
The Specification and Enforcement of
Authorization Constraints in Workflow
Management Systems

ELISA BERTINO and ELENA FERRARI
Università di Milano
and
VIJAY ATLURI
Rutgers University

In recent years, workflow management systems (WFMSs) have gained popularity in both
research and commercial sectors. WFMSs are used to coordinate and streamline business
processes. Very large WFMSs are often used in organizations with users in the range of
several thousands and process instances in the range of tens of thousands. To simplify the
complexity of security administration, it is common practice in many businesses to allocate a
role for each activity in the process and then assign one or more users to each role—granting
an authorization to roles rather than to users. Typically, security policies are expressed as
constraints (or rules) on users and roles; separation of duties is a well-known constraint.
Unfortunately, current role-based access control models are not adequate to model such
constraints. To address this issue we (1) present a language to express both static and
dynamic authorization constraints as clauses in a logic program; (2) provide formal notions of
constraint consistency; and (3) propose algorithms to check the consistency of constraints and
assign users and roles to tasks that constitute the workflow in such a way that no constraints
are violated.

Categories and Subject Descriptors: H.2.0 [Database Management]: General—Security,
integrity, and protection

General Terms: Security

Additional Key Words and Phrases: Access control, authorization constraints, role and user
planning

The work of V. Atluri was partially supported by the National Science Foundation under grant
IRI-9624222, and by the National Security Agency under grant MDA904-96-1-0127.
A preliminary version of this paper, entitled “A Flexible Model Supporting the Specification
and Enforcement of Role-Based Authorizations in Workflow Management Systems,”appeared
in the Proceedings of the Second ACM Workshop on Role-Based Access Control, (Fairfax, VA.,
Nov. 6–7). ACM, New York, 1997, pp. 1–12.
Authors’ addresses: E. Bertino and E. Ferrari, Dipartimento di Scienze dell’Informazione,
Università di Milano, Via Comelico 39/41, Milan, 20135, Italy; email: bertino@dsi.unimi.it;
ferrarie@dsi.unimi.it; V. Atluri, Center for Information Management, Integration and Connec-
tivity and MS/IS Department, Rutgers University, 180 University Avenue, Newark, NJ 07102;
email: atluri@andromeda.rutgers.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 1094-9224/99/0200–0065 $5.00

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999, Pages 65–104.

1. INTRODUCTION

Background: Workflow management systems (WFMSs) are used to run
day-to-day applications in numerous application domains including office
automation, finance and banking, healthcare, telecommunications, manu-
facturing, and production. A workflow separates the various activities of a
given organizational process into a set of well-defined tasks [Georgakopou-
los et al. 1995]. The various tasks in a workflow are usually carried out by
several users in accordance with the organizational rules relevant to the
process represented by the workflow. The stringent security requirements
imposed by many workflow applications, like the ones above, call for
suitable access control mechanisms. An access control mechanism enforces
the security policy of the organization, typically expressed as a set of
authorizations. This is carried out by performing a check against the set of
authorizations, which are nothing but permissions granted to users, to
determine whether a user wishing to execute a given action on a specified
object is actually authorized to do so.

Quite often, security policies are expressed in terms of the roles within
the organization rather than individuals (e.g., only the president can pass
or veto a bill). Roles represent organizational agents to perform certain job
functions within the organization. Users in turn are assigned appropriate
roles based on their qualifications and responsibilities. To represent such
organizational security policies directly, an access control mechanism must
be capable of supporting roles. Specifying authorizations on roles is not
only convenient but reduces the complexity of access control because the
number of roles in an organization is significantly smaller than that of
users. Moreover, the use of roles as authorization subjects, instead of users,
avoids having to revoke and regrant authorizations whenever users change
their positions and/or duties within the organization. Furthermore, role-
based authorization is particularly beneficial in workflow environments in
facilitating dynamic load balancing when a task can be performed by
several individuals. As a matter of fact, commercial WFMSs, such as Lotus
Notes and Action Workflow, support role-based authorizations [Georgako-
poulos et al.1995; Lotus Corporation 1996; Medina-Mora et al. 1993].

Motivation: A common drawback of role-based authorization models used
in current WFMSs (or even DBMSs) is their inability to model authoriza-
tion constraints on roles. A typical authorization constraint, which is very
relevant and well known in the security area, is separation of duties [Clark
and Wilson 1987; Sandhu 1991]. Separation of duties aims at reducing the
risk of fraud by not allowing any individual to have sufficient authority
within the system to perpetrate a fraud on his own. Separation of duties is
a principle often applied in everyday life; for example, opening a safe
requires two keys, held by different individuals; approval of a business trip
requires permission by the department manager as well as by an accoun-
tant; and a paper submitted to a conference requires review by three
different, impartial referees.

66 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

Under the principle of separation of duties, a complex action is decom-
posed into several smaller steps, which are executed by different individu-
als. Therefore, perpetrating a fraud would require the collusion of several
individuals, thus making it more difficult. Even though separation of duties
has been applied to computerized information systems, current WFMSs
provide no support for it. However, because a workflow decomposes a
complex activity into a number of smaller well-defined tasks, we believe
that separation of duties could naturally fit into workflow models.

Example 1.1 As an example, consider a simple activity dealing with a
tax refund, which can be modeled by a workflow consisting of four tasks to
be executed sequentially:

—Task T1: A clerk prepares a check for a tax refund.

—Task T2: A manager can approve or disapprove the check. This task
should be performed twice by two different managers. The check will be
issued if both the managers approve it; it will be voided otherwise.

—Task T3: The decisions of the managers are collected and the final
decision is made. The manager who collects the results must be different
from those executing task T2.

—Task T4: A clerk issues or voids the check based on the result of task T3;
the clerk issuing or voiding the check must be different from the clerk
who prepared the check.

The tax refund workflow is illustrated in Figure 1.

The above example illustrates the use of roles and both static and
dynamic separation of duties. Each task is assigned a role; namely T1 and
T4 must be executed by a role “clerk,” whereas T2 and T3 must be executed
by a role “manager.” So the various duties, and the corresponding authori-
zations, are statically separated by imposing the rule that different roles

Fig. 1. Workflow representing the tax refund process.

The Specification and Enforcement of Authorization Constraints • 67

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

execute different tasks. An example of dynamic separation of duties is the
constraint that a particular clerk must not execute both tasks T1 and T4 for
the same check. However, he or she can perform task T1 on some checks,
while performing task T4 for other checks. Therefore, a clerk cannot issue
or void a check he or she prepared.

If there is no proper support, constraints such as separation of duties
must be implemented as application code and embedded into the various
tasks. Such an approach makes the specification and management of
authorization constraints dificult if not impossible, given the large number
of tasks that typically occur in a workflow.

Contributions: In this paper we present a language for defining con-
straints on role assignment and user assignment to tasks in a workflow. By
using this language, we can express conditions constraining the users and
roles that can execute a given task. Such constraint language supports,
among other functions, both static and dynamic separation of duties.
Because the number of tasks and constraints can be quite large, a relevant
issue is to provide some formal notions of constraint consistency and devise
algorithms for consistency checking. We show how such constraints can be
formally expressed as clauses in a logic program, so that we can exploit all
the results available in logic programming and deductive database areas. A
further contribution of this paper is the development of algorithms for
planning role and user assignments to the various tasks. The goal of the
planner is to generate a set of possible assignments, so that all constraints
stated as part of the authorization specification are satisfied. The planner
is activated before the workflow execution starts to perform an initial plan.
This plan can, however, be dynamically modified during workflow execu-
tion to account for specific situations, such as aborting a task. To our
knowledge, this is the first approach proposed to systematically address the
problem of assigning roles and users to tasks in a workflow.

Related work: Although the concept of roles is not new in paper-based
systems, specification of access control based on roles received attention
only recently [Jonscher et al. 1994; Proc. 1996; Nyanchama and Osborn
1993; Sandhu 1996; Sandhu et al. 1996]. The work by Jonscher et al. [1994]
describes a role-based access control scheme for object-oriented data mod-
els. Sandhu et al. [1996] present a framework of four role-based access
control models. Both papers recognize the need for constraints on roles (in
fact, in many cases, constraints are the primary motivation for role-based
access control). Although Sandhu et al. [1996] identify several types of
constraints, Jonscher et al. [1994] model some constraints resulting from
the separation of duties using the activation conflict relation (to reflect
constraints such as that the author of a paper cannot act as its referee) and
the association conflict relation (to capture the notion of mutually exclusive
roles). However, these attempts are not sufficient to model all the con-
straints required in WFMSs, such as the check-preparation example out-
lined earlier, because they do not attempt to capture the history of events.

68 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

Significant work in this direction is due to Sandhu [1991] and Nyanchama
and Osborn [1993]. To enforce separation of duties, Sandhu [1991] intro-
duced the notion of transaction control expression, whereas Nyanchama
and Osborn [1993] use history, similar to transaction control expressions.
This research, however, does not focus on consistency checking. Moreover,
prior research did not attempt to specify access control in terms of activi-
ties or tasks (although some preliminary effort was made in Thomas and
Sandhu [1997]); so it is inadequate for WFMSs.

Other related work includes Nyanchama and Osborn’s [1996], which
shows how mandatory access control can be modeled in role-based security
systems, and Sandhu’s [1996], which shows how lattice-based mandatory
access controls can be enforced using role-based access control components.

Organization of the paper: Section 2 introduces preliminary definitions
and assumptions. Section 3 categorizes the various types of constraints
that can be specified on workflows. Section 4 provides a logical framework
to express the various types of constraints. It also presents our notion of
constraint consistency. Section 5 presents a methodology to assign roles
and users to tasks in a workflow, according to the specified constraints.
Section 6 presents our system’s architecture. Section 7 concludes the paper
and outlines future work. Appendix A reports all the atoms and literals
that can be expressed in our constraint specification language; formal
proofs appear in Appendix B.

2. PRELIMINARIES

In our model, as in most WFMSs, we make the assumption that a workflow
consists of several tasks to be executed sequentially. A task can be executed
several times within the same workflow. We call such an occurrence of a
given task T an activation of T. All activations of a task must be completed
before the next task in the workflow can begin. Each task is associated with
one or more roles, which are are the only ones authorized to execute a task.
We allow multiple roles to be authorized for the execution of a task. We
refer to the association of roles with tasks in a workflow as workflow role
specification. In the remainder of this paper, U, 5, and 7 denote, respec-
tively, the set of users, the set of roles, and the set of tasks in a given
workflow.

A user can be authorized to play several roles. Moreover, a role may be
played by several users. We assume that there is some mechanism that
associates users with roles.1 We assume that a user is explicitly assigned to
a given role and that this assignment gives him or her the right to play the
role. Whenever a user tries to execute a task, the access control system
checks whether a role authorized to execute the task exists and whether

1A common mechanism is to maintain a table consisting of users and the list of roles the users
are authorized to play. Authorizations to play a role are granted by role administrators; but
these aspects are not relevant to the current paper.

The Specification and Enforcement of Authorization Constraints • 69

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

the user is authorized to play that role. In the following, Ui denotes the set
of users authorized to play role Ri.

We assume that roles are related by a global partial order s . Such an
order usually reflects the organizational position of roles within an organi-
zation. Let Ri, Rj [5 be roles. We say that Ri dominates Rj if Ri s Rj.
Figure 2 illustrates an example of role order, where there is an arc from
role Ri to role Rj if Ri s Rj. We assume by default that if Ri dominates Rj,
then Rj should be given higher priority over Ri when assigning a role to the
task. However, if no authorized user to play role Rj is available to execute
the task, then the task can be executed by any user playing role Ri.

Example 2.1 Consider the roles in Figure 2 and suppose that role
Refund Clerk is associated with task T1 of our tax refund processing
example. This means that, by default, the task of preparing a check is
assigned to Refund Clerk . However, if no user authorized to play role
Refund Clerk is available to execute the task, then the task can be
executed by any user playing role Refund Manager or General Manager ,
since both Refund Manager and General Manager precede Refund Clerk
in the role order.

Moreover, we allow the possibility of locally refining the global order. For
each task of the workflow, the global order can be refined by specifying
additional local order relationships for roles where there is no relationship
in the global order. Let Ti be a task and let RSi be the set of roles
authorized to execute Ti. The partial local order for RSi is denoted s i. For
example, suppose that RSi 5 $R1, R2% and RSj 5 $R2, R3%, with R1 s R2 in
the global order. The global order can be refined for task Tj by imposing
R2 s j R3 (or R3 s j R2) because no order relationship is imposed between R2

and R3 in the global order. By contrast, no refinement can be performed for
task Ti because the set of roles associated with task Ti is totally ordered by
the global order.

As a final remark, note that if several roles are authorized to execute a
task and no order for those roles is specified in the global and local orders,

Fig. 2. An example of role order.

70 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

the task can be performed by any of the roles. For instance, if RSi 5 $R1,
R2% and none of R1 s R2, R2 s R1, R1 s i R2, R2 s i R1 hold, then any user
who can play role R1 or role R2 can perform task Ti.

A workflow role specification is formally defined as follows.

Definition 2.1 (Workflow role specification). A workflow role specifica-
tion W is a list of task role specifications @TRS1, TRS2, . . . , TRSn#, where
each TRSi is a 3-tuple ~Ti, ~RSi, s i!, acti! where Ti [7 is a task, RSi

5 is the set of roles authorized to execute Ti, s i is a local role order
relationship, and acti [IN is the number of possible activations of task Ti.
The workflow tasks are sequentially executed in order of appearance in the
workflow role specification.

In the following, we use the term workflow and workflow role specifica-
tion as synonyms.

Note: from the above definition, we assume that the number of possible
activations of each task within a workflow is known when the workflow role
specification is given. Such a number is used by the planner when generat-
ing the actual role and user assignments for tasks. It can be considered the
maximum number or the average number of expected activations. Because
the planner will be re-activated during workflow execution to deal with
possible execution exceptions, it is not crucial that the number of activa-
tions given by the specification be the actual one. However, a correct
estimate will reduce the planning overhead at runtime.

A workflow may have several workflow instances. We assume that each
instance inherits the same workflow role specification from the workflow
where it was generated. We also assume that each task activation, within a
workflow instance, is executed by a single user. Such a user must belong to
one of the roles authorized to execute the task. However, different activa-
tions of the same task within a workflow instance may be executed by the
same user or different users, depending on role authorization constraints
specified for the workflow (see the next section).

Example 2.2 A possible specification for the workflow of Example 1.1 is:
W 5 [(T1,({Refund Clerk }, {}), 1), (T2,({Refund Manager, General

Manager }, {}), 2), (T3,({Refund Manager , General Manager }, {}), 1),
(T4,({Refund Clerk ,}, {}), 1)].2

Throughout the paper we use W as running example. Moreover, we
assume that roles in W are related according to the global role order
depicted in Figure 2.

2‘{}’ denotes that no local role order is specified.

The Specification and Enforcement of Authorization Constraints • 71

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

3. CONSTRAINTS ON ROLE AND USER ASSIGNMENTS

Constraints on role and user assignments to tasks in a workflow can be of
several different types. In the following, we categorize them into three
main categories according to the time at which they can be evaluated.

(1) Static constraints can be evaluated without executing the workflow.

(2) Dynamic constraints can be evaluated only during the execution of the
workflow, because they express restrictions based on the execution
history of the workflow.

(3) Hybrid constraints. Constraints whose satisfiability can be partially
verified without executing the workflow.

Example 3.1 Consider the following constraints specified for the work-
flow of Example 2.2.

C1 At least three roles must be associated with the workflow.

C2 Task T2 must be executed by a role dominating the roles that execute
tasks T1 and T4, unless T1, T2, and T4 are executed by the role
General Manager .

C3 If a user belongs to role Refund Clerk and has performed task T1,
then he/she cannot perform T4.

C4 If a user has performed task T2, then he/she cannot perform task T3.3

C5 Each activation of task T2 must be executed by a different user.

C6 If more than four activations of task T1, within the same workflow,
executed by one single individual abort, then the same person cannot
execute task T1 anymore.4

C7 If Bob executes task T2, then he cannot execute task T4.

Constraint C1 is a static constraint since the number of roles associated
with the workflow can be checked by simply considering the workflow role
specification.

Constraints C2, C3, C4, C5, and C7 are hybrid constraints. A preliminary
consistency verification can be performed for these constraints without
executing the workflow. If they are found inconsistent, they will certainly
not be satisfied by the workflow execution. For instance, if a single user is
associated with task T2, constraint C5 will never be satisfied during
workflow execution. If, however, the above condition is not verified, it is
necessary to check during workflow execution that whenever a user exe-
cutes an activation of task T2, the same user does not execute any further

3Constraints C3 and C4 implement dynamic separation of duties.
4By task abortion we mean that the task is not successfully completed, due to user errors or
other errors, such as software or hardware anomalies.

72 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

activation of task T2. Similarly, constraint C2 will never be satisfied at
execution time if each role associated with task T2 is dominated by the least
upper bound of the set of roles associated with T1 or T4. Finally, constraint
C6 is dynamic, since no check on its consistency can be performed without
executing the workflow.

4. FORMAL CONSTRAINT MODEL

In order to provide a semantic foundation for our constraint model and to
formally prove consistency, we represent constraints as clauses in a normal
logic program [Lloyd 1984]. We recall that clauses in a normal logic
program may contain negative literals in their body.

In the remainder, we formally define the language to express authoriza-
tion constraints, and then present the notion of constraint-base, which is
the logic program encoding the constraints of a given workflow, and discuss
consistency issues.

Note that the language we present is not intended as the end-user
language for expressing constraints. Rather, this language is used inter-
nally by the system to analyze and enforce constraints. On top of this
language, a visual programming environment can be developed along the
lines of the system discussed in Chang et al. [1997].

4.1 Constraint Specification Language

We specify our constraint specification language by defining the set of
constants, variables, and predicate symbols. We then define the rules that
can be expressed in the language.

In the following, # denotes a set of constraint identifiers.

—Constant symbols: Every member of U (the set of users), 5 (the set of
roles), 7 (the set of tasks), # (the set of constraints), and IN (the set of
natural numbers).

Table I. Specification Predicates

Predicate Arity Argument types Meaning

role 2 RT, TT If role ~Ri, Tj! is true, then role Ri [RSj;
user 2 UT, TT If user ~ui, Tj! is true, then there exists Rk

[RSj such that ui [Uk;
belong 2 UT, RT If belong ~ui, Rj! is true, then user ui [Uj;
glb 2 RT, TT glb ~Ri, Tj! is true if role Ri is the greatest

lower bound of RSj, wrt the global order;
lub 2 RT, TT lub ~Ri, Tj! is true if role Ri is the least

upper bound of RSj, wrt the global order;
s 2 RT, RT Ri s Rj is true if Ri dominates Rj in the

global role order;
sk 2 RT, RT Ri sk Rj is true if Ri dominates Rj in the

local role order associated with task Tk.

The Specification and Enforcement of Authorization Constraints • 73

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

—Variable symbols: There are five sets of variable symbols ranging over
the sets U, 5, 7, #, and IN, denoted as VU, V5, V7, V#, and VIN,
respectively. In the following we denote with UT (i.e., user terms) the set
VU ø U. Similarly, RT, TT, CT, NT denote the sets V5 ø 5, V7 ø 7,
V# ø #, and VIN ø IN, respectively.

—Predicate symbols: The set of predicate symbols consists of five sets: (1) a
set of specification predicates 63, expressing information on the specifi-
cation of a workflow; (2) a set of execution predicates %3, capturing the
effect of a workflow execution; (3) a set of planning predicates 33,
expressing the restrictions imposed by the constraints on the set of
roles/users that can execute a task and information on constraint satisfi-
ability; (4) a set of comparison predicates #3, capturing comparison
operators. #3 includes the binary predicate 5 , whose arguments are
elements in UT, RT, TT, NT, and binary predicates ,, #, ., $,
whose arguments are elements in NT; (5) a set of aggregate predicates
!3, capturing aggregate operators.5

Predicates belonging to 63, %3, 33, and !3 are listed in Tables I, II, III,
and IV, respectively, whereas Appendix A reports all the atoms and literals
that can be specified on the basis of the predicate symbols in our language.

A rule r is an expression of the form:

H 4 A1, . . . , An, not B1, . . . , not Bm, n, m $ 0

where H, A1, . . . , An and B1, . . . , Bm are atoms and not denotes nega-
tion by failure [Lloyd 1984]. H is the head of the rule, whereas A1, . . . ,
An, not B1, . . . , not Bm is the rule body. Rules that can be expressed in
our language can be classified into a set of categories according to the
predicate symbols they contain. In the following, we illustrate each of these
categories.

5Aggregate predicates in !3 are those defined in Das [1992].

Table II. Execution Predicates

Predicate Arity Argument types Meaning

execute u 3 UT, TT, NT If execute u~ui, Tj, k! is true, then the k-th
activation of task Tj is executed by user ui;

execute r 3 RT, TT, NT If execute r~Ri, Tj, k! is true, then the k-th
activation of task Tj is executed by a user
belonging to role Ri;

abort 2 TT, NT abort ~Ti, k! is true if the k-th activation of
task Ti within a workflow aborts;

success 2 TT, NT success ~Ti, k! is true if the k-th activation
of task Ti within a workflow successfully
executes.

74 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

Definition 4.1 (Explicit rule). An explicit rule is of the form H 4, where
H is either a specification or an execution atom.

Explicit rules are facts, as their bodies are always empty. Explicit rules
whose head is a specification atom express workflow role specifications,
such as the roles assigned to each task and the global/local role order.
These rules are automatically generated from the workflow role specifica-
tion. Explicit rules whose head is an execution atom are generated either
by the system during workflow execution, or by the planner to generate role
(user) assignments. For example, upon the execution of the k-th activation
of task Ti either the rule abort ~Ti, k! 4, or success ~Ti, k! 4 is
generated, depending on whether the k-th activation of task Ti aborts or
successfully executes.

Definition 4.2 (Assignment rule). An assignment rule takes the form H
4 L1, . . . , Ln, where H is either a must_execute u, must_execute r,
cannot_do u, or a cannot_do r atom, and Li is either a specification,
execution, comparison literal, or an aggregate atom, i 5 1, . . . , n.

An assignment rule expresses restrictions on the set of roles/users that
can execute a given task. Intuitively, assignment rules with a must_ex-
ecute r or must_execute u as a head say that a role/user must execute a
given task in order to ensure constraint consistency. Assignment rules with
a cannot_do r or cannot_do u as a head say that a role/user must be
prevented from executing a given task.

Definition 4.3 (Static checking rule). A static checking rule is of the form
statically_checked ~Ci! 4 L1, . . . , Ln , where Ci is an element of #,
and Li is either a specification or comparison literal, or an aggregate atom,

Table III. Planning Predicates

Predicate Arity Argument types Meaning

cannot_do u 2 UT, TT If cannot_do u~ui, Tj! is true, then
task Tj cannot be assigned to user ui;

cannot_do r 2 RT, TT If cannot_do r~Ri, Tj! is true, then
task Tj cannot be assigned to a user
belonging to role Ri;

must_execute u 2 UT, TT If must_execute u~ui, Tj! is true, then
task Tj must be executed by user ui;

must_execute r 2 RT, TT If must_execute r~Ri, Tj! is true, then
task Tj must be executed by a user
belonging to Ri;

statically_checked 1 CT If statically_checked ~Ci! is true,
then the satisfiability of constraint Ci

can be verified without executing the
workflow

panic 0 If panic is true, then there exists a
workflow constraint that is not
satisfiable

The Specification and Enforcement of Authorization Constraints • 75

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

i 5 1, . . . , n. Each literal appearing in an aggregate atom of a static
checking rule must be either a specification or a comparison literal.

A static checking rule states that the satisfiability of a workflow con-
straint can be verified without executing the workflow. These rules are
automatically generated by the system to avoid redundant checks at
execution time.6

Definition 4.4 (Integrity rule). An integrity rule is of the form panic

4 L1, . . . , Ln, where Li is a specification, execution, comparison literal,
or an aggregate atom, i 5 1, . . . , n.

Integrity rules are used to model the nonsatisfiability of a given con-
straint.

Rules of our language can be further categorized into static and dynamic
rules according to the time at which they can be evaluated.

Definition 4.5 (Static rule). A static rule is either an explicit, assign-
ment, static checking or integrity rule such that all literals in the rule body
are specification, aggregate, or comparison literals. Each literal in an
aggregate atom of a static rule must be either a specification or a compar-
ison literal.

6We will elaborate on this aspect in Section 4.3.

Table IV. Aggregate Predicates

Predicate Arity Argument types Meaning

count 2 conjunction of specification,
execution or comparison
literals, NT

count ~W, n! counts number of
different answers of query 4 W and
returns this value as n;

avg 3 variable1, conjunction of
specification, execution or
comparison literals, NT

avg ~x, W, n! computes average values
of variable x obtained from all the
different answers of query 4 Wand
returns this value as n;

min 3 variable1, conjunction of
specification, execution or
comparison literals, NT

min ~x, W, n! computes minimum of
the values of variable x obtained from
all the different answers of query 4
W, and returns this value as n;

max 3 variable1, conjunction of
specification, execution or
comparison literals, NT

max~x, W, n! computes maximum of
the values of variable x obtained from
all the different answers of query 4
W, and returns this value as n;

sum 3 variable1, conjunction of
specification, execution or
comparison literals, NT

sum~x, W, n! computes sum of values
of variable x obtained from all the
different answers of query 4 W, and
returns this value as n;

Legend:
1The variable is one of the bound variables of the conjunction of literals.

76 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

Intuitively, static rules are those that can be evaluated without executing
the workflow. They are used to encode the static constraints associated
with a workflow.

Definition 4.6 (Dynamic rule). A dynamic rule is an explicit, assign-
ment, or integrity rule containing at least an execution literal. The execu-
tion literal can appear either explicitly or as an argument of an aggregate
literal.

Dynamic rules must be evaluated during workflow execution. These rules
are used to encode dynamic and hybrid constraints.

Table V summarizes the various types of rules supported by our lan-
guage.

4.2 Constraint-Base

We associate with each workflow W a constraint-base (CB); that is, a set of
rules specified in the constraint specification language, encoding the con-
straints defined on the workflow. A constraint-base is formally defined as
follows.

Definition 4.7 (Constraint-base). Let W be a workflow. The constraint-
base associated with W (written CB~W!), consists of a set of explicit,
assignment, and integrity rules. The set of explicit rules are determined
according to the conditions specified in Table VI.

We assume that each rule in the CB has a unique label assigned by the
system upon its insertion. Since several rules may be necessary to encode a

Table V. Constraint Specification Language Rules

Rule Head Body

explicit execution or specification atom Empty
assignment must_execute u, must_execute r,

cannot_do u, or cannot_do r atom;
Specification, execution, or
comparison literals, or aggregate
atoms;

static checking statically_checked atom; Specification or comparison literals,
or aggregate atoms. Each literal in
an aggregate atom is a specification
or a comparison literal;

integrity panic atom; Specification, execution, or
comparison literals, or aggregate
atoms;

static planning or specification atom; Specification or comparison literals,
or aggregate atoms. Each literal in
an aggregate atom is a specification
or comparison literal;

dynamic planning, specification , or
execution atom;

Specification, execution, or
comparison literals, or aggregate
atoms. At least a literal in the rule
must be an execution literal.

The Specification and Enforcement of Authorization Constraints • 77

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

single constraint, throughout this paper we use the notation Ri, j to denote
the j-th rule used to encode constraint Ci, i, j [IN.

Example 4.1 Consider the workflow W of Example 2.2, the global role
order in Figure 2, and the constraints of Example 3.1. CB~W! is as
follows:7

R1,1 : panic 4 count (role ~Ri, Tj!, n), n , 3
R1,1 : cannot_do r~Ri, T2! 4 execute r~Rj, T1, k!, Rj 2s Ri,

Ri Þ General Manager ;
R2,2 : cannot_do r~Ri, T2! 4 execute r~Rj, T1, k!, Rj ê Ri, Ri ê Rj;
R2,3 : cannot_do r~Ri, T4! 4 execute r~Rj, T2, k!, Ri 2s Rj,

Ri Þ General Manager ;
R2,4 : cannot_do r~Ri, T4! 4 execute r~Rj, T2, k!, Rj ê Ri, Ri ê Rj;
R3,1 : cannot_do u~Ui, T4! 4 belong (Ui,Refund Clerk), execute u

~Ui, T1, k!;
R4,1 : cannot_do u~Ui, T3! 4 execute u~Ui, T2, k!;
R5,1 : cannot_do u~Ui, T2! 4 execute u~Ui, T2, k!;
R6,1 : cannot_do u~Uj, T1! 4 count (abort ~T1, k!, execute u

~Uj, T1, k, n!, n . 4;
R7,1 : cannot_do u(Bob, T4) 4 execute u(Bob, T2, k).

Moreover, let {John,Mary,Tom } be the users authorized to play the role
Refund Manager , {Ken,Meg } be the users authorized to play the role
General Manager , and {Bob,Sam,Matt,Alice } be the users authorized to
play the role Refund Clerk . According to the rules in Table VI, CB~W!
contains the explicit rules listed in Figure 3.

Note that the rule generation process is driven by the task execution
order. The task execution order is given by the order in which the tasks
appear in the workflow role specification (cfr., Definition 2.1). For instance,
consider constraint C3 of Example 3.1. Such constraint is encoded by rule
R3,1 of Example 4.1 because we know that task T1 is always executed before
T4. If no information on the task order is known, the rule cannot_do u~Ui,
T1! 4 belong (Ui, Refund Clerk), execute u~Uj, T4, k! would also be
generated.

In order to completely define the notion of CB, a semantics must be
assigned to it. We consider stable model semantics of logic programs with
negation [Gelfond and Lifschitz 1988] to identify the models of a CB. The
following proposition ensures the uniqueness of the CB model.

PROPOSITION 4.1 Any CB is a stratified normal program. Hence, it has a
unique stable model.

7For brevity, in the example we use the form Rj 2s Ri as a shortcut for the disjunction (using
two clauses) Rj s Ri and Rj 5 Ri.

78 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

We refer the reader to Appendix B for the formal proof.
Proposition 4.1 ensures that the stable model of a CB is identical to the

well-founded model [Van Gelder et al. 1991]. In the following, we use
M~CB! to denote the meaning of a CB with respect to stable model
semantics.

4.3 Enhancing the CB for Consistency Checking

In the previous section we showed how workflow constraints can be
naturally encoded by a logic program (i.e., the CB) expressed in our
constraint specification language. The next step is to verify the consistency
of the constraints with respect to the workflow specification. (Consistency
checking is dealt with in the following section.) Here we explain how the
CB can be modified to make the consistency checking process more effi-
cient.

Table VI. CB Explicit Rules

Rule Condition

Ri s Rj 4 @Ri, Rj [5 such that Ri dominates Rj in the global role order;
Ri sk Rj 4 @Tk [7, @Ri, Rj [RSk such that Ri dominates Rj in the

local role order associated with task Tk;
role ~Ri, Tj! 4 @Ri [5, @Tj [7, such that Ri [RSj;
user ~ui, Tj! 4 @ui [U , @Tj [7 such that ?Rk [RSj with ui [Uk;
belong ~ui, Rj! 4 @ui [U, @Rj [5 such that ui [Uj;
glb ~Rj, Ti! 4 @Rj [5 , @Ti [7 such that Rj 5 glb~RSi! wrt the global

order;
lub ~Rj, Ti! 4 @Rj [5 , @Ti [7 such that Rj 5 lub~RSi! wrt the global

order;
execute r~Ri, Tj, k! 4 @Ri [5, @Tj [7, @k [IN such that Ri executes the k-th

activation of Tj;
execute u~ui, Tj, k! 4 @ui [U , @Tj [7, @k [IN such that user ui executes the

k-th activation of Tj;
abort ~Ti, k! 4 @Ti [7, @k [IN such that the k-th activation of Ti aborts;
success ~Ti, k! 4 @Ti [7, @k [IN such that the k-th activation of Ti

successfully executes.

Fig. 3. Explicit rules for the workflow of Example 2.2.

The Specification and Enforcement of Authorization Constraints • 79

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

The CB of a workflow encodes static constraints by a set of static rules,
and hybrid and dynamic constraints by a set of dynamic rules.8 This
implies that, at static time, we are only able to verify the consistency of
static constraints.

However, for some hybrid constraints, it is possible to perform a prelim-
inary static analysis on their consistency with respect to workflow specifi-
cation.

The following example elucidates the discussion.

Example 4.2 It is possible to statically verify that constraint C5 of
Example 3.1 will never be satisfied if the number of users authorized to
execute task T2 is less than 2. Similarly, if Bob is not among the users
authorized to execute both T2 and T4, no further check on C7 at execution
time is needed, since no execution can violate C7. Thus constraint C7 can be
pruned from the CB before workflow execution.

Note that static conditions for checking the consistency of hybrid con-
straints are crucial in reducing the overhead of constraint checking at
execution time. Therefore, before executing consistency checking for the
CB, we complement it with a set of static consistency rules. Static consis-
tency rules are static rules, expressed in our constraint specification
language, encoding the checks that can be performed on the consistency of
hybrid constraints without executing the workflow. These rules are auto-
matically generated by the system on the basis of the rules in the CB
encoding hybrid constraints.

Example 4.3 Consider the CB of Example 4.1. The following static
consistency rules are generated by the system:

R2,5 : cannot_do r~Ri, T2! 4 role ~Ri, T2!, lub ~Rj, T1!, Rj s Ri;
R2,6 : cannot_do r~Ri, T1! 4 role ~Ri, T1!, glb ~Rj, T2!, Ri s Rj;
R2,7 : cannot_do r~Ri, T2! 4 role ~Ri, T2!, lub ~Rj, T4!, Rj s Ri;
R2,8 : cannot_do r~Ri, T4! 4 role ~Ri, T4!, glb ~Rj, T2!, Ri s Rj;
R5,2 : panic 4 count (user ~Ui, T2!, n), n , 2;
R7,2 : statically_checked ~C7! 4 not user (Bob, T2);
R7,3 : statically_checked ~C7! 4 not user (Bob, T4).

For instance, consider the static consistency rules generated for con-
straint C2 of Example 3.1. Constraint C2 requires that task T2 must be
executed by a role dominating the roles that execute tasks T1 and T4, unless
T1, T2, and T4 are executed by the role General Manager . This means that
if a role Ri is dominated by the least upper bound of the roles associated
with task T1, then it cannot execute task T2, because the execution would
violate constraint C2. Similarly, a role cannot execute task T1 if it domi-

8 Recall that static rules can be evaluated before executing the workflow, whereas evaluation
of dynamic rules requires the execution of the workflow.

80 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

nates the greatest upper bound of the roles associated with task T2. Note
that these checks can be done statically, that is, without executing the
workflow, since they require the analysis of the workflow role specification
only. These checks are encoded by rules R2,5 and R2,6 above. Rules R2,7 and
R2,8 encode similar checks for task T4.

The result in Proposition 4.1 naturally extends to CBs also containing
static consistency rules.

In the following, by CB we refer to a CB complemented with the
corresponding static consistency rules.

4.4 CB Consistency

Intuitively, a CB is consistent if and only if the constraints it encodes are
satisfiable. The consistency of a CB is determined by computing and
analyzing its model. The formal definition of a consistency notion for a CB
entails that a number of different conditions be satisfied by the CB model.
First, if the predicate panic belongs to the CB model, it means that at least
one constraint cannot be satisfied. Therefore, a first consistency condition
requires for predicate panic not to belong to the CB model. Then, it is
necessary to verify that the facts belonging to the CB model do not express
contradictory information. As an example, suppose that both must_ex-
ecute u(John , T1) and cannot_do u(John , T1) belong to the CB model. This
means that the workflow constraints are inconsistent since no execution
of task T1 will satisfy the constraints. Similar considerations apply to
must_execute r and cannot_do r predicates.

To check that no contradictory information is entailed by a CB, we
compute for each task Ti in a workflow W the set of roles/users that must
be prevented/obliged to execute task Ti, according to the rules in CB ~W!.
These sets are as follows:

—Denied_Roles~Ti! 5 ø $Rj ? cannot do r~Rj, Ti! [M~CB~W!!}.
Denied_Roles~Ti! represents the set of roles that cannot execute task Ti

according to the rules in CB~W!;

—Obliged_Roles~Ti! 5 ø $Rj ? must_execute r~Rj, Ti! [M~CB~W!!}.
Obliged_Roles~Ti! denotes the set of roles that are obliged to execute task
Ti according to the rules in CB~W!;

—Denied_Users~Ti! 5 ø $uj ? cannot_do u~uj, Ti! [M~CB~W!!}.
Denied_Users~Ti! denotes the set of users that cannot execute task Ti

according to the rules in CB~W!;

—Obliged_Users(Ti) 5 ø $uj ? must_execute u~uj, Ti! [M~CB~W!!}.
Obliged_Users~Ti! denotes the set of users that are obliged to execute
task Ti according to the rules in CB~W!;

The Specification and Enforcement of Authorization Constraints • 81

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

It is then necessary to verify that the roles (users) for which it is
mandatory to execute a task, if any, belong to the set of roles (users)
assigned to the task and are not included in the set of roles (users) which
must not execute the task. Finally, it is necessary to verify that for each
task there exists at least a user playing a certain role that, when assigned
to the task, ensures constraint satisfiability.

The above requirements are formalized by the following definition.

Definition 4.8 (Constraint-base consistency). Let CB~W! be the con-
straint-base of a workflow W. CB~W! is consistent if and only if the
following conditions hold:

—panic [/ M~CB~W!!;

—@Ti of W:
—If Obliged_Users~Ti! Þ À, then:

Obliged_Users~Ti! ù Denied_Users~Ti! 5 À;
Obliged_Users~Ti! # $u ? u [Uj ∧ Rj [RSi% ;

—If Obliged_Roles~Ti! Þ À, then:
Obliged_Roles~Ti! ù Denied_Roles~Ti! 5 À;
Obliged_Roles~Ti! # RSi;
Obliged_Users(Ti) # $u ? u [Uj ∧ Rj [Obliged_Roles~Ti!%;

—If Obliged_Users~Ti! 5 À and Obliged_Roles~Ti! 5 À, then:
?Rj [$RSi\ Denied_Roles ~Ti!} such that: Uj\Denied_Users~Ti! Þ
À.

5. CONSISTENCY ANALYSIS AND PLANNING

In this section we present our methodology for assigning roles and users to
the tasks of a workflow according to the constraints encoded in the CB. The
various steps of our methodology are illustrated in Figure 4. Each step is
performed by a specific component of the authorization system. A first step,
referred to as static analysis, determines whether the static part of the CB,
that is, the subset of the CB containing only static rules, is consistent
according to Definition 4.8. If the check fails, the constraints specified for
the workflow are inherently inconsistent, and therefore no assignment to
tasks is generated. Thus, the system security officer (or DBA or workflow
designer) has to modify role assignments to tasks and/or the constraints. If
the check succeeds, the pruning phase is executed. This phase modifies the
workflow role specification to take into account the results of the static
analysis phase. Moreover, CB is modified to eliminate redundant rules.
Pruning will make the execution of the subsequent phases more efficient.
The planning phase receives the modified workflow and the modified CB
generated by the pruning phase as input and generates role/user assign-
ments to tasks that satisfy the constraints, that is, roles/users, when
assigned to tasks, make the CB consistent. If no assignment can be
generated, an error is returned to the system security officer. To limit the

82 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

number of choices to be evaluated by the planner, we make the assumption
that all the tasks execute successfully. At runtime, when a task aborts,
constraints involving abort predicates are analyzed to verify whether the
planner must be invoked again. The planner is also re-activated if the
number of task activations exceed the number stated in the workflow role
specification. In the remainder of this section, we discuss each phase of our
methodology in detail.

Fig. 4. Phases in constraint specification analysis and enforcement.

The Specification and Enforcement of Authorization Constraints • 83

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

5.1 Static Analysis Phase

The static analysis phase verifies the consistency of the static part of the
CB. Figure 5 shows an algorithm implementing the static analysis phase.
The algorithm receives as input a workflow W and the associated con-
straint-base CB(W) and checks the consistency of the static part of CB(W),
according to the conditions stated in Definition 4.8. If the check fails,
FALSE is returned; otherwise the algorithm returns the model of the static
part of CB(W) and the sets Denied_Roles~Ti!, Obliged_Roles~Ti!,
Denied_Users~Ti!, and Obliged_Users~Ti!, for each Ti in the input work-
flow.

Example 5.1 Consider the CB of Example 4.1, complemented by the
static consistency rules of Example 4.3. The static part of CB(W) is
composed by rules R1,1, R2,5, R2,6, R2,7, R2,8, R5,2, R7,2, R7,3, and by all the
explicit rules in Figure 3. Thus the model of the static part of CB(W)
consists of facts shown in Figure 6. So Obliged_Roles~Ti! 5 Denied_Roles
~Ti! 5 Obliged_Users~Ti! 5 Denied_Users~Ti! 5 À, i 5 1, . . . , 4. Thus,
the consistency of the static part of CB(W) can be verified immediately.

5.2 Pruning Phase

The aim of the pruning phase is to modify the workflow specification
according to the result of the static analysis phase, in order to efficiently
execute the subsequent phases. The static analysis phase determines a set
of roles for each task, if any, for which it is mandatory to execute the task
(i.e., the set Obliged_Roles), and a set of incorrect role assignments, that is,
a set of roles that, when assigned to a task, do not satisfy the constraints
(i.e., the set Denied_Roles). If Obliged_Roles is not empty, all the roles
that do not belong to this set can be removed from the specification because

Fig. 5. The static analysis algorithm.

84 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

their assignment to the task violates workflow constraints. If set Obliged-
_Roles is empty, then the roles belonging to Denied_Roles are pruned from
the set of roles that can be assigned to the task.

Finally, based on the results of the static analysis phase, the pruning
phase updates the CB by removing the dynamic rules whose evaluation is
no longer necessary in the subsequent phases. These rules are the ones
that encode a constraint Ci such that statically_checked ~Ci! belongs to
the model of the static part of the CB.

An algorithm implementing the pruning phase is reported in Figure 7.
The algorithm receives as input the results of the execution of Algorithm
5.1 on W and CB(W) and returns the pruned workflow role specification
and the pruned CB(W), computed according to the methods sketched above.

Example 5.2 Consider the workflow of Example 2.2. Prun_W 5
W, whereas Prun_CB 5 CB\$R7%, since statically_checked ~C7! [

M~SCB~W!!.

5.3 Planning Phase

This phase generates the set of possible assignments of roles and users to
tasks so that all the constraints associated with the workflow are satisfied.
The planning phase, intended to perform an initial plan, is executed before
the workflow execution starts.

We begin with the role assignment to tasks because, when compared to
the number of users, fewer roles are typically assigned for each task.
Because the roles are not many, performing a correct assignment is crucial.
Once the role assignment is planned, we assign users to each task.
Therefore the planning phase consists of two subphases: the role planning
phase and the user planning phase.

5.3.1 Role Planning Phase. Our approach to planning is based on the
use of the CB as an hypothetical reasoner. For example, to determine
whether the execution of the k-th activation of task Tj by a role Ri violates
the constraints, we insert the rules, called assignment hypotheses, ex-
ecute r~Ri, Tj, k! 4 and success ~Tj, k! 4 into CB. We then formulate
assignment hypotheses for all the other tasks in the workflow and verify

Fig. 6. Model of the static part of CB for the workflow in Example 5.1.

The Specification and Enforcement of Authorization Constraints • 85

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

the consistency of CB. We then remove the hypotheses execute r~Ri, Tj,
k! 4 and success ~Tj, k! 4 from the CB and consider another role for Tj.
Thus planning generates all consistent assignment hypotheses.

To keep role planning feasible, we make the assumption that all the
activations of a task must be executed by the same role. In the algorithm,
we use a slightly different notion of consistency than the one in Section 4.4,
in that we require, in addition to the conditions in Definition 4.8, that for
each task Ti in the workflow, Obliged_Roles~Ti! contains at most one
element. In planning the role assignments, we suppose that each task Ti is
executed at most acti times, where acti is the number of activations
specified in the workflow role specification.

Role assignments are represented by a role assignment graph, defined as
follows.

Definition 5.1 (Role assignment graph). Let W 5 @TRS1, TRS2, . . . ,
TRSn# be a workflow role specification with TRSi 5 ~Ti, ~RSi, s i !, acti!,
i 5 1, . . . , n. The role assignment graph of W(RAG~W!) is a labeled
graph G 5 ~V, E! defined as follows:

(1) Vertices. There is a vertex labeled ~Tk, Rj!, Ti [TRSi, Rj [RSk only if
the assignment of role Rj to task Tk does not violate workflow con-
straints. Thus, a vertex labeled ~Tk, Rj! states that role Rj can be
assigned to task Tk during workflow execution.

(2) Edges. There exists an arc connecting ~Ti, Rj! to ~Th, Rk! only if the
assignment of role Rj to task Ti and the assignment of role Rk to task
Th within the same workflow execution do not violate the constraints.

Fig. 7. The pruning algorithm.

86 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

In the following, given a label v, we use the notation v.T to indicate the
task appearing in v. Similarly, v.R denotes the role appearing in v. Figure
8 reports the role planning algorithm.

The main step in Algorithm 5.3 is the recursive procedure role_assign-
ment (step 2), which builds the role assignment graph of the input work-
flow. The candidate role assignments are stored into vector ass_hyp, which

Fig. 8. Role planner.

The Specification and Enforcement of Authorization Constraints • 87

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

is incrementally built by recursively calling procedure role_assignment.
Note that the first step of the repeat-until cycle of procedure role_assign-
ment ensures that the various assignments are ordered in RAG~W! accord-
ing to the global role order. This ensures that at runtime a depth-first
leftmost traversal of the tree always selects the assignment with the higher
priority.

Example 5.3 Figure 9 shows the RAG generated by the role planner for
the workflow in Example 2.2. Here and in the following example, we use
abbreviations for role names. RC stands for Refund Clerk , RMfor Refund
Manager , whereas GM stands for General Manager . Note that the role
planner considers all possible role assignments, including the case where
no users belonging to the roles associated with the tasks are available. For
instance, according to the RAG in Figure 9, if no user belonging to the role
Refund Clerk is available, then task T1 can be executed by role Refund
Manager or General Manager . If T1 is executed by Refund Manager , then
T2 must be executed by General Manager because of constraint C2 in
Example 3.1.

The termination of role planner is stated by the following theorem.

THEOREM 5.1 Algorithm 5.3 terminates for each input CB and workflow
role specification.

We refer the reader to Appendix B for the formal proof.
Role plans are generated starting from the RAG returned by the role

planner by selecting from the RAG each path p that contains one and only
one node for each task in the workflow. Formally, given a workflow role
specification W 5 @TRS1, . . . , TRSn#, with R_Plans~RAG~W!! we denote
the set of path p in RAG~W! such that (i) p has length n; and (ii) @vi, vj

[p, i Þ j, vi.T Þ vj.T.

Example 5.4 Considering the RAG in Figure 9, the following are paths
in R_Plans~RAG~W!!: $~T1, RC!, ~T2, RM!, ~T3, RM!, ~T4, RC!%, $~T1, RC!,

Fig. 9. The RAG generated by the role planner for the workflow in Example 2.1.

88 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

~T2, RM!, ~T3, RM!, ~T4, RM!%, $~T1, RC!, ~T2, RM!, ~T3, RM!, ~T4, GM!%, $~T1,
RC!, ~T2, GM!, ~T3, GM!, ~T4, RC!%, $~T1, RC!, ~T2, GM!, ~T3, GM!, ~T4, RM!%,
$~T1, RC!, ~T2, GM!, ~T3, GM!, ~T4, GM!%.

The following theorem ensures that R_Plans~RAG~W!! contains all,
and only, the correct role assignments.

THEOREM 5.2 Let W 5 @TRS1, . . . , TRSn# be a workflow role specifica-
tion and let RAG~W! be the corresponding RAG generated by the role
planner. A path p 5 $v1, . . . , vn% belongs to R_Plans~RAG~W!! iff the
assignment of role vi.R to task vi.T, @i 5 1, . . . , n, within the same
workflow execution, does not invalidate workflow constraints.

We refer the reader to Appendix B for the formal proof.
Note that the complexity of the role planner is exponential in the number

of tasks in the workflow. More precisely, the overall worst-case complexity
is O~NR

n !, where NR is the maximum number of roles associated with any
task in the workflow and n is the number of tasks in the workflow.
However, despite its worst-case behavior, we believe that the role planner
is highly feasible in practice. The reason is twofold. First, both the number
of tasks associated with a workflow and the number of roles associated with
a task are usually not high. So the role planner’s running time is acceptable
in practice. Second, since the number of times a workflow is executed is
typically very high (often in the range of tens of thousands), there is a
considerable gain in performing role planning statically, before workflow
starts, and then using it for all the instances of the workflow, rather than
assigning roles at runtime without any planning.

5.3.2 User Planning Phase. User planning is performed by using the
same strategies as in role planning.

It is quite common however for the number of users to be much larger
than the number of roles. Typically, the number of users associated with a
role increases as one goes down the role order hierarchy. So user planning
is not always efficient, since an exhaustive check of all possible users who
are allowed to execute tasks in the workflow is quite expensive because
some roles may have a large number of authorized users. More precisely,
the overall worst-case complexity in such case is O~~NR z NU z Nact!

n!,
where NR is the maximum number of roles associated with any task in the
workflow; NU is the maximum number of users associated with any role in
the workflow; Nact is the maximum number of activations associated with
any task in the workflow; and n is the number of tasks in the workflow.
Thus, instead of using an exhaustive approach (as in the role planner), we
use the following heuristics to do user planning. Consider the role assign-
ment graph, each path v1, . . . , vn in R_Plans~RAG~W!! represents a role
plan. For each such plan we compute the maximum number of users
required for each role Ri to execute the workflow tasks according to the
plan. This set is denoted Uworstcase~Ri!. The worst-case scenario arises when

The Specification and Enforcement of Authorization Constraints • 89

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

each task has to be executed by a different user and, moreover, each
activation of a task must be executed by a different user. Suppose that each
role Ri in a role plan executes a set of tasks TASKRi. Thus, Uworstcase~Ri!
5 STj[TASKRi

actj.
We perform user planning for only those roles Ri such that Uworstcase~Ri!

1 consti # Ui is not satisfied where consti is a safety factor. (This factor
can be decided by the workflow designer based on several parameters such
as the allowed number of simultaneous workflow executions, percentage of
available users among the total users at any given time, etc.). Thus, user
planning may not be executed for some roles in the role plans of RAG~W!.
For such roles, users are assigned at runtime without any planning. Using
this strategy, the overall worst-case complexity of the user planner is
O~~k z NU~k! z Nact~k!!n!, where k denotes the number of roles for which
we do user planning; NU~k! denotes the maximum number of users
associated with any role for which we perform user planning; Nact~k! is the
maximum number of activations associated with any task for which we do
user planning (that is, those tasks that have an associated role for which
user planning is done); and n is the number of tasks in the workflow for
which we do user planning. Note, however, that according to the definition
of our heuristic, k will actually be small compared to the number of roles
associated with the workflow. Moreover a role Ri for which user planning is
executed is usually a role with a small number of associated users;
otherwise the inequality Uworstcase~Ri! 1 consti # Ui would be satisfied
and no user planning would have been performed for role Ri. We believe
that user planning will be effective in practice.

A role plan in RAG~W! may result in several user plans. From RAG~W!,
we construct the user-role assignment graph (URAG~W!), which comple-
ments RAG~W! with information about user plans. URAG~W! is defined
as follows:

Definition 5.2 (User-role assignment graph). Let RAG~W! be a role
assignment graph of a workflow role specification W 5 @TRS1, TRS2, . . . ,
TRSn#, where each TRSi 5 ~Ti, ~RSi, s i!, acti!, i 5 1, . . . , n. The user-
role assignment graph of W (URAG~W!) is a labeled graph G 5 ~V, E!
defined as follows:

(1) Vertices. Vertices in URAG~W! are of two different types:
—There is a vertex labeled ~Ti, Rk, UA!, UA 5 $~u1, 1!, . . . , ~uacti,

acti!%, uj [Uk, j 5 1, . . . , acti only if ~Ti, Rk! is a vertex of
RAG~W! and the assignment of user uj to the j-th activation of task
Ti does not violate the workflow constraints j 5 1, . . . , acti.

—There is a vertex labeled ~Ti, Rk, *! only if ~Ti, Rk! is a vertex of
RAG~W! and user planning has not been executed for role Rk.

(2) Edges. Edges are of three different types, depending on the labels of the
vertices they connect.

90 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

—There exists an arc connecting ~Ti, Rk, UA! to ~Tj, Rh, UA9!, UA
5 $~u1, 1!, . . . , ~uacti, acti!%, UA9 5 $~u91, 1!, . . . , ~u9act, actj!%, um

[Uk, m 5 1, . . . , acti, u9n [Uh, n 5 1, . . . , actj only if the
assignment of user um to the m-th activation of task Ti, m 5 1,
. . . , acti and the assignment of user u9n to the n-th activation of task
Tj, n 5 1, . . . , actj within the same workflow execution do not
violate the constraints.

—There exists an arc connecting ~Ti, Rk, UA! to ~Tj, Rh, *!, UA 5
$~u1, 1!, . . . , ~uacti, acti!%, um [Uk, m 5 1, . . . , acti, only if the
assignment of user um to the m-th activation of task Ti, m 5 1,
. . . , acti, and the assignment of role Rh to each activation of task Tj

within the same workflow execution do not violate the constraints.
—There exists an arc connecting ~Ti, Rk, *! to ~Tj, Rh, *! only if the

assignment of role Rk to each activation of task Ti and the assign-
ment of role Rh to each activation of task Tj within the same
workflow execution do not violate the constraints.

Since user planning is performed using the same strategies as role
planning, we do not report the details of the user planner algorithm here.

Example 5.5 Consider Example 2.2 again. Figure 10 represents a part of
URAG~W! corresponding to the RAG in Figure 9. TASKGM5 TASKRM 5
$T2, T3%, TASKRC 5 $T1, T4%. Thus, Uworstcase~GM! 5 Uworstcase~RM! 5 3,
Uworstcase~RC! 5 2. UGM5 {Ken,Meg }, URM 5 {John,Mary,Tom }, and
URC 5{Bob,Sam,Matt,Alice }. Suppose that the safety factor is set equal
to one for all the roles, so user planning is done for roles GMand RMonly.
Due to constraint C5, both user plans assign two different users to the two
activations of task T2.

Similarly to RAGs, all the plans derivable from URAG~W! are obtained
by selecting the paths of length equal to the number of tasks in the
workflow and containing one and only one node for each workflow task. We
denote by U_Plans~URAG~W!! the set of these paths.

5.4 Runtime Phase

The runtime phase is executed upon each task activation and termination.
It consists of two subphases: the task activation phase, which is executed
upon invocation of a task in the workflow, and the task termination phase,
which is executed upon the termination of a task in the workflow.

Which user actually executes a given task is based not only on authori-
zation constraints, but also on other factors, such as load balancing. Thus,
when the k-th activation of a task Tj in a workflow W is invoked, the task
activation phase is done to determine whether user u, executing Tj under
role Ri, is authorized to do so, according to the the planning phase. As such,
the authorization system presented in this paper acts as a server providing

The Specification and Enforcement of Authorization Constraints • 91

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

information about authorization restrictions to the workflow management
system. The authorization check entails verifying several conditions. First,
user u must have the authorization to play role Ri, otherwise his/her
request cannot be authorized. Then, if the number of activations of task Tj

during workflow execution exceeds the number of activations specified in
workflow role specification, the planner must be invoked again to verify
that the execution of the current activation of task Tj by user u does not
invalidate the current plan. Note that it is not necessary to re-execute the
planner from the beginning; it can be invoked only for those task activa-
tions that have not yet been executed upon the k-th activation of task Tj.
(For simplicity, we do not report this optimization in the algorithm.) If the
user planning phase has been performed, user u must be among the users
assigned to Tj, according to the user plan, and must not be disabled for the
execution of the k-th activation of Tj by preceding task activations. The
execution of the l-th activation of task Tm by a user un under role Rp

disables u for the execution of the k- th activation of Tj under role Ri if the
assignment of user un to the l-th activation of task Tm and the assignment
of user ui to the k-th activation of task Tj, within the same workflow
execution, make the CB inconsistent. Checking these conditions ensure
that tasks are executed by users according to the plans generated by the
planning phase. To easily verify the above condition, URAG~W! is pruned
upon each task activation by removing the vertices corresponding to
assignments disabled by the user/role that executed the task activation.
Updating URAG~W! is done by the task termination phase, described next.
With such pruning, checking the above conditions is equivalent to verifying
whether there exists in URAG~W! a vertex labeled ~Tj, Ri, UA! such that
$~u1, 1!, . . . , ~uk21, k 2 1!, ~u, k!% # UA, where ui is the user who exe-

Fig. 10. The user-role assignment graph for the RAG~W! in Figure 9.

92 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

cuted the i-th activation of Tj, i 5 1, . . . , k 2 1. By contrast, if the user
planning phase was not done for role Ri, it is necessary to verify that (i)
role Ri was not disabled for the execution of the k-th activation of task Tj

by the execution of tasks preceding Tj in the workflow; (ii) u belongs to the
set of users, if any, for which it is mandatory to execute task Tj (that is, the
set Obliged_Users~Tj!); (iii) u does not belong to the set of users that when
assigned to task Tj violate the workflow constraints (that is, the set
Denied_Users~Tj!); (iv) the execution of the k-th activation of Tj by u under
role Ri does not make the CB inconsistent. This condition ensures that
dynamic separation of duties is enforced.

If all the above checks succeed, user u is authorized to execute the k-th
activation of task Tj, otherwise another user must be selected to execute
task Tj, and all the steps described above are executed again.

An algorithm implementing the task activation phase is illustrated in
Figure 11. It receives as input the request by user u to execute the k-th
activation of task Tj under role Ri, the pruned CB, the pruned workflow,
and the corresponding URAG. It returns SUCCESS if the request can be
authorized, otherwise it returns FAILURE.

Fig. 11. The task activation algorithm.

The Specification and Enforcement of Authorization Constraints • 93

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

The task termination phase is performed upon task execution. During the
task termination phase, information about task execution is inserted into
Prun_CB~W!. Rules execute r~Ri, Tj, k! 4 and execute u~u, Tj, k! 4
are inserted into Prun_CB~W! to record the fact that the k-th activation of
task Tj was executed by user u under role Ri. Moreover, either the rule
success ~Tj, k! 4 or abort ~Tj, k! 4 is inserted into Prun_CB~W!, de-
pending on whether the k-th activation of task Tj aborts or successfully
executes. The planner assigns roles/users to tasks under the assumption
that all the tasks in the workflow successfully execute. If task Tj aborts,
constraints involving abort predicates may no longer be satisfiable with the
current plan. For instance, consider constraint C6 of Example 3.1 and
suppose that task T1 is executed four times by user u and that all these
executions abort. This implies that user u must be removed from the set of
users that can execute task T1. Thus, if the abort of task T1 could cause the
invalidation of the current plan, the planner is invoked again to determine
whether the current plan needs to be modified. Note that it is not necessary
to invoke the planner for all the task activations in the workflow, but only
for those task activations that have not yet been executed upon the k-th
activation of task Tj. Finally, the task termination phase updates
URAG~W! by removing the vertices corresponding to assignments that are
disabled by the execution of the k-th activation of Tj by user u, that is, it
removes those assignments that do not satisfy the workflow constraints,
provided that u executes the k-th activation of task Tj. URAG~W! is
updated by means of a projection operator, formally defined as follows.

Definition 5.3 (URAG projection). Let W be a workflow role specification
and let URAG~W! be the corresponding user-role assignment graph gener-
ated by the user planner. Let v be a vertex in URAG~W!. The projection of
URAG~W! with respect to v, denoted Pv~URAG~W!!, is the graph ob-
tained by removing from URAG~W! each vertex v9 such that ?/ p [

U_Plans~URAG~W!! (cfr., Section 5.3.2) that contains both v and v9.

Intuitively, the projection operator is used to remove, from URAG, all
the paths corresponding to assignments that are incompatible with the
assignment of user u to the k-th activation of task Tj.

The algorithm that performs the task termination phase is shown in
Figure 12.

Note that in the worst case, both the task termination and the task
activation algorithm compute the model of the pruned CB and re-execute
the planning phase. Thus, in the worst case, the complexity of these
algorithms is proportional to the cost of performing the above operations.
The complexity of the planning phase was discussed in Sections 5.3.1 and
5.3.2. The cost of computing the model is polynomial, since CB is a
stratified logic program [Cadoli and Schaerf 1993]. Note, moreover, that
the planning phase is re-executed using an incremental strategy, in that we

94 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

do not execute the planning phase for each task activation in the workflow
but only for those activations not yet executed.

6. SYSTEM ARCHITECTURE

In this section, we discuss how our system, which we call constraint
analysis and enforcement module, interacts with the WFMS in determining
the role/user assignment for each task. Our system architecture is shown in
Figure 13. Typically, a workflow is specified as a set of tasks and a set of
dependencies among the tasks. Task dependencies can be specified on the
basis of task primitives, such as begin, abort, and commit of a task, based
on the outcome/result of a task, or on external parameters such as time

Fig. 12. The task termination algorithm.

The Specification and Enforcement of Authorization Constraints • 95

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

[Adam et al. 1998]. The WFMS is responsible for scheduling and synchro-
nizing the various tasks within the workflow, in accordance with specified
task dependencies, and for sending each task to the respective processing
entity.

Although each processing entity may have its own role order and user-
role assignment, these are all integrated and maintained at the central
WFMS location. All the information concerning the role order and the
user/role assignments are maintained by the WFMS.

Our constraint analysis and enforcement module determines the role
assignments for each task in advance, that is, before the execution of the
workflow. By contrast, user assignments are usually only partially com-
puted before workflow execution, in that for some roles we determine the
user assignments during workflow execution (cfr., Section 5.3.2). When a
user submits a request to execute a task to the WFMS, the WFMS verifies
whether the user can be authorized to execute the task according to the
role/user assignments computed by the constraint analysis and enforce-
ment module.

We have developed a prototype for our constraint analysis and enforce-
ment module, which provides a graphical interface by which the user enters
both workflow specification and workflow constraints and analyzes the
results of each phase of our methodology. The user enters the constraints
by means of an interactive interface, the constraints are then translated by
the system into rules in our constraint specification language. The con-
straint specification language was implemented using the CORAL system
[Ramakrishnan et al. 1994]. CORAL is a deductive system that supports a
rich declarative language and an interface to C11. Coral rules are syntac-
tically similar to Prolog rules, and provide support for both stratified
negation and aggregate predicates. CORAL uses bottom-up evaluation,
with a wide variety of optimization strategies specified by the programmer.

7. CONCLUSIONS

An organization’s security policies, such as separation of duties, are often
expressed as constraints on users and roles. Current authorization models,
however, do not support the specification and evaluation of such con-
straints. In this paper, we proposed a language for expressing such con-
straints and classified the various types of constraints—static, dynamic,
and hybrid—based on the time at which they can be evaluated. While static
constraints can be evaluated before execution of the workflow, dynamic
constraints can only be evaluated during execution of the workflow. Hybrid
constraints can be partially evaluated before execution. In this paper, we
also devised algorithms to check the consistency of the constraints in order
to consistently assign roles and users to tasks in the workflow. To minimize
the complexity of consistency checking during execution of the workflow,
we presented an approach to generate assignments of roles and users to
tasks that satisfies authorization constraints. If tasks are executed at
runtime, according to the plan, several dynamic constraints are automati-

96 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

cally satisfied. Thus our approach requires checking only a very few
constraints during execution of the workflow.

The work presented in this paper can be extended in several directions.
In particular, future work includes modeling temporal and event-based
constraints, support for more complex models of roles, along the lines
discussed by Sandhu [1996], and the use of our system in heterogeneous
[Bonatti et al. 1996] and distributed environments. An important question
that also needs to be addressed is optimization of the role planner. In our
approach, we performed an exhaustive search to determine all role assign-
ments to tasks that do not violate constraints. Such a search is performed
just once, before the workflow is executed. All executions of the same
workflow reuse the same role assignment plan, and so the cost of planning
is amortized over several executions. It would, however, be useful to devise
heuristics to reduce search space. We plan to extensively investigate
optimization techniques for role planning based on constraint analysis. For
instance, workflow constraints can be analyzed before executing the role
planner, to identify those tasks not involved in any constraint. Roles can be
assigned to such tasks at runtime without any planning.

We also plan to perform an exhaustive performance evaluation of user
planning and to investigate the use of various heuristics in selecting the set
of roles for which a user planner should be activated.

Another important issue is the management of change in workflow
specification. When a user and/or role is inserted/removed from the list of

Fig. 13. The system architecture.

The Specification and Enforcement of Authorization Constraints • 97

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

users/roles assigned to a given task, planning must be modified accord-
ingly. A possible solution is to re-execute the planning phase each time
there is an update to the workflow specification. However, more efficient
solutions can be devised that allow incremental maintenance of role and
user planning by modifying only those parts of planning that are actually
affected by the updates. We plan to investigate the use of such incremental
strategies in the near future.

Finally, a major extension is the concurrent execution of tasks. In this
paper we make the assumption that all the tasks in a workflow are
executed sequentially, according to a specified total order. Relaxing such an
assumption implies that only a partial execution order may be specified for
tasks in a workflow. When task executions are partially ordered, some
additional restrictions arise on the constraints one can specify. For in-
stance, if two tasks can be executed concurrently, it is impossible to
constraint the role/user assignment of a task to the abortion/success of the
other task. We plan to devise methods to automatically determine such
inconsistencies, based on the specified task execution order.

APPENDIX

A. ATOMS AND LITERALS

In the following, we list the atoms and literals that can be specified in our
language.

Let ut, ut9 [UT, rt, rt9 [RT, tt, tt9 [TT, ct [CT, and nt, nt ’ [

INT, then we say,

specification atoms 5 {role ~rt, tt!, user ~ut, tt!, belong ~ut, rt!, glb
~rt, tt!, lub ~rt, tt!, rt s rt9};

execution atoms 5 {execute u~ut, tt, nt!, execute r~rt, tt, nt!, abort
~tt, nt!, success ~tt, nt!};

planning atoms 5 {cannot_do u~ut, tt!, cannot_do r~rt, tt!, must_
execute u~ut, tt!, panic , must_execute r~rt, tt!,
statically_checked ~ct!};

comparison atoms 5 $ut 5 ut9, rt 5 rt9, tt 5 tt9, nt 5 nt9, nt , nt9,
nt # nt9, nt . nt9, nt $ nt9%.

Similarly:

specification literals 5 {role ~rt, tt!, not role ~rt, tt!, belong ~ut, rt!,
not belong ~ut, rt!, user ~ut, tt!, not user ~ut,
tt!, glb ~rt, tt!, not glb ~rt, tt!, lub ~rt, tt!, not
lub (rt, tt) rt s rt9, rt ê rt9};

execution literals 5 {execute u~ut, tt, nt!, not execute u~ut, tt, nt!,
execute r~rt, tt, nt!, not execute r~rt, tt, nt!,

98 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

abort ~tt, nt!, not abort ~tt, nt!, success
~tt, nt!, not success ~tt, nt!};

planning literals 5 {cannot_do u~ut, tt!, not cannot_do u~ut, tt!,
cannot_do r~rt, tt!, not cannot_do r~rt, tt!,
must_execute u~ut, tt!, not must_execute u~ut,
tt!, must_execute r~rt, tt!, not must_execute r

~rt, tt!, panic , not panic , statically_checked
~ct!, not statically_checked ~ct!};

comparison literals 5 $ut 5 ut9, rt 5 rt9, tt 5 tt9, nt 5 nt9, ut Þ ut9,
rt Þ rt9, tt Þ tt9, nt Þ nt9, nt , nt9, nt ø nt9,
nt # nt9, nt Ü nt9, nt . nt9, nt ù nt9, nt $

nt9, nt à nt9%.

Moreover, let W be a conjunction of literals, x be a variable bound in W,
and nt [NT, then:

aggregate literals 5 {count ~W, nt!, not count ~W, nt!, avg ~x, W, nt!,
not avg ~x, W, nt!, min ~x, W, nt!, not min ~x, W,
nt!, max~x, W, nt!, not max~x, W, nt!, sum~x, W,
nt!, not sum~x, W, nt!}.

B. PROOFS

Proof of Proposition 4.1
A program P is stratified if its extended dependency graph does not

contain any cycle involving an edge labeled “not” [Ullman 1989], where the
extended dependency graph of a program P is a graph whose nodes are the
predicates that appear in the heads of the rules of P. Given two nodes p1

and p2, there is a direct edge from p1 to p2 if and only if predicate p2 occurs
positively or negatively in the body of a rule whose head predicate is p1.
The edge ~p1, p2! is marked with a “not” sign if and only if there exists at
least one rule r with head predicate p1 such that p2 occurs negatively in the
body of r. By Definition 4.7, the CB associated with a given workflow
consists of a set of explicit assignment and integrity rules. Let us consider
each of these rules. By Definition 4.1, explicit rules have an empty body
and a specification or execution atom as head. Thus, they cannot form any
cycle in the extended dependency graph of a CB. By Definitions 4.2 and 4.4,
assignment and integrity rules have planning predicates as head and a
conjunction of specification, execution, comparison literals, and aggregate
atoms as body. Since the predicates that can appear in the head of an
assignment or integrity rule are disjoint from the predicates that can
appear in its body, they cannot form any cycle in the extended dependency
graph. Hence, the extended dependency graph associated with a CB does
not contain any cycle. Thus the CB is stratified.

The Specification and Enforcement of Authorization Constraints • 99

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

Proof of Theorem 5.1
To prove the termination of the role planner, it is sufficient to prove the

termination of procedure role_assignment (step 2). Consider procedure
role_assignment. Suppose that it never terminates. Procedure role_assign-
ment consists of a repeat-until loop that contains a recursive call to
procedure role_assignment itself. role_assignment is called by the role
planner in step 2 with 1 and [,] as parameters. Consider the execution of
role_assignment(1,[,]). role_assignment(1,[,]) selects a role Rl from
Upd_RS1, marks Rl, and inserts it into ass_hyp[1]. Then
role_assignment(2,ass_hyp) is invoked. This call selects a role from
Upd_RS2, marks it, inserts it into ass_hyp[2], and invokes
role_assignment(3,ass_hyp). This process is iteratively executed till role_as-
signment(n,ass_hyp) is invoked, where n is the number of tasks in the
workflow. At this point no more calls of procedure role_assignment are
executed. Consider role_assignment(n,ass_hyp). It consists of an outer
repeat-until loop which is iterated until no unmarked roles exist in
Upd_RSn. Consider the repeat-until loop. Termination of steps 1 and 2 is
straightforward. Consider step 3. Step 3a terminates, since it consists of
two for loops that operate on a finite number of elements (the number of
tasks in a workflow and the number of activations of a given task,
respectively). Consider step 3b. The while loop has a condition on variables
i (i # n) and correct (correct 5 true). Variable i is set equal to 1 before
entering the while loop and increased at each iteration. Then, after at
most n iterations, the condition on i will evaluate false and the loop will
terminate. The for loop terminates, since the number of tasks in a
workflow is finite. Thus, since checking the consistency of a CB is a finite
process, step 3b terminates. The for loop in step 3 terminates, since the
number of tasks in a workflow is finite. Thus, step 3 terminates. Termina-
tion of step 4 is straightforward, since the number of activations of a given
task in a workflow is finite. Now consider the outer repeat-until loop. At
each iteration of the repeat-until loop, a role in Upd_RSn is marked.
Thus, since the number of roles associated with a task in a workflow is
finite, role assignment(n,ass_hyp) halts, after a finite number of iterations,
unmarking all the roles in Upd_RSn. Thus, role_assignment
~n 2 1,ass_hyp) resumes its execution by selecting a role from
Upd_RSn21, different from the one selected in the preceding iteration. The
selected role is marked and inserted into ass_hyp@n 2 1#. Then, role_as-
signment~n,ass_hyp) is invoked again. When role_assignment(n,ass_hyp)
halts, another role is selected from Upd_RSn21, marked and assigned to
ass_hyp@n 2 1#. Then role_assignment(n,ass_hyp) is invoked again. This
process is iteratively executed until no unmarked roles exist in
Upd_RSn21. Since the number of roles associated with a task is finite,
role_assignment(n 2 1,ass_hyp) halts after a finite number of iterations by
unmarking all the roles in Upd_RSn21. Based on the same logic, we can
prove the termination of all the recursive calls of procedure role_assign-

100 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

ment up to role_assignment(1,[,]), that is, the call directly invoked by the
role planner. Thus, the algorithm terminates.

Proof of Theorem 5.2
We first prove the if part of the thesis. Let p 5 $v1, . . . , vn% be a path in

R_Plans~RAG~W!!. We have to prove that the assignment of role vi.R to
task vi.T, within the same workflow execution, does not violate workflow
constraints, i 5 1, . . . , n. We suppose that the thesis does not hold and
derive a contradiction. Paths in R_Plans~RAG~W!! are those inserted into
RAG~W! by step 3 of the algorithm. It is easy to see that proving the thesis
by contradiction is equivalent to proving that there exists a path p 5 $v1,
. . . , vn% added to RAG~W! by step 3 of the role planner, and that either
(1) CB9 5 Prun_CB~W! ø $execute r~vi.R, vi.T, k! 4 ? i 5 1, . . . , n,
k 5 1, . . . , acti% ø $success ~vi.R, vi.T, k! 4 ? i 5 1, . . . , n, k 5 1,
. . . , acti% is inconsistent; or (2) there exists a label vi in path p such that
(i) Obliged_Roles~vi.T! Þ À and vi.R [/ Obliged_Roles~vi.T! or (ii) vi.R [

~Upd_RSi ù Denied_Roles~Ti!!. Suppose (1) holds. The role planner
incrementally builds the paths to be added to RAG~W! by recursively
calling procedure role_assignment. When a candidate role assignment
(stored in ass_hyp) is constructed (that is, when the task currently exam-
ined by procedure role_assignment is equal to the last task of the work-
flow), procedure role_assignment adds (step 3a): $execute r~vi.R, vi.T, k!
4 ? i 5 1, . . . , n, k 5 1, . . . , acti% ø $success ~vi.T, k! 4 ? i 5 1,
. . . , n, k 5 1, . . . , acti% to Prun_W. It then checks for the consistency
of the updated Prun_CB~W!, and the path is added to RAG~W! only if the
check succeeds (step 3b). Thus, since the updated Prun_CB~W! is equal to
CB9, we have a contradiction.

Now suppose that (2) holds. First consider case (2i); that is, suppose
there exists a label vi in p such that Obliged_Roles~vi.T! Þ À and
vi.R [/ Obliged_Roles~vi.T!. Procedure role_assignment, after checking the
consistency of the updated Prun_CB~W! (step 3b), computes the sets
Obliged_Roles and Denied_Roles for each task in the workflow. For each
task Ti such that Obliged_Roles~Ti! Þ À, it checks whether the role as-
signed to Ti in the candidate path does not belong to Obliged_Roles~Ti!. If
the check succeeds, variable correct is set to false. Thus, the subsequent if
statement is not executed and the path is not added to RAG~W!. Now
suppose that case (2ii) holds, that is, there exists a label vi in p such that
vi.R [Upd_RSi ù Denied_Roles~Ti!. In step 3b, procedure role_assign-
ment checks, for each task Ti, whether the role assigned to Ti in the
candidate path belongs to Denied_Roles~Ti!. Since the role assigned to Ti in
the candidate path belongs to Upd_RSi (by step 1), this is equivalent to
checking that the role assigned to Ti in the candidate path belongs to
(Denied_Roles~Ti! ù Upd_RSi). If the check succeeds, variable correct is
set to false. This implies that the subsequent if statement is not executed

The Specification and Enforcement of Authorization Constraints • 101

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

and the candidate path is not added to RAG~W!. Thus, in both the above
cases we have a contradiction.

Now consider the other part of the implication. As in the previous case,
we suppose that the implication does not hold and derive a contradiction.
We suppose that there exists a set of roles S 5 $R1, . . . , Rn% such that the
assignment of Ri to task Ti within the same workflow execution does not
violate constraint i 5 1, . . . , n and that path p 5 $v1, . . . , vn% such that
vi.T 5 Ti, vi.R 5 Ri, i 5 1, . . . , n does not belong to R_Plans~RAG~W!!.
This is equivalent to supposing that there exists a set of roles S 5 $R1,
. . . , Rn% such that Ri [Upd_RSi, Ri [Obliged_Roles~Ti!, if Obliged-
_Roles~Ti! Þ À, Ri [Upd_RSi\Denied_Roles~Ti!, otherwise CB9 5
Prun_CB~W! ø $execute r~Ri, Ti, k! 4 ? i 5 1, . . . , n, k 5 1, . . . ,
acti% ø $success ~Ti, k! 4 ? i 5 1, . . . , n, k 5 1, . . . , acti% is consis-
tent; the path p 5 $v1, . . . , vn%, such that vi.R 5 Ri, vi.T 5 Ti, i 5 1,
. . . , n is not added to RAG~W! by the role planner. Consider the role
planner. In step 2, the call role_assignment(1,[,]) is executed. Next, consider
the execution of role_assignment(1,[,]). In step 1, a role is selected from
Cand_R # Upd_RS1 and stored in the first component of ass_hyp (that
is, the vector storing the current candidate path). We can distinguish two
cases on the basis of whether R1 is selected or not. Consider the case
in which R1 is selected. Then, if the workflow contains more than one task,
that is, if j 5 1 , n, role_assignment(2,ass_hyp) is executed, where
ass_hyp contains, in the first component, role R1. Consider the execution of
role_assignment(2,ass_hyp). In step 1, a role is selected from Cand_R #

Upd_RS2 and stored in the second component of ass_hyp. Again, we can
distinguish two cases, depending on whether role R2 is selected or not. As
in the previous case, we first look at where role R2 is selected. If the
workflow contains more than two tasks, that is, if j 5 2 , n,
role_assignment(3,ass_hyp) is executed. This process is iteratively executed
until the last task in the workflow is reached, that is, until role_assign-
ment(n,ass_hyp) is invoked. From the way ass_hyp was built, it contains in
the i-th position role Ri, i 5 1, . . . , n 2 1. Consider the execution of
role_assignment(n,ass_hyp). In step 1, a role is selected from Cand_R #

Upd_RSn and stored in the n-th component of ass_hyp. As in the previous
cases, we first examine where role Rn is selected first. Then, since j 5 n,
procedure role_assignment adds $execute r~Ri, Ti, k! 4 ? i 5 1, . . . ,
n, k 5 1, . . . , acti% ø $success ~Ti, k! 4 ? i 5 1, . . . , n, k 5 1, . . . ,
acti% to Prun_W (step 3a). By hypothesis, the updated Prun_W is consis-
tent, then the subsequent while loop is executed. It is easy to verify that at
the end of the while loop, variable correct has value true only if for each Ri,
i 5 1, . . . , n, in ass_hyp: (1) Ri [Obliged_Roles~Ti!, if Obliged_Roles
~Ti! Þ À; (2) Ri [/ Upd_RSi ù Denied_Roles~Ti!. The above conditions are
true by hypothesis, thus the subsequent if statement is executed and the

102 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

path p 5 $v1, . . . , vn%, vi.T 5 Ti, vi.R 5 Ri, i 5 1, . . . , n is added to
RAG~W!, and we have a contradiction.

Suppose now that role Rn is not selected during the first iteration of the
repeat-until loop in role_assignment(n,ass_hyp). This means that a role
R9n [Cand_R # Upd_RS9n, Rn Þ R9n is inserted into ass_hyp@n#. Role
R9n is marked, and $execute r~Ri, Ti, k! 4 ? i 5 1, . . . , n 2 1, k 5 1,
. . . , acti% ø $success ~Ti, k! 4 ? i 5 1, . . . , n, k 5 1, . . . , acti% ø

$execute r~R9n, Tn, k! 4 k 5 1, . . . , actn%, are added to Prun_CB~W!.
Then, in step 3, $execute r~R9n, Tn, k! 4 k 5 1, . . . , actn, success ~Tn,
k! 4 , k 5 1, . . . , actn% are removed from Prun_CB~W! and another
role, among the unmarked roles in Upd_RSn, is selected. This process is
iterated until no unmarked roles exist in Upd_RSn, then all the roles in
Upd_RSn are unmarked and role_assignment(n,ass_hyp) terminates.
Thus, since by hypothesis, Rn [Upd_RSn, after a finite number of itera-
tions Rn will be selected and assigned to ass_hyp@n#.

Now suppose that role Rn21 is not assigned to ass_hyp@n 2 1# during the
first iteration of procedure role_assignment(n 2 1,ass_hyp), where ass_hyp
@i# 5 Ri, i 5 1, . . . , n 2 2. Using the same reasoning we used for Rn, we
can show that, after a finite number of iterations, role Rn21 is selected and
assigned to ass_hyp@n 2 1#. In a similar way, we can apply the same steps
that we illustrated for Rn to all the roles Ri, i 5 n 2 2, . . . , 1. Thus the
claim holds.

REFERENCES

ADAM, N., ATLURI, V., AND HUANG, W. K. 1998. Modeling and analysis of workflows using petri
nets. J. Intell. Inf. Syst. 10, 2, 131–158.

BONATTI, P., SAPINO, M., AND SUBRAHMANIAN, V. S. 1996. Merging heterogeneous security
orderings. In Proceedings of the Conference on Computer Security (ESORICS 96, Rome,
Italy), E. Bertino, H. Kurth, G. Martella, and E. Montolivo, Eds. Springer-Verlag, New
York, NY, 183–197.

CADOLI, M. AND SCHAERF, M. 1993. Complexity results for non-monotonic logics. J. Logic
Program. 17.

CHANG, S., POLESE, G., THOMAS, R., AND DAS, S. 1997. A visual language for authorization
modeling. In Proceedings of the IEEE Symposium on Visual Languages (VL97, Capri,
Italy). IEEE Computer Society Press, Los Alamitos, CA.

CLARK, D. AND WILSON, D. 1987. A comparison of commercial and military computer security
policies. In Proceedings of the IEEE Symposium on Research in Security and Privacy
(Oakland, CA). IEEE Computer Society Press, Los Alamitos, CA, 184–194.

DAS, S. 1992. Deductive Databases and Logic Programming. Addison-Wesley, Reading, MA.
GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In

Proceedings of the 5th International Conference on Logic Programming (Cambridge,
MA). MIT Press, Cambridge, MA, 1070–1080.

GEORGAKOPOULOS, D., HORNICK, M., AND SHETH, A. 1995. An overview of workflow manage-
ment: from process modeling to workflow automation infrastructure. Distrib. Parallel
Databases 3, 2 (Apr. 1995), 119–153.

JONSCHER, D., MOFFET, J., AND DITTRICH, K. 1994. Complex subjects or the striving for
complexity is ruling our world. In Database Security VII: Status and Prospects. Elsevier
North-Holland, Inc., Amsterdam, The Netherlands, 19–37.

The Specification and Enforcement of Authorization Constraints • 103

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

LLOYD, J. W. 1984. Foundations of Logic Programming. Springer-Verlag, New York, NY.
LOTUS CORPORATION, 1996. Lotus Notes Administrator’s Reference Manual, Release 4. Lotus

Publ. Corp., Cambridge, MA.
MEDINA-MORA, R., WONG, H., AND FLORES, P. 1993. ActionWorkflow as the enterprise

integration technology. IEEE Data Eng. Tech. Bull. 16, 2, 49–52.
NYANCHAMA, M. AND OSBORN, S. 1993. Role-based security, object oriented databases and

separation of duty. SIGMOD Rec. 22, 4 (Dec. 1993), 45–51.
NYANCHAMA, M. AND OSBORN, S. 1996. Modeling mandatory access control in role-based

security systems. In Database Security IX: Status and Prospects. Elsevier North-Holland,
Inc., New York, NY, 129–144.

Proceedings of the 1st (1996) ACM Workshop on Role-Based Access Control. ACM Press, New
York, NY.

RAMAKRISHNAN, R., SRIVASTAVA, D., AND SUDARSHAN, S. 1994. The coral deductive
system. VLDB J. 3, 2, 161–210.

SANDHU, R. 1991. Separation of duties in computerized information systems. In Database
Security IV: Status and Prospects. Elsevier North-Holland, Inc., New York, NY, 179–189.

SANDHU, R. 1996. Role hierarchies and constraints for lattice-based access controls. In
Proceedings of the Conference on Computer Security (ESORICS 96, Rome, Italy), E. Bertino,
H. Kurth, G. Martella, and E. Montolivo, Eds. Springer-Verlag, New York, NY, 65–79.

SANDHU, R., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access control
models. IEEE Comput. 29, 2 (Feb.), 38–47.

THOMAS, R. AND SANDHU, R. 1997. Task-based authorization controls (TBAC): Models for
active and enterprise-oriented authorization management. In Proceedings of the 11th IFIP
Working Conference on Database Security (Lake Tahoe, CA). Chapman & Hall, Ltd.,
London, UK, 136–151.

ULLMAN, J. 1989. Principles of Database and Knowledge-Base Systems. Computer Science
Press, Inc., New York, NY.

VAN GELDER, A., ROSS, K. A., AND SCHLIPF, J. S. 1991. The well-founded semantics for general
logic programs. J. ACM 38, 3 (July 1991), 619–649.

Received: September 1997; revised: May 1998; accepted: October 1998

104 • E. Bertino et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

