikely that certificates
would be issued and validated by each individual ser-
vice; for example, a hospital might offer, say, Acci-
dent, Emergency, Pharmacy, and X-ray services.
Instead, a hospital domain contains one highly avail-
able service—the Certificate Issuing and Authentica-
tion (CIA) service [8]—as in Figure 2b. Role
activation is carried out by the CIA service on behalf
of all services in a domain; it also maintains a creden-

62 June 2002/Vol. 45, No. 6 COMMUNICATIONS OF THE ACM

CR

CR

administrative
database

for domain A

In a distributed implementation, no communication might mean:
 -no change of status (all is well)
 -failure of sender or links (status unknown)

CIA service for domain B

CIA service
for domain A

RMC

RMC

time service
for domain A

(environmental
constraints)

CR (credential record)
 RMC (role membership certificate)

event channels
 heartbeats, or status-change events

group
membership

environmental
constraints

Figure 3. Maintaining
an active security
environment.

tial record for each issued RMC. Domainwide record
administration allows efficient implementation of the
management of role dependencies within a domain;
knowledge of the status of any prerequisite roles
within domain A is maintained within the CIA ser-
vice and does not require an external event channel.

The active security environment outlined in Figure
3 involves monitoring the membership rule for an
RMC within domain A. Its validity depends on a pre-
requisite role in domain B and two environmental
constraints in domain A. When any service is invoked,
the RMC supplied by the invoker is
validated by the CIA service during
authorization. An optimization
involves caching the RMC; an
event channel from the CIA
service informs the service if
the RMC subsequently
becomes invalid. The
next time the RMC is
used it can be com-
pared with the
cached bit-pattern.

Integration
with a public key
infrastructure. Role mem-
bership certificates may not have
a systemwide format, though there is
likely to be a uniform format within each
domain. The role-name and any parameters are
recorded in the RMC. The owner’s personal identi-
fication may or may not be one of the parameters,
depending on application requirements. RMCs are
encryption-protected to guard against tampering
and principal-specific to guard against theft.

Because the design of X.509 certificates meets our
requirements, we use them in the current implemen-
tation of OASIS. We have extended their normal use,
for the purpose of authentication, using the extension
fields for access control information, that is, for role
names and parameters. A CIA server is therefore
responsible for creating, signing, issuing, and validat-
ing these certificates. The presenter of the certificate
may be authenticated (through a challenge-response
protocol) as the owner of the private key correspond-
ing to the public key in the certificate; for more on
security threats to RMCs and the way they may be
countered, see [4].

Policy Expression and Management
In practice, distributed systems contain many
domains; for example, the health-care domain com-
prises the subdomains of public and private hospitals,
primary care practices, research institutes, and clinics,

as well as national services, including electronic
health-record management. Access control policy may
be dictated by national law and/or derive from orga-
nizational decisions. An early attempt at pseudo-nat-
ural language policy expression and its automatic
translation into first-order logic was described in [2].
A common semantic representation is crucial for any
large-scale deployment of policy; consistency must be
maintained as policies evolve.

Since each individual health-care domain expresses
its own access-control policy, coordinating policy
across domains may not be straightforward. We

have addressed this problem through meta-
policies [6] expressing predefined

constraints to which changes
of policy are subject.

Because meta-poli-
cies are long-lived,
they provide to bod-
ies external to a
domain stable infor-
mation about the
domain’s policy, thus
forming a basis for
interworking.

We use an object-
relational database
(PostgreSQL) to
record per-domain
access-control infor-
mation (such as the

structure of RMCs) and to store role-activation and
authorization policies. We have used the PostgreSQL
trigger facilities to build an active predicate store
against which clients register their interest through
templates. It is thus possible to monitor changes in a
domain’s policy to ensure conformance with meta-
policy and so maintain agreements for interoperation
between services automatically. We have closely inte-
grated the CIA service for a domain with these Post-
greSQL databases using event channels. The
extensions to PostgreSQL are transparent to its use by
an application as a conventional database manage-
ment system.

Conclusion
Our early work on event-based systems has achieved
general acceptance, and middleware platforms have
come to include event services, albeit with a weaker
type system than we would wish. Our use of such an
active middleware platform to provide constant
monitoring of security conditions is unique, to our
knowledge.

Many authors have argued that RBAC is a realistic

COMMUNICATIONS OF THE ACM June 2002/Vol. 45, No. 6 63

Despite its

shortcomings,

XML’s wide

acceptance makes

it a reasonable

choice for
large-scale

interoperation.

way to provide scalable policy expression for access
control in large-scale systems, yet most work on RBAC
has used a single organizationwide role-management
model and privilege delegation. Our work began with
the assumption of widely distributed systems with
many independently managed domains needing to
interoperate. The result is OASIS, which includes an
architecture and a formal model; engineering in the
context of several practical applications is under way,
most notable a pilot project for an EHR service for the
U.K. NHS. In the future, we shall collaborate with nat-
ural language processing experts to automate the
expression of policy, translating it into a formal nota-
tion, so it can be enforced as implemented code.

References
1. Bacon, J., Bates, J., Hayton, R., and Moody, K. Using events to build

distributed applications. In Proceedings of the 2nd Workshop on Services in
Distributed and Networked Environments (SDNE‘95) (Whistler, BC,
Canada, June 3–5). IEEE Computer Society Press, Los Alamitos, CA,
1995, 148–155.

2. Bacon, J., Lloyd, M., and Moody, K. Translating role-based access con-
trol policy within context. In Proceedings of the 2nd International Work-
shop on Policies for Distributed Systems and Networks (Policy 2001),
Lecture Notes in Computer Science, vol. 1995 (Bristol, U.K., Jan. 29–31).
Springer-Verlag, Heidelberg and New York, 2001, 107–119.

3. Bacon, J., Moody, K., Bates, J., Hayton, R., Ma, C., McNeil, A., Seidel,
O., and Spiteri, M. Generic support for distributed applications. IEEE
Comput. 33, 3 (Mar. 2000), 68–76.

4. Bacon, J., Moody, K., and Yao, W. Access control and trust in the use
of widely distributed services. In Proceedings of IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware 2001), Lecture
Notes in Computer Science, vol. 2218 (Heidelberg, Germany, Nov.
12–16). Springer-Verlag, Heidelberg and New York, 2001, 300–315.

5. Bacon, J., Moody, K., and Yao, W. A model of OASIS role-based access
control and its support for active security. ACM Transact. Info. Syst. Sec.
5, 4 (2002).

6. Belokosztolszki, A. and Moody, K. Meta-policies for distributed role-
based access control systems. In Proceedings of the 3rd International
Workshop on Policies for Distributed Systems and Networks (Policy 2002)
(Monterey, CA, June 5–7). IEEE Computer Society Press, Los Alami-
tos, CA, 2002, 106–115.

7. Hayton, R., Bacon, J., and Moody, K. OASIS: Access control in an
open, distributed environment. In Proceedings of 1998 IEEE Symposium
on Security and Privacy (Oakland, CA, May 3–6). IEEE Computer Soci-
ety Press, Los Alamitos, CA, 1998, 3–14.

8. Hine, J., Yao, W., Bacon, J., and Moody, K. An architecture for distrib-
uted OASIS services. In Proceedings of IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware 2000), Lecture Notes in
Computer Science, vol. 1795. (Palisades, NY, Apr. 4–8). Springer-Verlag,
Heidelberg and New York, 2000, 104–120.

9. Sandhu, R., Coyne, E., Feinstein, H., and Youman, C. Role-based
access-control models. IEEE Comput. 29, 2 (Feb. 1996), 38–47.

Jean Bacon (Jean.Bacon@cl.cam.ac.uk) is a reader in distributed
systems in the Computer Laboratory of the University of Cambridge,
Cambridge, U.K.
Ken Moody (Ken.Moody@cl.cam.ac.uk) is a lecturer in the
Computer Laboratory of the University of Cambridge, Cambridge, U.K.

The U.K. Engineering and Physical Sciences Research Council supports this work
through grants and studentships.

© 2002 ACM 0002-0782/02/0600 $5.00

c

64 June 2002/Vol. 45, No. 6 COMMUNICATIONS OF THE ACM

