
Computer Networks 33 (2000) 59–75
www.elsevier.com/locate/comnet

Design and implementation of an access control processor
for XML documents

Ernesto Damiani a,1, Sabrina De Capitani di Vimercati b,Ł,2, Stefano Paraboschi c,3,
Pierangela Samarati a,2

a Università di Milano, Polo Didattico di Crema, Via Bramante 65, Crema (CR), Italy
b Università di Brescia, Dip. Elettronica per l’Automazione, Via Branze 38, 25123 Brescia, Italy

c Politecnico di Milano, Dip. Elettronica e Informazione, Piazza L. da Vinci 32, 20133 Milano, Italy

Abstract

More and more information is distributed in XML format, both on corporate Intranets and on the global Net. In this
paper an Access Control System for XML is described allowing for definition and enforcement of access restrictions
directly on the structure and content of XML documents, thus providing a simple and effective way for users to protect
information at the same granularity level provided by the language itself.  2000 Published by Elsevier Science B.V. All
rights reserved.

Keywords: Security; Access control model; XML

1. Introduction

As more and more information is made available
in eXtensible Markup Language (XML) format, both
on corporate Intranets and on the global Net, con-
cerns are being raised by developers and end-users
about XML security problems. Early research work
about XML was not directly related to access control
and security, because XML was initially introduced
as a data format for documents; therefore, many
researchers assumed well-known techniques for se-
curing documents to be straightforwardly applicable
to XML data. But the way XML is being positioned

Ł Corresponding author.
1 E-mail: edamiani@crema.unimi.it
2 E-mail: {decapita,samarati}@dsi.unimi.it
3 E-mail: parabosc@elet.polimi.it

has caused some to question if additional measures
will be necessary.

For example, in the scenario of the oncoming
FASTER (Flexible Access to Statistics, Tables, and
Electronic Resources) project, end-users will be able
to control their interaction with Web sites by pulling
the information they are interested in out of dynami-
cally generated XML documents. However, different
users may well have different interests or access
authorizations, and XML enabled servers will need
to know which data each user should get, at a
finer level of granularity than whole documents. In
other words, some FASTER applications will need
to block or allow access to entire XML instances,
while others will control access at the tag level. The
control residing at the tag level is particularly im-
portant in the view of wider use of the XLink and
XPointer standards, which enable applications to re-

1389-1286/00/$ – see front matter  2000 Published by Elsevier Science B.V. All rights reserved.
PII: S 1 3 8 9 - 1 2 8 6 (0 0) 0 0 0 5 3 - 0

60 E. Damiani et al. / Computer Networks 33 (2000) 59–75

trieve portions of documents. Indeed, a clean model
for dynamic access control with granularity control
is needed to allow XML documents to link against
arbitrary XML chunks. It is interesting to remark
that the same observation applies to authentication
and encryption-based techniques, that naturally com-
plement access control in our usage scenario. With
authentication, the server will know what informa-
tion can be sent to the user based on that user’s
identity or certified property (e.g., group member-
ship), whereas encryption will only let users with ad-
equate decryption keys see the message. Therefore,
XML security should support the entire range of
coarse- to fine-grain granularity. In the remainder of
this section, we propose five basic requirements for
standardizing XML access control at the tag level.
Our requirements take into account the experience
of other FASTER consortium partners, and are di-
rected at large-scale knowledge management within
organizations using XML, as well as at XML-based
Internet applications.
(1) Support of authorizations at different organiza-

tional levels. Organizations may need to enforce
security policies on huge document-bases, often
dynamically created from heterogeneous data-
sources; on the other hand, site administrators
require full control on authorization specifica-
tions on single documents.

(2) Extension to existing Web server technology.
XML documents are usually made available by
means of Web sites, using a variety of HTTP-
based protocols. XML access control must ex-
ploit current solutions in much the same way as
cryptography-based services, without interfering
with existing APIs and development tools.

(3) Fine-grained access control. Access control poli-
cies should be supported at all levels of granu-
larity, including documents and individual XML
elements.

(4) Transparency. The access control system opera-
tion should be as transparent as possible to the
requesters. The requester should not be aware
of the information within a document which is
being hidden to them by the access control sys-
tem. The transparency of the access control must
be preserved by the presentation and rendering
phases and may therefore impose constraints on

the behavior of technologies such as CSS and
XSL [18]. In particular, access control should
preserve the validity of the documents with re-
spect to their DTDs.

(5) Smoothless integration with existing technolo-
gies for user authentication (e.g. digital signa-
tures). Access control should complement tag-
level authentication based on digital signatures.

Fig. 1 depicts the conceptual architecture of
our approach. A central authority uses a pool of
XML DTDs to specify the format of information
to be exchanged within the organization. XML doc-
uments instances of such DTDs are defined and
maintained at each site, describing the site-specific
information. The schema–instance relationship be-
tween XML documents and DTDs naturally supports
the distinction between two levels of authorizations,
both of them allowing for fine-grained specifications.
Namely, we distinguish: (1) low-level authorizations,
associated to XML documents, providing full control
on authorizations on a document-by-document ba-
sis; (2) high-level authorizations, associated to XML
DTDs, providing organization-wide and department-
wide declarations of access permissions. Centrally
specified DTD-level authorizations can be manda-
tory, stating impositions of the central authority to
lower organizational levels where XML documents
are created and managed, usually by means of a
network of federated Web sites. This technique al-
lows for easy, centralized modification of access
permissions on large document sets, and provides a
general, abstract way of specifying access authoriza-
tions. In other words, specifying authorizations at the
DTD level cleanly separates access control specified
via XML markup from access control policies de-
fined for the individual datasources (e.g., relational
databases vs. file systems) which are different from
one another both in granularity and abstraction level.
Each departmental authority managing a Web site
retains the right to define its own authorizations
(again, at the granularity of XML tags) on individual
documents, or to document sets by means of wild
cards. In our model local authorities can also define
authorizations at the DTD level; however, such au-
thorizations only apply to the documents of the local
domain.

E. Damiani et al. / Computer Networks 33 (2000) 59–75 61

Organization-wide DTD
repository

Organization-wide network

Organization-wide
authorizations

Department-
specific

authorizations

Department-
specific

authorizations

Department-
specific

authorizations

Web site

Web site

Web site

Fig. 1. Conceptual architecture.

2. Authorization specification

The architectural framework depicted in Fig. 1
describes the basic components taking part in the
specification of access and protection requirements.
We now discuss their specification. Before introduc-
ing the form and semantics of the authorizations sup-
ported by our model, we describe the basic features
that they need to provide to satisfy requirements 1
and 3 discussed in the introduction.

2.1. Collection based vs instance based
authorizations

The different protection requirements that differ-
ent documents may have call for the support of
access restrictions at the level of each specific docu-
ment. On the other hand, requiring the specification
of authorizations for each single document would
make the authorization specification task much too
heavy. The system should support, beside authoriza-
tions on single documents, authorizations on collec-
tions of documents. The concept of DTD can be nat-
urally exploited to this end, by allowing protection
requirements to refer to DTD or XML documents,

where requirements specified at the level of DTD
apply to all those documents instance of the DTDs.
The use of DTDs as a primary way to refer to sets
of documents as opposed to the use of file system
structures (directory) used in previous approaches,
is consistent with the fact that our approach takes
advantage of the data semantics, departing from the
limitations of storage-based structures. The fact that
instances of DTDs share a common (semi)structure,
allows the association with DTD-level authorizations
of conditions that limit the documents=elements to
which the authorization applies. This way authoriza-
tions can be specified which apply only to certain
instances of a DTD. While using DTDs as a primary
way to reference classes of documents, we do not
discard other methods. In particular, our model also
supports the use of wild cards in the specification
of document URIs and the possibility of referencing
and evaluating meta-properties, such as RDF markup
[19]. The use of wild cards allows the specification
of authorizations that apply to all documents match-
ing a given path expression, depending on the file
system organization. The reference to meta-proper-
ties allows the specification of authorizations that
apply to all documents satisfying specific properties,

62 E. Damiani et al. / Computer Networks 33 (2000) 59–75

expressed by means of meta-information associated
with the documents (e.g., creator, creation date, and
so on). Meta-properties can also be used to provide
organization of documents in domains [13].

2.2. Organization’s wide vs. site-specific
authorizations

Access and protection requirements can be speci-
fied both at the level of the enterprise, stating general
regulations that should hold, and at the level of
specific domains (part of the enterprise) where, ac-
cording to a local policy, additional constraints may
need to be specified or some constraints may need
to be relaxed. Organizations specify authorizations
with respect to DTDs; sites can specify authoriza-
tions with respect to specific documents as well as
to DTDs. The two types of DTD-level authoriza-
tions have complementary roles in increasing access
control flexibility. Global DTD-level authorizations
stated by a central authority can be effectively used
to implement corporate-wide access control poli-
cies on document classes. Local DTD-level autho-
rizations specified by departmental authorities allow
for department-wide access control policies comple-
menting the corporate ones. Moreover they alleviate
administration chores by allowing concise specifica-
tion of site-wide authorizations.

2.3. Document vs. element=attribute authorizations

The identification of elements and attributes
within a document provided by XML tags can be
exploited to specify authorizations at a fine-grained
level. Authorizations specified for an element are in-
tended to be applicable to all its attributes. Again, to
avoid the need of specifying authorizations for each
single element in a document, the document structure
can be exploited by supporting a recursive interpre-
tation of authorizations by which an authorization
specified on an element applies to its whole content
(attributes and subelements). Our model allows to
specify whether an authorization specified for an ele-
ment is local to its own data (PC data and attributes)
or applies recursively to all its subelements. The au-
thorization on a document in its entirety is specified
as a recursive authorization on its root.

2.4. Exception support (permissions and denials)

The support of authorizations at different granu-
larity levels allows for easy expressiveness of both
fine- and coarse-grained authorizations. Such an ad-
vantage would however remain very limited without
the ability of the authorization model to support
exceptions, since the presence of a granule (doc-
ument or an element=attribute) with protection re-
quirements different from those of its siblings would
require the explicit specification of authorizations at
that specific granularity level. For instance, the sit-
uation where a user should be granted access to all
the documents of a DTD but one specific instance,
would imply the need of stating the authorizations
explicitly for all the other documents as well, thereby
ruling out the advantage of supporting authorizations
at the DTD level. A simple way to support excep-
tions is by using both positive (permissions) and
negative (denials) authorizations, where permissions
and denials can override each other. According to
intuition, overriding typically occurs when going
to a finer granularity level, according to the ‘most
specific takes precedence’ principle [11,8]. Finer-
grained authorizations override coarser ones, each
document being at a finer grain than its DTD and
each element=attribute being at a finer grain than the
elements in which it is contained.

2.5. Hard and soft statements (ruling out exceptions
and filling the blanks)

The support of exceptions while clearly adding
to the expressiveness of the model, allows stated
protection requirements to be possibly overridden.
When authorization specification spans different ad-
ministrative competencies and authorities, as it is
the case of organization-wide authorizations vs. site-
specific authorizations, there might be cases where
such a capability needs to be restricted. The ‘most
specific takes precedence’ principle dictates that au-
thorizations specified on a document override (where
conflicting) authorizations specified on its DTD. In
organizational terms, the authorization specified at a
site would always override the authorizations spec-
ified at the organization level. We can imagine two
scenarios where such a behavior is not wanted. First,
at the organization level certain specifications may

E. Damiani et al. / Computer Networks 33 (2000) 59–75 63

need to be declared as mandatory, meaning they
should be obeyed at all the sites, no site discre-
tionary statement being allowed. Second, at the site
level, certain specifications may need to be declared
as soft, meaning they should be applied only if noth-
ing has been stated at the organization level. In both
scenarios the need is to subvert the ‘most specific
takes precedence’ principle. The fact that the need
may come either from the organization or from the
site, requiring the ability to support its expression
in association with the both DTD and document au-
thorizations. In particular, the enterprise can specify
DTD authorizations as hard, sites can specify doc-
ument authorizations as soft. (For the sake of sim-
plicity of the model, we do not allow sites to specify
hard DTD authorizations as it would introduce com-
plications while not adding in expressiveness.)

3. Authorizations

The list of features illustrated in the previous
section outlines the form and semantics of the au-
thorizations supported by our model. We can then
summarize the discussion above and introduce our
authorizations as follows:
ž Authorizations can be specified at the level of a

DTD (schema) or specific documents (instance).
DTD authorizations can be specified either at
the global organization level or at the local site.
Document authorizations can be specified at the
local site.
ž Both DTD and XML authorizations can be spec-

ified with reference to each single element=at-
tribute in a document. Authorizations on an ele-
ment can be declared as recursive (apply to its
subelements) or local (apply only to its direct
attributes and PC data).
ž DTD-level authorizations specified at the global

level can be declared as hard.
ž Document-level authorizations can be declared as

soft.
Authorizations specified for each XML document

=DTD (elements within) are stored in an XAS (XML
Access Sheet) associated with the document=DTD,
bringing to the organization illustrated in Fig. 2.
The representation and storage of authorizations in
a component XAS separate from the document they

protect follows the well-known design principle re-
quiring clean separation between data model and
access control model [4]. Also, it has the great
advantage of allowing the specification of authoriza-
tions on dynamically generated XML documents.
Besides, enclosing authorizations in the documents
themselves would compromise readability of both
the documents and its access restrictions.

We anticipate that, in the access control process-
ing, DTD-level authorizations specified at the global
level and those specified at the local level are, with
respect to each DTD, merged by performing a flat
union. In other words, organization-wide and site-
specific authorizations are treated in the same way
(although, remember that organization-wide autho-
rizations apply to all the documents in the network
while site-specific authorizations apply only to doc-
uments stored at the site). Given this, in the future
we will simply refer to DTD authorizations with-
out making any distinction of where they have been
specified. The reason for merging the two sets of
authorizations with a simple flat union is simplicity.
We do observe that, in principle, even at this level
some notion of ‘specificity’ could be applied. This
reasoning could also be possibly extended by con-
sidering any number of intermediate organizational
levels which could be reflected in priorities asso-
ciated with the authorizations. We note, however,
that the most specific principle of DTD vs XML,
together with the possibility of specifying hard and
soft options subverting it, does already provide, on
the two organizational levels considered which were
of interest in our project, such expressiveness. As
it may be clear from the previous discussion, we
allow the specification of hard authorizations only
at the global level. In this way no unresolvable con-
flict can arise. This does not limit expressiveness:
site administrators that want their authorizations to
override global authorizations can simply do so by
going to the instance level (wild-card characters and
meta-properties allow doing so without the need of
specifying an authorization for each instance).

The XAS associated with a document=DTD con-
tains the set of authorizations specified for the
document=DTD or elements within. The authoriza-
tions are expressed in XML and comply to the DTD
illustrated in Fig. 3. Each authorization states the
permission or denial (depending on the value of

64 E. Damiani et al. / Computer Networks 33 (2000) 59–75

Fig. 2. Authorization information stored at the different levels.

<!ELEMENT set_of_authorizations (authorization)+>
<!ELEMENT authorization (subject,object,action,sign,type,priority)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT object (#PCDATA)>
<!ELEMENT action empty>
<!ELEMENT sign empty>
<!ELEMENT type empty>
<!ELEMENT priority empty>
<!ATTLIST set_of_authorizations about CDATA #REQUIRED >
<!ATTLIST action value (read) #REQUIRED>
<!ATTLIST sign value (+|-) #REQUIRED>
<!ATTLIST type value (local|recursive) #REQUIRED>
<!ATTLIST priority value (hard|soft) #IMPLIED>

Fig. 3. XAS syntax.

sign) for a subject to execute a certain action
on an object, together with the priority (soft vs
hard) and type (recursive vs local) of such
a statement. Here object identifies an element or
set of elements in a document or set of documents.

We now describe in more details how documents
and elements=attributes within them are references
to the purpose of specifying authorizations. We then
discuss authorization subjects.

E. Damiani et al. / Computer Networks 33 (2000) 59–75 65

3.1. Identifying authorization objects via path
expressions

In the traditional Web security setting, Uniform
Resource Identifiers (URI) [2] are used to denote
the resources to be protected. Each document and
DTD is characterized by a single URI. As we go
to a finer level of granularity we need to refer-
ence specific elements and attributes in documents.
Elements=attributes in a document can be referenced
by means of path expressions. A straightforward
way of writing path expressions is by using the
XPath language [20]. The reason for this choice is
that several tools are currently available which can
be easily reused to produce a functioning system.
XPath expressions make reference to the tree or-
ganization of documents=DTDs which is obtained
in a simple way by interpreting elements and at-
tributes as children of the element in which they
are directly contained. Each element and attribute
can be then referenced by means of the tree path
that must be followed to reach it. An XPath on an
XML document tree is a sequence of element names
or predefined functions separated by the character
= (slash): l1=l2=: : := ln. For instance, path expres-
sion =division=about_div=member denotes the
nodes of the member element which are children
of about_div elements, which are children of di-
vision elements. Path expressions can be absolute
or relative. Absolute path expressions, prefixed by a
slash character, start from the root of the document.
Relative path expressions, which start with an ele-
ment name, describe a path whose initial point is any
element in the document.

A very interesting characteristic of path expres-
sions which very conveniently increases the expres-
siveness of authorizations is the support of condi-
tions. Conditions associated with a path expression
refine the set of nodes matching the path expres-
sion. Conditions may impose constraints on element
contents (i.e., the ‘text’ of elements) or on names
and values of attributes. A condition can follow any
label in a path expression and is identified as such
by enclosing it between square brackets. Given a
path expression l1=l2=: : :=ln , a condition on label li

restricts the application of the path expressions only
to those node(s) li for which the condition evaluates
to true.

3.2. Identifying authorization subjects

A straightforward and largely used approach to re-
fer to authorization subjects and access requesters is
via user identity and=or the location from which their
requests originate, where locations can be expressed
via numeric IP addresses (e.g., 159.149.51.40)
or via symbolic names (e.g., tweety.acme.com).
Our system combines all these features. Subjects
requesting access are characterized by a triple
<user-id,IP-address,sym-address>, where
user-id is the login name with which the user
connected to the server, IP-address is the address
of the client machine and sym-address is the ma-
chine’s DNS name. (Remote identities trusted by the
server using a Certification Authority, or any other
secure infrastructure can be considered as well.) Au-
thorizations can also be specified with reference to
user groups and=or location patterns. Groups are set
of users defined at the server; they do not need to
be disjoint and can be nested. A location pattern is
an expression identifying a set of physical locations,
with reference to either their symbolic names or
IP addresses. Patterns are specified by using the
wild-card character *. For instance, 159.149.*
denotes all the machines belonging to subnetwork
159.149. Similarly, *.edu and *.it, respectively,
denote all the machines in the Educational and Italy
domains. A user can be seen as a singleton group,
a location as a simple pattern. Groups and loca-
tion patterns provide an effective way to specify
authorizations holding for a large set of subjects:
authorizations granted to a group with respect to
some location pattern apply to all the members of
the group when connected from a machine satisfying
the pattern. For instance, authorizations granted to
<Employee,159.149.100.*,*> apply to all the
members of group Employee when connected from
machines in subnetwork 159.149.100.*. Autho-
rizations granted to <Employee,*,*.acme.com>
apply to all employees connected from the local
acme network. We observe that while authoriza-
tion subjects are conceptually identified by triples
of the general hierarchy, relationships between ad-
dress (and symbolic names) patterns can be de-
tected straightforwardly; therefore, only the usual
user-group hierarchy needs to be explicitly defined
and stored at the sites (or communicated to them [7]).

66 E. Damiani et al. / Computer Networks 33 (2000) 59–75

It is also important to note that the consideration of
user’s identity and location identifiers does not rule
out the possibility of partial or completely anony-
mous connection, to which general authorizations,
specified for a group Public to which everybody
belongs and pattern * can be applied.

4. Authorization enforcement

For each possible requester (user connected from
a certain location) and document, the authorizations
on the document applicable to the requester describe
what information can or cannot be returned to the
requester. Hence, given the request from a subject
to access a document, the joint application of the
DTD-level and document-level authorizations appli-
cable to the subject will produce a custom view on
the document, including only the information that
a particular requester is entitled to see. The access
control process must therefore evaluate the autho-
rizations applicable to an access request to compute
such a view. We now briefly outline this computation
process which exploits the hierarchical organiza-
tion of documents, by operating on their DOM tree
[21]. Intuitively, the analysis of all the authorizations
holding for the requester on a document produces an
access decision (access or not access) on each node
of the document. The process to obtain this final
outcome starts with a labeling procedure whose out-
put reflects the authorizations on the different nodes
applicable to the subject. Since authorizations can be
of different level (DTD vs. instance), type (local vs.
recursive), and priority (hard vs. soft), more than one
sign is associated with each node. More precisely,
the process assigns to each node a label reflecting
the sign (permission or denial) of authorizations, if
any, existing for that node at the considered type,
priority, and level. A simple representation of these
labels is to associate with a node an 8-tuple (23, each
of the three fields has two possible values). The sign
of each label can be ‘C’ (permission), ‘�’ (denial),
or ‘ε’ (no authorization). We note that more autho-
rizations can exist with respect to each label. In this
case a resolution policy is applied to get a unique
final sign [6,8] for the label. Simple and natural
conflict resolution policies include the ‘most specific
subject takes precedence’ principle (users=subgroups

are more specific than the groups to which they be-
long, sub-patterns are more specific than their more
general form) and the ‘denial takes precedence’ prin-
ciple [8], and are those currently supported by our
prototype.

After this initial labeling, propagation is applied
so that local authorizations holding for each node
are propagated to its attributes, while recursive au-
thorizations are also propagated to its sub-elements.
Authorizations may be overridden as follows:
(1) Authorizations on a node take precedence over

those on its ancestors.
(2) Authorizations at the document level take prece-

dence over authorizations at the local and global
DTD levels, unless they are explicitly declared
as soft.

(3) Hard authorizations at the global-DTD level
override authorizations at other levels.

This labeling process can be obtained by means of
a preorder visit on the document’s DOM tree. At the
end of the tree visit a single label is associated with
each node defining its final sign, if any. If no sign
has been determined for a node (no authorizations
have been specified nor can be derived for it), its
value is set to the null value ‘ε’. Value ‘ε’ can be
interpreted either as a negation (transformed into a
‘�’) or as a permission (transformed into a ‘C’),
corresponding to the enforcement of a closed and an
open policy, respectively [8]. In the sequel, we shall
act conservatively, choosing the closed policy.

For how the labeling process has been performed,
the requester is allowed to access all the elements
and attributes whose label is positive. Note that, in
order to preserve the structure of the document, the
portion of the document visible to the requester will
also include start and end tags of elements with a
negative or undefined label, if the elements have a
descendant with a positive label. The final view on
the document can be obtained simply by pruning
from the original document tree all the subtrees con-
taining only nodes labeled negative. This pruning is
performed by a procedure that executes a postorder
visit on the document and removes any leaf labeled
‘�’. The pruned document may not be valid with
respect to the DTD referenced by the original XML
document. This will happen, for instance, when re-
quired attributes are deleted because the requester
is not entitled to receive them. To avoid this prob-

E. Damiani et al. / Computer Networks 33 (2000) 59–75 67

lem, a loosening transformation can be applied to the
DTD. In the simplest case, loosening a DTD simply
means to define as optional all the elements and
attributes marked as required in the original DTD.
This ‘naive’ loosening technique is currently jus-
tified by implementation-related considerations, as
there is no efficient technology for processing DTDs
even remotely comparable to the one available for
documents. However, as DTD processing standards
such as DOM level 2 [17] come of age, more so-
phisticated loosening techniques can be devised by
taking into account the elements that are pruned by
the transformation and selectively redefining them
as optional. ‘Looser’ DTDs also prevent users from
detecting whether information was hidden by access
control enforcement or was simply missing in the
original document. The loosening process is aimed
at the satisfaction of requirement 4 stated in Sec-
tion 1.

5. Design and implementation guidelines

First of all, architectural design will be briefly dis-
cussed. Two main architectural patterns are currently
used for the design of XML=XSL systems: server
side and client side XSL processing (see Section 6).
The former technique is common in association with
translation to HTML and provides limited interac-
tion: XML documents are translated to HTML be-
fore sending them to the client, avoiding the need for
the client browser to provide XML support. The lat-
ter technique requires an XSL processor to be part of
the client, in order to provide it with rendering capa-
bilities. In our approach, access control enforcement
is always performed on the server side, regardless of

Fig. 4. Design pattern for the processor transformer.

whether other operations, such as XSL-based render-
ing or translation to HTML, are performed by the
server site or by the client module.

The reason for this architectural choice is twofold:
first, server-side execution prevents transferring to
the client information he is not allowed to see or pro-
cess; second, it ensures the operation and even the
presence of security checking to be completely trans-
parent to remote clients. The main usage scenario for
our system involves a user requesting a set of XML
elements from a remote site, either through an HTTP
request or as the result of a query [5]. Our processor
takes as input the valid XML document requested
by the user or computed by the query, together with
an XML Access Sheet (XAS) listing the associated
access authorizations at document level. The pro-
cessor operation also involves the document’s DTD
and the associated XAS specifying DTD level autho-
rizations. In our design, the processor module is a
transformer in the framework of a complete architec-
ture complying to the well-known Pipes and Filters
design pattern (Fig. 4) [3]. The service’s interface is
locally available to Web servers components storing
XML documents. This solution is aimed to satisfy
requirement 2 stated in Section 1. The processor
output is a valid XML document including only the
information the user is allowed to access. The XML
document computed by processor is then transferred
to the client as the result of its original request.

5.1. Internal data model

In our system, documents and DTDs are internally
represented as object trees, according to the Docu-
ment Object Model (DOM) level 1 specification
[16]. DOM provides an object-oriented Application

68 E. Damiani et al. / Computer Networks 33 (2000) 59–75

Program Interface (API) for HTML and XML doc-
uments. Namely, DOM defines a set of object defi-
nitions such as Element, Attr, and Text, to build
an object-oriented document which closely models
the document structure. While DOM trees are topo-
logically equivalent to the XML trees defined in
Section 3.1, they represent element containment by
means of the object-oriented part-of relationship. For
example, an XML element is represented in DOM
by an Element object; an element contained within
another element is represented as a child Element
object, and text contained in an element is repre-
sented as a child Text object. The main classes
of the DOM hierarchy are Node, Document, Ele-
ment, Attr and Text. Node is the generic element
in an XML document and provides basic methods
for insertion, deletion and editing; via inheritance,
such methods are also defined for more specialized
classes in the hierarchy. Node also provides a pow-
erful set of navigation methods, such as parent-
Node, firstChild and nextSibling. Navigation
methods allow transformer modules of the security
processor to visit the DOM representation of XML
documents via a sequence of calls to the interface.
Specifically, the NodeList method, which returns in
a container all the children of the current node, has
been used to implement the fast labeling procedure
which is the core of the access control processor.
Our implementation is based on a Secure extension
of the classes of the DOM hierarchy, like Secure-
Document and SecureElement. Our extension is
fully compatible with other extensions supporting el-
ement-wise digital signatures, such as DOMhash [1].
Such compatibility is a step towards satisfaction of
requirement 5 stated in Section 1.

5.2. Execution phases

Our security processor computes an on line trans-
formation on XML documents. Its execution cycle
consists of the following four basic steps:
(1) Parsing. The parsing step consists in the syntax

check of the requested document with respect to
the associated DTD and its compilation to obtain
an object-oriented document graph according to
the DOM format. Since parsing is performed
externally when the access control processor is
used as a transformer in the framework of a

Pipes and Filters system, here we do not deal
with parsing issues in detail.

(2) Tree labeling. The labeling step involves the
propagation of the labeling of the DOM tree ac-
cording to the authorizations listed in the XAS
associated to the document and its DTD, both
at the organization and at the site level. Its im-
plementation takes advantage of the extended
DOM interface for object nodes, which provides
a labeling interface. Standard DOM methods al-
low the transformer to follow part-of links from
each node to its children by means of a standard
method call. The authorizations relevant for the
user are analyzed and applied to the nodes.

(3) Transformation. The transformation phase is a
pruning of the DOM tree according to its la-
beling, based on the transformation presented in
Section 4. Such a pruning is computed by means
of a standard preorder visit to the labeled DOM
tree. This pruning preserves the validity of the
document with respect to the loosened version of
its original DTD.

(4) Unparsing. Finally, the fourth step is the gen-
eration of a valid XML document in text for-
mat, simply by unparsing (again, by means of a
standard component) the pruned DOM tree com-
puted by the previous step. Once again, this step
is performed externally when the access control
process is executed as a transformer module in
the framework of a Pipes and Filters system

The resulting XML document, together with the
loosened DTD, can then be transmitted to the user
who requested access to the document.

5.3. Performance and caching

In a complex server environment, performance
and memory usage are critical issues. Moreover,
the processing requirement for XML parsing, trans-
formation, document processing and formatting are
particularly heavy (Fig. 5). For this reason, a spe-
cial cache system is needed, in order to cache
dynamically created pages. Caches of this kind
are already available for XSLT processors which
store their stylesheets in a pre-parsed form [12]. A
cache for labeled documents is an important part
of our system. When the request comes, the cache
is searched. If an instance of the requested docu-

E. Damiani et al. / Computer Networks 33 (2000) 59–75 69

XSS

XSS

DTD

DOM tree

XML
document

1. parsing

2. 3.transformationtree-labeling

4. umparsing

transformed
XML

document

 Loose
DTDLoosening

Fig. 5. Document transformations by the security processor.

ment for the same subject is found in the cache,
then the cache copy is served. Otherwise, the docu-
ment is parsed, labeled, transformed, unparsed and
sent to the client; also, the transformed document is
stored into the cache. Whenever authorizations are
changed the whole cache is emptied. This technique
allows dynamically generated pages (for example,
XML documents created by querying a database) to
be transformed and cached. Assuming that the fre-
quency of requests is higher than that of resource
changes, the cache may greatly reduce the total
server load. The efficiency gain is particularly rele-
vant when authorizations are specified with respect
to a limited number of groups, as it may be the
case for Internet-based servers. Moreover, the cache
system can be based on a persistent object storage
system which is able to save stored objects in a per-
sistent state that outlives the module execution. This
technique can be effectively used for pages that are
very expensive to generate and last very long without
changes, such as compiled server pages.

6. Related work

Conventional HTML tagging is aimed at defining
page rendering and is seldom if ever related to infor-
mation granulation. For this reason, access control

mechanisms currently available for Web sites tend to
be coarse-grained. For instance, the Apache Web 4

server allows the specification of access control lists
via a configuration file (access.conf) containing a
list of users, hosts (IP addresses), or host=user pairs,
which must be allowed=forbidden connection to the
server. Users are identified by user- and group-names
and passwords, to be specified via Unix-style pass-
word files. By specifying a different configuration
file for each directory on the Web server’s disk, it
is possible to define authorizations on a directory
basis; files belonging to the same directory are sub-
ject to the same authorizations. The specification of
authorizations at the level of single file (i.e., Web
pages) is quite awkward, while it is not possible
to specify authorizations on portions of files. This
limitation forces protection requirements to affect
data organization at the file system level. Recent pro-
posals addressing authorization enforcement in the
Web, addressing topics such as certificate manage-
ment [9] and support of groups and roles [10] are
not thought for XML, and therefore consider whole
documents as granule of protection. The proposal
in [14] specifies authorizations at a fine granular-
ity providing a model for referencing portions of
a file. However, again, no semantic context simi-

4 http://www.apache.org

70 E. Damiani et al. / Computer Networks 33 (2000) 59–75

lar to that provided by XML can be supported and
the model remains limited. Other approaches, such
as the EIT SHTTP 5 scheme, explicitly represent
authorizations within the documents by using se-
curity-related HTML tagging. Every document may
have associated security (meta)tags describing its
access authorizations. However, due to HTML fun-
damental limitations, even this proposal cannot take
into full consideration the information structure and
semantics.

6.1. The role of encryption

Since the advancement of public-key cryptogra-
phy has solved most of the security problems in
communication, it is interesting to explore the au-
thentication and encryption role in providing fine-
grained security to XML documents. Indeed, some
commercial products are becoming available (e.g.,
AlphaWorks’ XML Security Suite [1]) providing
fine-grained security features, such as element-wise
encryption and digital signatures. A rather coarser
solution has been proposed by DataChannel, whose
DataChannel 6 server links XML authentication to
existing directory systems, supporting both Windows
NT and Lightweight Directory Access Protocol 3 di-
rectories. DataChannel servers map each XML doc-
ument to the requesting user’s ID and then to the file
system access control. Thanks to authentication, an
encryption-based XML server knows what informa-
tion can be sent to a user based on that user’s access
level, and employs element-wise encryption to pre-
vent users without appropriate decryption keys to
access the parts of the documents containing private
information. However, encryption-based approaches
unequally split security responsibilities between the
connection protocol, the XML content, and the ap-
plication processing the document, while the need
for a standardization of access control is becom-
ing well recognized for XML data. Moreover, some
encryption-based techniques leave encrypted private
information in the hands of unauthorized users, a
design choice which may well prove unwise in the
long run.

5 http://www.ietf.org/rfc/rfc2660.txt
6 http://www.datachannel.com

6.2. Server-side XML=XSL processing

Much work has been done recently on server-
side XML=XSL processing, and several design and
implementation techniques have been proposed to
obtain efficient, scalable systems based on DOM rep-
resentation. Cocoon [12] is a Web publishing system
for the Apache Web server whose engine is loosely
based on the reactor design pattern [3]. It deals with
server-side requests, obtained processing client’s re-
quests and augmenting them with all the information
needed by the processing engine. The request indi-
cates what client generated the request, what URI
is being requested and what producer should handle
the request. Producer modules handle the requested
URI and produce XML documents. Since producers
are pluggable, they work like subservlets for this
framework, allowing site designers to define and im-
plement their own producers. It is up to the producer
implementation to define the function that produces
the document from the request object. Our access
control processor is designed to be smoothlessly
integrated in server-side architectures like Cocoon’s.

7. An example

We now illustrate an example of authorization
specification and document transformation.

7.1. Data organization: DTD and documents

We consider the case of an organization main-
taining information regarding its departments, mem-
bers, and projects. Each department is composed of
one or more divisions and is responsible to create
an XML document for each of them. To provide
a uniform representation of this information, these
XML documents must be valid with respect to a
DTD defined by the organization. We consider DTD
http://www.acme.com/dtd.xml reported in Fig. 6. Ac-
cording to the DTD, each division is characterized by
general information about it (about_div element),
its current research activities (res_activity ele-
ment), and seminars. The about_div element in-
cludes information about the division members and
how to contact the division (contact element). The
res_activity element contains the topic of the re-

E. Damiani et al. / Computer Networks 33 (2000) 59–75 71

<!ELEMENT division (about_div,res_activity*,seminar*)>
<!ELEMENT about_div (member+,contact)>
<!ELEMENT member (name,position,e-mail?)>
<!ELEMENT e-mail (#PCDATA)>
<!ELEMENT contact (#PCDATA)>
<!ELEMENT res_activity (topic,description,project*)>
<!ELEMENT topic (#PCDATA)*>
<!ELEMENT description (#PCDATA)>
<!ELEMENT project (name,report*,fund*)>
<!ELEMENT fund (sponsor,amount)>
<!ELEMENT sponsor (#PCDATA)*>
<!ELEMENT amount (#PCDATA)*>
<!ELEMENT report (title,author+,text)>
<!ELEMENT title (#PCDATA)*>
<!ELEMENT author (#PCDATA)*>
<!ELEMENT seminar (date,title,speaker+)>
<!ELEMENT text (#PCDATA)*>
<!ATTLIST division name CDATA #REQUIRED>
<!ATTLIST seminar category (public|internal) #REQUIRED>
<!ATTLIST project domain (public|private) #REQUIRED>
<!ATTLIST report code ID #REQUIRED>

Fig. 6. An example of DTD.

search, a description, and a set, possibly empty,
of related projects. Seminars, which can be open
to everybody or restricted to the division members,
are characterized by a date, title, and one or more
speaker elements. Each member of the division has
a name, position, and e-mail address. Projects are
described by a name, the fund to which the project
expenses must be charged, and by zero or more re-
port elements with title and author elements be-
longing to them. Funds are characterized by spon-
sor and amount elements. Attributes of elements are
defined in the attribute list declarations. Element di-
vision has a name identifying the division. Element
seminar has a category attribute used to make a
distinction between seminars open to all (i.e., cate-
gory D ‘public’) and seminars restricted to the divi-
sion members (i.e., categoryD ‘internal’). Element
project has a required attribute domain represent-
ing the project visibility (public vs. private). Finally,
element report has an attribute code used as an
identifier for the report.

Among the departments of the organizations is the
CS Department which includes division Security.
The information about this division is represented in
the XML document http://www.acme.com/sec.xml
illustrated in Fig. 7.

7.2. Authorization specification

We now discuss some protection requirements
that the acme organization and the CS department
may need to express and illustrate how they are
translated into authorizations of the form considered
by our system. In the following, for the sake of
simplicity, relative URIs (http://www.acme.com is
the base URI) are used in the authorizations.

Organization’s policy: specified at the DTD level
— applicable to all the divisions of all departments
of the organization.
(1) Information about the name of members of any

division in any department is publicly accessible;
unless otherwise stated by the specific depart-
ments.
<<Public,*,*>,dtd.xml:/division/abo
ut_div/member/name,read,+,local,_>

(2) Information about the name of public projects
must be publicly accessible.
<<Public,*,*>,dtd.xml:/division/res_
activity/project[./@domain="public"]
/name,read,+,local,hard>

(3) Information about report of public projects must
be publicly accessible.
<<Public,*,*>,dtd.xml:/division/res_

72 E. Damiani et al. / Computer Networks 33 (2000) 59–75

<division name = "Security">
<about_div>
<member>
<name>Bob</name>
<position>Computer Scientist</position>
<e-mail>bob@acme.com</e-mail>

</member>
<member>
<name>Tom</name>
<position>Software Engineering</position>
<e-mail>tom@acme.com</e-mail>

</member>
<contact>
Security Div. - 180 Lane St. - 81231 New Park

</contact>
</about_div>
<res_activity>
<topic> Web security </topic>
<description>The purpose of ... </description>
<project domain = "private">
<name>Access Control</name>
<fund>
<sponsor>IT</sponsor>
<amount>10000</amount>

</fund>
<report code ="R1-99">
<title>A new access control model</title>
<author>Sam</author>
<author>Ron</author>
<text>......</text>

</report>
</project>
<project domain = "public">
<name>Cryptography</name>
<report code ="R2-99">
<title>The study of encryption</title>
<author>Steve</author>
<text>......</text>

</report>
</project>

</res_activity>
<seminar category="internal">
<date>Tues., June 8</date>
<title>Safe statistics</title>
<speaker>Jan</speaker>

</seminar>
<seminar category="public">
<date>Thurs., July 15</date>
<title>UML</title>
<speaker>Karen</speaker>

</seminar>
</division>

Fig. 7. An example of XML document valid with respect to the DTD in Fig. 6.

E. Damiani et al. / Computer Networks 33 (2000) 59–75 73

activity/project[./@domain="public"]
/report,read,+,recursive,hard>

Computer Science department’s policy: specified
at the DTD level and instance level to complement
or override the organization’s policy.
(4) Information about members of any division in

the department is accessible to all members of
the organization (OrgMembers group) unless
otherwise stated by the organization.
<<OrgMembers,*,*>,dtd.xml:/division/
about_div/member,read,+,recursive,
soft>

(5) Information on funds of any division is ac-
cessible only to the members of Admin group
connected from network 145.*.
<<Admin,145.*,*>,dtd.xml:/division//
fund,read,+,recursive,_>
<<Public,*,*>,dtd.xml:/division//

Fig. 8. An example of view on the document in Fig. 7.

fund,read,-,recursive,_>
(6) Information about public seminars of any divi-

sion is publicly accessible.
<<Public,*,*>,dtd.xml:/division/
seminar[./@category="public"],read,
+,recursive,_>

(7) Information about seminars of the Security
division is accessible only to users connected
from network 145.*.
<<Public,145.100.*,*>,sec.xml:/divi
sion/seminar,read,+,recursive,_>
<<Public,*,*>,sec.xml:/division/
seminar,read,-,recursive,_>

(8) Topics and description of research activities of
the Security division are publicly accessible.
<<Public,*,*>,sec.xml:/division/res_
activity/topic,read,+,recursive,_>
<<Public,*,*>,sec.xml:/division/

74 E. Damiani et al. / Computer Networks 33 (2000) 59–75

res_activity/description,read,+,
recursive,_>

(9) Contact information about the Security di-
vision is publicly accessible unless otherwise
stated by the organization.
<<Public},*,*>,sec.xml:/division/
about_div/contact,read,+,local,
soft>

(10) Bob cannot access information about the Se-
curity division projects.
<<Bob,*,*>,sec.xml:/division//
project,read,-,recursive,_>

(11) Information about projects can be accessed by
members of the Security division when con-
nected from hosts in the domain *.com.
<<Security,*,*.com>,sec.xml:divi
sion//project,read,+,recursive,_>

7.3. Document view

We now illustrate an example of document view
visible to a requester in obedience to the authoriza-
tions specified. Consider a request to read the doc-
ument http://www.acme.com/sec.xml describing the
Security division (Fig. 7). The request is submit-
ted by user Bob, who is a member of the Security
group, connected from machine cslab.uniacme.edu
with numeric IP 150.100.80.3. According to DTD-
level authorizations 1 and 4, Bob can access informa-
tion about the members of the division. According
to document-level authorization 10, Bob cannot ac-
cess information on projects. However, for public
projects, this denial is overridden by hard authoriza-
tions 2 and 3 stated by the organization. Finally,
Bob cannot access seminars information, since this
is visible only to connections from network 145.*
(authorizations 7). The resulting view on the docu-
ment of Fig. 7 as returned to Bob is illustrated in
Fig. 8.

8. Conclusions

We have presented an access control system pro-
viding fine-grained access control for XML docu-
ments. The approach proposed is focused on enforc-
ing and resolving fine-grained authorizations with
respect to the data model and semantics. Although

presented in association with a specific approach
to authorization specification and subject identifi-
cation, as supported in the current prototype, its
operation is independent from such approaches and
could then be applied in combination with differ-
ent administrative policies. For instance, it can be
combined with the treatment of roles [15,21] and
of authentication=authorization certificates [7,9]. We
are currently exploring such extensions.

Acknowledgements

The work presented in this paper has been sup-
ported by Esprit Project ‘W3I3’, Esprit Project
‘FASTER’, MURST Project ‘Data-X’ and by the
HP Internet Philanthropic Initiative.

References

[1] AlphaWorks, XML Security Suite, April 1999, http://www.
alphaWorks.ibm.com/tech/xmlsecuritysuite.

[2] T. Berners-Lee, R. Fielding and L. Masinter, Uniform Re-
source Identifiers (URI): Generic Syntax, 1998, http://www.
isi.edu/in-notes/rfc2396.txt.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad
and M. Stal, Pattern-Oriented Software Architecture — A
System of Patterns, Wiley, New York, 1996.

[4] S. Castano, M.G. Fugini, G. Martella and P. Samarati,
Database Security, Addison-Wesley, Reading, MA, 1995.

[5] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi
and L. Tanca, XML-GL: A graphical language for querying
and restructuring XML documents, in: Proc. 8th Interna-
tional Conference on the World Wide Web, Toronto, May
1999.

[6] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi and
P. Samarati, Securing XML documents, in: Proc. 2000 In-
ternational Conference on Extending Database Technology
(EDBT2000), Konstanz, March 2000 (in press).

[7] B. Gladman, C. Ellison and N. Bohm, Digital signatures,
certificates and electronic commerce, http://www.clark.net/
pub/cme/html/spki.html.

[8] S. Jajodia, P. Samarati, V.S. Subramanian and E. Bertino,
A unified framework for enforcing multiple access control
policies, in: Proc. 1997 ACM International SIGMOD Con-
ference on Management of Data, Tucson, AZ, May 1997.

[9] J. Kahan, WDAI: a simple World Wide Web distributed au-
thorization infrastructure, in: Proc. 8th International World
Wide Web Conference, May 1999.

[10] S. Lewontin and M.E. Zurko, The DCE project: providing
authorizations and other distributed services to the World
Wide Web, in: Proc. 2nd World Wide Web Conference,

E. Damiani et al. / Computer Networks 33 (2000) 59–75 75

October 1994, http://www.ncsa.uiuc.edu/SDG/IT94/Procee
dings/Security/lewontin/Web_DCE_Conf_94.html.

[11] T.F. Lunt, Access control policies for database systems,
in: C.E. Landwehr (Ed.), Database Security, II: Status and
Prospects, North-Holland, Amsterdam, 1989, pp. 41–52.

[12] S. Mazzocchi, Cocoon User Manual, http://xml.apache.org/
cocoon.

[13] J.D. Moffett and M. Sloman, Policies hierarchies for dis-
tributed systems management, IEEE Journal of Selected
Areas in Communications 11 (9) (1993) 1404–1414.

[14] P. Samarati, E. Bertino and S. Jajodia, An authorization
model for a distributed hypertext system, IEEE Transactions
on Knowledge and Data Engineering 8 (4) (1996) 555–562.

[15] Youman, Role-based access control models, IEEE Com-
puter 29 (2) (1996) 38–47.

[16] World Wide Web Consortium (W3C), Document Object
Model (DOM) Level 1 Specification Version 1.0, October
1998, http://www.w3.org/TR/REC-DOM-Level-1.

[17] World Wide Web Consortium (W3C), Document Object
Model (DOM) Level 2 Specification Version 1.0., Septem-
ber Working Draft 1999, http://www.w3.org/TR/WD-DOM
-Level-2.

[18] World Wide Web Consortium (W3C). Extensible Stylesheet
Language (XSL) Specification, April 1999, http://www.w3.
org/TR/WD-xsl.

[19] World Wide Web Consortium (W3C), Resource Descrip-
tion Framework (RDF) Model and Syntax Specification,
February 1999, http://www.w3.org/TR/REC-rdf-syntax.

[20] World Wide Web Consortium (W3C), XML Path Language
(XPath), November 1999, http://www.w3.org/TR/xpath.

[21] M.E. Zurko, R. Simon and T. Sanfilippo, A user-centered,
modular authorization service built on an RBAC founda-
tion, in: Proc. 20th IEEE Symposium on Security and
Privacy, Oakland, May 1999, pp. 57–71.

Ernesto Damiani holds a laurea de-
gree in ingegneria elettronica from
the University of Pavia and a PhD
degree in computer science from the
University of Milano. He is currently
an assistant professor at the campus
located in Crema of the University
of Milano. His research interests in-
clude distributed and object-oriented
systems, semi-structured information
processing and soft computing.

Sabrina De Capitani di Vimercati
is an assistant professor at Dipar-
timento di Elettronica per l’ Au-
tomazione of the University of Bres-
cia. Her research interests are in
the area of information security,
databases, and information systems.
She has been an international fel-
low in the Computer Science Lab-
oratory at SRI, CA (USA). She is
co-recipient of the ACM-PODS’99
Best Newcomer Paper Award.

Stefano Paraboschi is an associate
professor at the Dipartimento di
Elettronica e Informazione of Po-
litecnico di Milano. He received the
laurea degree in ingegneria elettron-
ica in 1990, and a PhD in ingegne-
ria informatica in 1994, both from
Politecnico di Milano. His main re-
search interests are in the area of
databases, with a focus on active
databases, data warehouses, and the
construction of data-intensive Web

sites. He is the author, together with Paolo Atzeni, Stefano Ceri,
and Riccardo Torlone, of the book ‘Database Systems: Concepts,
Languages and Architectures’ (McGraw-Hill, 1999).

Pierangela Samarati is an associate
professor at the Department of Com-
puter Science of the University of
Milan. Her main research interests
are in data and application security.
She has been computer scientist in
the Computer Science Laboratory at
SRI, CA (USA). She has been a vis-
iting researcher at the Computer Sci-
ence Department of Stanford Uni-
versity, CA (USA), and at the ISSE
Department of George Mason Uni-

versity, VA (USA). She is co-author of the book ‘Database Se-
curity’, Addison-Wesley, 1995. She is co-recipient of the ACM-
PODS’99 Best Newcomer Paper Award.

