
Access Control Mechanisms
for Inter-Organizational Workflow

Myong H. Kang, Joon S. Park and Judith N. Froscher

Naval Research Laboratory
Information Technology Division

4555 Overlook Ave. Washington, DC 20375
{mkang, jpark, froscher}@itd.nrl.navy.mil

ABSTRACT
As more businesses engage in globalization, inter-organizational
collaborative computing grows in importance. Since we cannot
expect homogeneous computing environments in participating
organizations, heterogeneity and Internet-based technology are
prevalent in inter-organizational collaborative computing
environments. One technology that provides solutions for data
sharing and work coordination at the global level is inter-
organizational workflow. In this paper, we investigate the access
control requirements for inter-organizational workflow. We then
present access control solutions for inter-organizational workflow
based on our implementation. Many of the requirements and
solutions in this paper address the scalability of existing security
solutions, the separation of inter-organizational workflow security
from concrete organization level security enforcement, and the
enforcement of fine-grained access control for inter-organizational
workflow.

Keywords
Access control, Security, Organizational security, Enterprise,
Workflow

1. INTRODUCTION
The Internet and business globalization have replaced the
separation that was typical of the traditional business paradigm.
Unconventional coalitions among businesses and nations are
formed to advance common goals. These coalitions then quickly
dissolve as individual objectives change. Threats now lie in these
essential connections among participating enterprises, which also
enable profitable cooperation. To facilitate these alliances,
businesses and the military rely on distributed information
technology (IT) for most operations. A secure computing
infrastructure (e.g., secure network, firewall) is needed to support
their missions. In addition to a secure computing infrastructure,
the enterprise needs

− Flexible IT resources and infrastructure that allow rapid
configuration,

− Secure distributed applications that can be easily constructed
across enterprise boundaries, and

− Enterprise-level anomaly detection and recovery.
One technology that tries to provide solutions to the above
problems is inter-organizational workflow. A workflow is a
distributed application that interacts with uses and other
applications to achieve common goals. Even though the above
three requirements are equally important, we focus on the second
item, especially access control issues. In this paper, we use
“enterprise application” and “inter-organizational workflow”
interchangeably because an inter-organizational workflow is an
instance of enterprise applications. Figure 1 shows two inter-
organizational workflows.

Organization3

Organization1

: host

: organization
boundary

: inter-organizational
workflow

Organization2

Figure 1. Two inter-organizational workflows

In figure 1, one workflow spans two (physical) organizations
while the other workflow spans three (physical) organizations. We
can view an inter-organizational workflow as a virtual enterprise
that supports a specific mission. Once a workflow is designed,
each task [3, Appendix] should be assigned to a specific
organization and host (computer). In this example, we assume that
hosts are connected via some networking mechanisms (e.g.,
Internet). Also note that multiple workflow tasks may be assigned
to the same host.
In this paper, we study the access control requirements for inter-
organizational workflows. We then present access control
solutions for inter-organizational workflow based on our
implementation. The rest of the paper is organized as follows. We
briefly describe a prototype inter-organizational workflow
management system (WFMS), SALSA, in section 2. Section 3
presents access control requirements for inter-organizational
workflows. We review related access control research in section 4.

This paper is authored by an employee(s) of the United States
Government and is in the public domain.
SACMAT’01, May 3-4, 2001, Chantilly, Virginia, USA.
ACM 1-58113-350-2/01/0005.

66

In section 5, we present access control mechanisms that have been
implemented in SALSA. Section 6 summarizes this paper.

2. AN INTER-ORGANIZATIONAL
WORKFLOW MANAGEMENT SYSTEM

An enterprise application that supports global, virtual enterprises
may span multiple organizations and legal boundaries.
Conventional WFMS cannot support such enterprise applications
due to its mostly centralized architecture and functions. In most
cases, the autonomy of users and organizations are greatly
restricted due to centralized architectural and design
considerations. Therefore, we need new inter-organizational
WFMSs.

A WFMS, typically, consists of two parts; design-time and
runtime tools. We constructed an inter-organizational WFMS,
called SALSA [4], by implementing new design-time tools and
extending an existing distributed CORBA-compliant workflow
runtime engine, OrbWork[6] from University of Georgia. There is
no centralized workflow engine in Orbwork. Instead each task
contains a portion of the workflow specification that pertains to
that task’s interaction with other tasks in the workflow. Data
resources that the task uses are also known as work-items. Our
extension is based on one important requirement of inter-
organizational workflows: the autonomy of participating
organizations should be honored not only during the design phase
but also during the runtime (execution) phase. In other words,
different workflow designers may work on different portions of an
inter-organizational workflow during the design phase. Also,
multiple workflow runtime engines, which are managed by
different organizations, may have to work together to accomplish
a mission.

To support such autonomy among participating organizations, we
extended OrbWork with cooperative processes [3] that allow
multiple independent autonomous workflows to cooperate based
on the contract among them. To make the contract among
participating organizations rigorous, we introduce a workflow
domain in our design tool. A workflow domain is a generic
concept that can be used to represent each organization or even
security domain [3]. A workflow in a workflow domain
corresponds to an independent workflow during runtime. In other
words, when an inter-organizational workflow is designed, it is a
single workflow across multiple organizations. However, this
single inter-organizational workflow design is split into multiple
autonomous workflows, and they are deployed to participating
organizations for execution. The number of independent
workflows that will be produced is the same as the number of
participating organizations or workflow domains [3]. In this way,
we address the autonomy of organizations and their concern for
mutual protection. In other words, each organization maintains
and executes its portion of workflow, and any data to and from
other organizations for receiving and sending should be
exchanged according to the organization’s security policies [3].
Any communication among workflow domains should follow the
contract governing cooperation among independent workflows or
organizations. The contract may specify what kinds of requests or
data can be passed from one entity to another, when a response is
expected. Since several portions of workflow design may be

assembled to accomplish an enterprise level mission, it is
important to validate that the overall design is consistent and
sound. We provide translators for converting an inter-
organizational workflow design into inputs to an existing Petri-net
based analysis tool Woflan [11], and a model checking tool Spin
[2], so that the consistency of the inter-organizational workflow
design can be validated. The overall structure of SALSA is as
follows:

Runtime

Specification

&

Code

SALSA
Design

Tool

Runtime
EngineCompiler

XML

Figure 2. Internal structure of SALSA

The SALSA design tool allows application designers to specify
mission/application logic, and the contract governing interactions
among participating organizations. In other words, the designer
can specify the follows:

− workflow domains that may represent organizations

− task specifications (e.g., inputs, outputs, invocation method
for the underlying component) in each workflow domain,
and

− control logic and data flow among tasks.
The SALSA design tool also allows application designers to hide
complexity by providing a way to group related tasks into a more
abstract higher-level task (i.e., the level of abstraction) [3, see
Appendix]. The SALSA design tool saves the design specification
in XML. When the workflow design is completed, the compiler
reads the XML representation of the design, and generates Woflan
or Spin inputs for design analysis and validation. Finally it
generates runtime specification and code. Currently, we are using
modified version of OrbWork as our runtime engine. OrbWork
does not have a central scheduler; rather the scheduler is
distributed with each task containing the code pertaining to it.
Each scheduler only knows its predecessors and successors. Each
OrbWork scheduler reads a task specification that was generated
by the compiler and executes its role in the overall mission.
Briefly, OrbWork consists of the following CORBA servers: task
servers, worklist server, data servers, and a monitor server. Each
task server, which is a process from the operating systems’ point
of view, may contain more than one task [Appendix], where each
is a separate thread in a task server. The worklist server maintains
the lists of pending work for human tasks. Data servers act as a
repository for data that is needed by tasks. A monitor server
maintains the history of execution and answers queries from other
servers and monitor clients. Since they are CORBA servers, they
communicate with each other through CORBA’s IIOP.
The task server and worklist server are not only CORBA servers,
but also HTTP servers. When a human operator has to interact
with worklist server (e.g., human task), he can do so through the
HTTP protocol. Also when a human workflow manager needs to
intervene for some reasons, he can do so through the HTTP
protocol. Figure 3 shows a simplified view of OrbWork.

67

W

D

Data Servers

Human
Manager

Human
Operator

T1 T3
Tasks

: CORBA’s IIOP

: HTTP

Worklist
Servers

T2

Task
Servers

M
Monitor Servers

Figure 3. A simplified view of OrbWork

3. ACCESS CONTROL REQUIREMENTS
FOR INTER-ORGANIZATIONAL
WORKFLOW

There are many security requirements for inter-organizational
workflows such as establishing secure communication among
servers, and providing different views of the workflow based on
users’ needs-to-know and their affiliated organization. However,
in this paper, we focus on access control requirements for inter-
organizational workflows.

3.1. Separation of Application-level
(Workflow) Security Infrastructure from
Organization-level Security Infrastructure
Because there are several organizations that support an inter-
organizational workflow, the participants may change during the life
cycle of an inter-organizational workflow. For example, a new
organization may replace an old organization or there may be a
merger or separation among organizations. Since each organization
may support several inter-organizational workflows, it is not realistic
for each organization to restructure its security infrastructure for
inter-organizational workflows. Therefore, inter-organizational
workflows need to be insulated from organization level changes so
that workflows can continuously operate without changing
workflow specifications including security specifications.

3.2. Fine-grained and Context-based Access
Control
Traditionally, an access control decision is made based on
subjects and objects. The subjects may be users or processes
acting on behalf of users. The objects are data or resources in the
system; for example, objects may be files in the file system.
Conventionally, a process, which may be an application executing
on behalf of a user, is the finest grained subject for which an
access control decision can be made by the operating system.

Inter-organizational workflows tend to be large scale and consist
of many workflow tasks [Appendix], which can be threads within

a process. Hence, conventional access control may be too coarse
for workflows, in general. What we need is a fine-grained access
control that is based on a user’s working context. Workflow tasks
provide users’ working context. Even the same user may have
different data access needs and requirements based on the tasks
the user is working on.

3.3. Supporting Dynamic Constraints
Dynamic constraints are required in many inter-organizational
workflows. Dynamic constraints may be based on the users of a
specific task. For example, if a user performs a task, T1, then that
person may not be allowed to perform another task, T2 (i.e.,
separation of duty [8]) in the same workflow instance. If there is
one centralized WFMS, then it is not too difficult to enforce such
constraints. However, inter-organizational workflow may consist
of several autonomous workflows that work together to achieve an
enterprise-level mission. Therefore, inter-organizational work-
flows need some framework for sharing relevant execution history
among participating workflows.

The above access control requirements are not only requirements
for inter-organizational workflows but also those of enterprise
applications that have to be executed across multiple
organizations. In the following, we present access control related
research.

4. RELATED RESERCH
Traditionally, an access control decision is made based on
subjects and objects (see figure 4). The subjects may be users or
processes acting on behalf of users. Conventionally, a process is
viewed as a subject; however, for workflows, a process may
include several workflow tasks, which can act on behalf of
different users. The objects are data or resources in the system.
For example, objects may be files in the file system. Permission is
a set of authorized interactions that a subject can have with one or
more objects in the system. Permission may have a variety of
interpretations in various access control models. The basic idea is
to control “who can access which resources.”

Resources

files Data
Objects

Processes
on behalf of

users

Processes
on behalf of

users

Users

Access
Control

Decision

Permissions

Subjects Objects

Access
control
module

Figure 4. A traditional access control model

4.1. Role-based Access Control (RBAC)
Role-based access control (RBAC, [7]) has rapidly emerged in the
1990s as a technology for managing and enforcing security in
large-scale systems. The basic notion of RBAC is that permissions
are associated with roles, and users are assigned to appropriate
roles. RBAC ensures that only authorized users are given access
to certain data or resources. This simplifies security management
and we can see that RBAC focuses on the management of subjects
in figure 4 using users’ roles instead of identities.

68

In RBAC, a role is a semantic construct forming the basis for access
control policy. System administrators can create roles, grant
permissions to those roles, and then assign users to the roles on the
basis of their specific job responsibilities and policy. Therefore,
role-permission relationships can be predefined, making it simple to
assign users to the predefined roles. RBAC helps (especially, in a
large enterprise system) to determine efficiently which permissions
have been authorized for what users.
Constraints (e.g., separation of duties, [8]) can apply to relations
and functions in an RBAC model. This is an effective mechanism
for establishing higher-level organizational policy. Constraints are
predicates, which are applied to the RBAC relations and functions
and return a value of acceptable or not acceptable.

4.2. Task-based Authorization Controls
(TBAC)
Task-based Authorization Controls (TBAC, [10]) is a task-
oriented model for access control and authorization. It is an active
security model that is well suited for distributed computing and
dynamic information processing activities, such as workflow
management and agent-based distributed computing.
TBAC focuses on security modeling and enforcement from the
application and enterprise perspective rather than from a system-
centric subject-object view. In the subject-object paradigm, the
access decision function checks whether a subject has the required
permissions for the operation, but it does not care about the
contextual information about ongoing activities or tasks. In
contrast, in the TBAC paradigm, permissions are checked-in and
checked-out in a just-in-time fashion based on activities or tasks.

4.3. Fine-grained Object Approaches
Conventionally, a file or a data object is a unit of objects for
which an access control decision can be made by the operating
system. To provide fine-grained access control, permissions can
be based on DTD1 [5] or IDL2 [9] for data objects. In other words,
permissions can be based on specific fields or methods of data
objects. For instance, NAI (Network Associates, Inc.) Lab’s OO-
DTE (Object Oriented Domain and Type Enforcement, [9])
provides relatively finer-grained access control than typical object
oriented approaches. It can provide access control based on
individual fields or methods of an object in CORBA-based
systems. These approaches mainly focus on providing fine-
grained access control to objects (figure 4). We refer to such
approaches as fine-grained object approaches in this paper.

5. ACCESS CONTROL MECHANISMS FOR
INTER-ORGANIZATIONAL
WORKFLOWS
Inter-organizational workflows have to be executed on existing
computing resources in participating organizations. They may be
Windows-based, UNIX-based, LINUX-based, etc. Existing
systems have their own security mechanisms. It is not realistic to
expect participating organizations to change their computing
resources or security mechanisms to support inter-organizational

1Document Type Definition that is used in Extensible Markup

Language (XML).
2Interface Definition Language.

workflows. What is needed are access control mechanisms for
workflow that can work with existing systems and security
mechanisms. There are many ways to provide access control
mechanisms for inter-organizational workflows. The access
control mechanisms that we reviewed in section 4 are all
applicable to inter-organizational workflows. The challenge is to
satisfy access control requirements that we specified in section 3
without changing the existing security mechanisms and
infrastructure of participating organizations.
From an organizational-level access control point of view, a
workflow is an ordinary application program acting on behalf of
users. For example, figure 5 shows an inter-organizational workflow
that consists of two autonomous workflows. In this example, each
autonomous workflow is just another application programs. Hence,
each autonomous workflow should follow its organization’s security
policy. This implies that if we carefully hide additional access
control mechanisms within the WFMS, it does not affect the
existing access control mechanisms that were deployed by
participating organizations. In this section, we highlight access
control mechanisms that are incorporated in our WFMS, SALSA.
Since these security mechanisms are managed by SALSA, existing
organizations’ security mechanisms are not affected.

T1

T3

T4

T2

Users

Permissions

Organization2

Organization1 workflow Organization level
access control

T5

T7

T8
T6

Users

Resources

Files Data
objects

Resources

Files Data
objects

Permissions

workflow

Organization level
access control

Inter-organizational
workflow

Resources

Files Data
objects

Resources

Files Data
objects

T9

Figure 5. Inter-organizational workflow from conventional

access control point of view.

5.1. Decoupling Workflow and Organization
Security Infrastructures
In SALSA, there are two types of tasks: human and automatic tasks.
Human operators accomplish human tasks and automatic tasks are
accomplished by underlying components (e.g., database,
executables). Hence, no human operators are needed for automatic
tasks. RBAC is a convenient way for a system administrator to
create roles, grant permissions to the roles, and assign users to the
roles on the basis of their job responsibilities and the system policy.
Therefore, in the SALSA implementation, we use RBAC for human
tasks.

There are many organizations that can support an inter-
organizational workflow. Hence, an inter-organizational workflow
may have to interact with the security infrastructures of several
participating organizations. If there is a change in participation, a
part of the inter-organizational workflow has to be moved to other

69

organizations, and the inter-organizational workflow specification
(especially security specification) may have to be changed. We want
to avoid changing inter-organizational workflow specifications,
including security specifications (e.g., who can access a task). To
avoid such disruptions, we need to decouple the workflow-specific
security infrastructure from an organization’s security
infrastructures.
Generally speaking, an organization’s role server contains
organization-specific role structures that specify available roles, role
hierarchy, and user-role assignments in the organization. If a
workflow accesses the organization’s role server directly, we cannot
achieve this decoupling between the workflow security
infrastructure and organization security infrastructure. To achieve
this decoupling, we introduce a role domain, which is a role
structure interface for workflow. Just like regular RBAC, each role
domain contains specific roles and the relationships among them.
Any organization that needs to participate in the cooperation should
map its role structure to the role domain for the workflow. Because
of this indirect interaction between a workflow and organizations’
role structure, the changes in the participating organizations do not
affect the workflow security infrastructure. Instead, these changes
are confined to modification of the mapping from an organization’s
role structure to the role domain. In this sense, the relationship
between a role domain and the role structures of organizations is
similar to the relationship between an interface and a server
implementation in client-server interactions. Role domains are
interfaces for workflows, and each organization provides a mapping
between the role domain and the organization’s specific role
structure. SALSA provides a role editor [4] for a workflow designer
to define a role domain, roles in the domain, and the relationship
among the roles.
When a workflow is designed, a workflow designer uses
workflow domains, which were introduced in section 2, instead of
organizations. The designer also specifies access control
requirements in terms of role domains instead of organization-
specific role structures. For example, an application designer may
specify required roles for each task in the following way,

<Task n, Role>: [{roleDomain, (roles)}, {RD_1, (A, B, C, …)},
{RD_2, (X,Y, …)} …]

<Task n, Role> declares that this is a required role assignment for
task n. In this example, RD_1 is a specific role domain and
A,B,C,D are specific roles in RD_1. If a user belongs to one of the
role domains in the required role set (expressed in […]) and has
one of the roles in that role domain or more privilege than one of
the roles in the required role set, he is allowed to perform the task.
The role assignment to each task during design time is turned into
a security policy for each task that has to be enforced during
runtime. When a user accesses a task during runtime, he presents
a certificate3 that reveals his identity and role in his organization.
The OrbWork’s Worklist server looks up the mapping between
the role structure of the user’s organization and that of the role
domain. If the user has the proper role, he can execute the task
and thus access the necessary resources.

3 In our implementation, X.509 certificate is used to provide user

ID and role/organization information. We use Phaos’ JCA to
generate certificates and Phaos’ SSLava for SSL connection
between Web browser and OrbWork’s Worklist servers.

5.2. Fine-grained and Context-based Access
Control
Consider a workflow that consists of 4 tasks: T1, T2, T3, and T4.
Further, assume that all four tasks are in one process, and task T1
needs permission P1, task T2 needs permission P2, task T3 needs
permission P3, and task T4 needs permission P4. Using traditional
access control, even if a user needs only permission P1 to execute
task T1, he will get P1, P2, P3, and P4 because conventional
access control mechanisms cannot distinguish different tasks
within a process.

P1 P3
P2 P4

Permission
Process

T1

Figure 6. Traditional access control model

To support fine-grained access control in a workflow, we
introduce task-specific access control modules (TACM). The
purpose of the TACM is to provide fine-grained access control for
both subject and object (see figure 2) in the following ways:
1. Divide a process (subject in figure 4) into many tasks,
2. Divide the data set (object in figure 4) that a workflow needs

to access into many subsets. This is possible because the
resources that each task needs to access may be a subset of
the resources that the whole workflow needs to access, and

3. Provide access control between divided, thus smaller, subject
and divided object.

Process

P1 P3
P2 P4

Permission

T1

T2

Figure 7. Fine-grained access control model

Thus, we make use of fine-grained object approaches that were
discussed in section 4.3 at the task level rather than the process
level. We provide a mechanism for a workflow designer to
provide the task-data access specification that describes which
fields of a data object can be accessed by a specific task. We
provide a tool for a workflow designer to specify a data access
policy for each task. In other words, each task has its associated
data access policy that has a series of the following triples,

<Task n, Data>: [{Data object, field name, permission}, {…}, …]

<Task n, Data> declares that this is a data access control
assignment for task n. The permission in this statement can either
be read-only, full-control, no-access, etc. The task data access
specification is also translated into a runtime specification for
OrbWork to enforce. Any violation of the specification causes
OrbWork to throw a data access exception.
In this approach, if a user has the correct required role, the user is
allowed to access the task. However, data access by the user is
further restricted by the task’s context. Consider a workflow that

70

consists of two tasks, Task1 and Task2. Assume that the
following access control policy has been set:

<Task1, Role>: [{GM, (Accountant)}, {Ford, (Accountant)}]
<Task1, Data>: [{DataObj1, field1, read-only}, {DataObj2,

field3, full-control}]
<Task2, Role>: [{GM, (Manager)}, {Ford, (Project_leader)}]
<Task2, Data>: [{DataObj2, field3, read-only}, {DataObj3,

field2, read-only}, {DataObj3, field3, full-
control}]

This means that only a user who has the Accountant role in GM
or Ford role domains can execute Task1. When the user executes
Task1, he has read-only permission on field1 in DataObj1 and
full-control permission on field3 in DataObj2. Except field1 in
DataObj1 and field3 in DataObj2, the user cannot read nor
modify any other fields or data object.
In this sense, SALSA uses capability-based security. Figure 8
show that each task maintains data access capabilities. For
example, task T2 can read fields f1 and f3 of data object D2, and
write to field f2 of D2. In case of human tasks, a human operator
must have a required role to access a task. Once the access to the
task is granted, the operator can access only the portion of data
that is in the task’s capability list.

r

w

f3

r

r

f2

w

r

f3

r

w

f2

w

f3

w

f2 f1f1f1

rT3

rrT3

rT2

rrT1

D3D2D1

r

w

f3

r

r

f2

w

r

f3

r

w

f2

w

f3

w

f2 f1f1f1

rT3

rrT3

rT2

rrT1

D3D2D1

capability

Figure 8. Fine-grained security for all tasks

It is interesting to compare the fine-grained and context-based
access control that we introduced in this section to TBAC [10]. As
we reviewed in section 4.2, TBAC activates and deactivates
permissions in a just-in-time fashion based on the context associated
with progressing tasks. If the TBAC is implemented in a centralized
fashion (i.e., permissions are managed by a central access control
module), it could introduce unnecessary constraints (e.g., race
conditions) across workflows. In our SALSA implementation,
permissions are managed in a distributed fashion; hence, it does not
introduce unnecessary constraints across workflows (i.e., SALSA
can enforce TBAC-like policies in a distributed fashion).
For example, if a user wants to execute a human task, the user must
have the required role for the task. This is enforced by Access
Control List (ACL) based security (see section 5.1 and step1 of
figure 9). Note that subjects S1, S2, … are {roleDomain, role} pairs
and T1, T2, … are tasks in step1 of figure 9.
Once a user is granted to access a task, the user’s access to data
objects is further restricted by the capability of the task that the user
is accessing (step2 of figure 9). Hence, the task provides a context
for the user’s data access. Since the data access is restricted by the
capability of each task, there is no need for TBAC style activation
and deactivation of permissions in a just-in-time fashion based on
the context associated with progressing tasks.

5.3. Supporting Dynamic Constraints
Workflows sometimes require dynamic constraints such as
dynamic separation of duty [8] (e.g., 2-man rule). Consider the
following example: a simplified employee expense reimbursement
scenario (see figure 10). This example consists of five tasks; four
human tasks and one automatic task. We assume that a required
role is associated with each human task. For simplicity, we also
assume that all roles are from the same role domain. Any human
operator who has a role that is in the required role set or has more
privilege than any of the roles in the required role set can execute

Figure 9. Two-step process for SALSA security in terms
of access control matrices

xxS4

xS3

xS2

xxS1

T4T3T2T1

xxS4

xS3

xS2

xxS1

T4T3T2T1

r

w

f3

r

r

f2

w

r

f3

r

w

f2

w

f3

w

f2 f1f1f1

rT3

rrT3

rT2

rrT1

D3D2D1

r

w

f3

r

r

f2

w

r

f3

r

w

f2

w

f3

w

f2 f1f1f1

rT3

rrT3

rT2

rrT1

D3D2D1

Access to human tasks are enforced by
access control list (ACL) based security

All tasks have capabilities (Capability-based security)

Step1:

Step2:

Prepare
Required Role: Employee
Prepare an itemized expense
reimbursement request

Automatic Task
Access database to retrieve allowable
expenses for each item and make
preliminary approval
Required Role: Manager
Approve the request

Required Role: Accountant
Issue a check

Required Role: Accountant
Sign the check

Sign
check

Issue
check

Approve

Compare

Figure 10. An example of a simplified employee expense

reimbursement process

71

the task. Note that the Issue_check and Sign_check tasks
require the same role in this example.

Consider a scenario where an employee prepares an expense
reimbursement request. An organization may want to enforce a
security policy that specifies that the employee who prepared an
expense reimbursement request should not approve the request.
This is a general application of the traditional 2-man rule (i.e.,
separation of duty) that can be applied to two different tasks,
Prepare and Approve, with two different required roles. In other
words, if the employee, who initiates the reimbursement process,
happens to be a manager, then the manager should not approve
the expense reimbursement request that he initiated even though
he has both Employee and Manager roles. We can apply the 2-
man rule to the two other tasks, Issue_check and Sign_check
that have the same required role, Accountant. In this case, the 2-
man rule says that a person who issues a check should not sign the
check. The Accountant role can be split into two roles,
Accountant1 and Accountant2, and assign Accountant1 to
Issue_check task and Accountant2 to Sign_check task with
static separation of duty (i.e., users cannot be assigned to both
Accountant1 and Accountant2). However, that is a solution that
reduces the number of people who can perform the task.

To overcome these difficulties, we propose to use history-based
access control. We have introduced the workflow monitor server
in section 2. Since the monitor server keeps a log of execution
history (e.g., who performs task A in workflow instance 5), a task
that requires execution history to make access control decision
can query the monitor server.

To implement this mechanism, we had to extend SALSA. The
first aspect is design-time support. We introduce constraints for
each task. Suppose the following constraint must be enforced:
“task1 and task3 should not be executed by the same person for
the same workflow instance.” A workflow designer can specify
dynamic constraints on task1 as !Performer(task3), which
means that a user who performed task3 cannot perform this task,
and !Performer(task1) for task3. If there is a dependency
between task1 and task3, then only the task that is executed later
may be constrained. This will generate a runtime specification that
allows runtime tasks to query execution history from the monitor
server.

The second aspect is runtime support. Inter-organizational
workflows consist of several autonomous workflows. Hence, there
may be many monitor servers. In SALSA, there is a monitor
server per runtime engine. Therefore, we need some
communication mechanisms that exchange relevant information
among monitor servers. Each monitor server has its own database
so that it can record events from OrbWork and answer any query
from OrbWork or monitor clients. Monitor clients can register
their topics of interests to monitor servers. For example, one
monitor client may be interested in all events in a specific
workflow while another monitor client may be interested in only
events that have to do with a specific task. The monitor server
records clients’ interests and dispatches only those events that
each client is interested in. The monitor server is not only a server
but also a client, so that it can register its topics of interests to
other monitor servers and receive interesting events from other
monitor servers (figure 11).

OrbWork

other Monitor
servers

Monitor
clients

DB

Monitor
Server

Figure 11. The structure of SALSA monitor server

Since each monitor server can act as a client we can arrange
monitor servers in a hierarchical fashion. Consider a scenario
where organization A is collaborating with organizations B, C,
and D, and organization A is acting as a coordinator. Assume that
each organization maintains its own workflow and monitor
servers due to security and autonomy issues. Even though they
manage their own workflows, organization A may need to know
the status of the work in progress in organizations B, C, and D. In
this case we can configure monitor servers so that organization A
can receive specific events from organizations B, C, and D.

6. SUMMARY
In this paper, we described workflow-specific access control
requirements such as dynamic constraints, fine-grained and
context-based access control, and the need to insulate inter-
organizational workflows from organization level changes. We
presented a way to satisfy the above requirements. We have
introduced the role domain as an interface between workflows and
organization-specific security infrastructure. We also have
introduced history-based access control for dynamic constraints,
and fine-grained and context-based access control. Even though
we introduced the access control mechanisms in the context of
inter-organization workflow, they can be applied in other
contexts, such as applications within a system or an organization.
In our implementation of these mechanisms for SALSA, we
carefully engineered the mechanisms so that existing security
infrastructures of participating organizations are not affected and
the autonomy of each organization is honored.
We can summarize the SALSA security architecture and its
interaction with organizations’ security mechanisms as follows
(see figure 12). There are two kinds of access control modules in
the overall security architecture:

− An organization-specific access control module (OACM)
that is controlled by each organization and enforces a
security policy that was set by each organization. The access
control module in Figure 4 is an example of an organization-
specific access control module.

− The task-specific access control module (TACM) that is
controlled by each workflow and enforces task-specific
security policies. Only a person with intimate knowledge of
the workflow can set the security policy of each task because,
in general, a task-specific security policy depends on the
semantics of the workflow. This module enforces access
control mechanisms that were introduced in section 5.2.

72

Since TACMs are distributed and autonomous, they cannot
enforce constraints that depend on the activities of other tasks. To
accommodate the needs for coordinating access control decision
among tasks, we expand the capabilities of the workflow monitor.
The monitor records workflow-specific events during runtime and
responds to queries from the task-specific access control modules
of the workflow.
TACMs need to support changes in participants because
organizations that support a specific mission may be changed
even before the mission is over. We can achieve this goal by
reducing the dependency of task-specific access control modules
on participating organizations’ security infrastructure. The
workflow security server (WSS) is a tool for achieving this goal.
The workflow security server provides workflow-specific security
infrastructure information (e.g., workflow-specific role domain)
and the mapping information between the workflow-specific
security infrastructure and the security infrastructures of
participating organizations. When the participants change, we
need to update the mapping between the workflow-specific
security infrastructure and that of participating organizations.

Workflow

TACMTACM

TACMTACM

TACMTACM

TACMTACMT1

T3

T4

T2

Role/ID

MonitorMonitor

Events
Access
Control

by
Organization

Permissions

Access
Control

by
Organization

Permissions

Access
Control

by
Organization

Permissions

Resources

Files Data
objects

Resources

Files Data
objects

TACM: Task-specific Access Control Module
OACM: Organization-specific Access Control Module
WSS: Workflow Security Server

WSS

OACM

Figure 12. The SALSA security architecture

Currently, we have completed implementation of 90% of all the
mechanisms that we described in this paper. The remaining work
is to modify OrbWork to enforce a history-based access control
for dynamic constraints. We plan to release the SALSA design
tools to the public at the first quarter of CY2001.

7. REFERENCES
[1] “Extensible Markup Language (XML) 1.0,” World-wide-

Web Consortium, http://www.w3.org/TR/1998/REC-xml-
19980210.html.

[2] G.J. Holzmann, The model checker Spin, IEEE T/SE, Vol.
23, No. 5, May 97, pp. 279-295. See also http://cm.bell-
labs.com/cm/cs/what/spin/

[3] M. H. Kang, J. N. Froscher, A. P. Sheth, K. J. Kochut, and J.
A. Miller, “A Multilevel Secure Workflow Management
System,” Proceedings of the 11th Conference on Advanced
Information Systems Engineering, Heidelberg, Germany
(1999).

[4] M. H. Kang, B. J. Eppinger, and J. N. Froscher, “Tools to
Support Secure Enterprise Computing,” In Proceedings of
15th Annual Computer Security Applications Conference,
Phoenix, Arizona, December 1999.

[5] D. L. Long, J. Baker, and F. Fung, “A Prototype Secure
Workflow Server,” In Proceedings of 15th Annual Computer
Security Applications Conference, Phoenix, Arizona,
December 1999.

[6] K. Kochut, A. Sheth, and J. Miller, “ORBWork: A CORBA-
Based Fully Distributed, Scalable and Dynamic Workflow
Enactment Service for METEOR,” UGA-CS-TR-98-006,
Technical Report, Department of Computer Science,
University of Georgia, 1998.

[7] R. S. Sandhu, E. J, Coyne, H. Feinstein, and C. Youman,
“Role-Based Access Control Models,” IEEE Computer,
29(2): 38-47, February 1996.

[8] R. Simon and M. E. Zurko, “Separation of Duty in Role-
Based Access Control Environments,” In Proceedings of
New Security Paradigms Workshop, September 1997.

[9] D. F. Sterne, G. W. Tally, C. D. McDonell, D. L. Sherman,
D. L. Sames, and P. X. Pasturel, “Scalable Access Control
for Distributed Object Systems,” In Proceedings of 8th
USENIX Security Symposium, Washington, DC, August
1999.

[10] R. K. Thomas and R. S. Sandhu, “Task-based Authorization
Controls (TBAC): A Family of Models for Active and
Enterprise-oriented Authorization Management,” In
Proceedings of the IFIP WG11.3 Workshop on Database
Security, August 1997.

[11] H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst.
Diagnosing Workflow Processes using Woflan. Computing
Science Report 99/02, Eindhoven University of Technology,
Eindhoven, 1999.

Appendix: An Inter-organization Workflow
Model
In our inter-organization workflow model, a task represents an
abstraction of an activity. A task can be regarded as a unit of
work, which is performed by a variety of processing entities,
depending on the nature of the task. There are two kinds of tasks:
a network task and a simple task. A simple task can be performed
by (realized by) a human, or by performing a computerized
activity through executing a computer program, a database
transaction, etc. A network task is performed by a network of
interconnected tasks. Hence, a network task provides one level of
abstraction (view) and its realization provides a lower level of
abstraction (view). Since the realization of a task may contain
many tasks at different levels of abstraction, a task is a recursive
reference in the inter-organization workflow model. In this model,
each task belongs to a workflow domain which may represents an
organization or some other domain (e.g., security domain).

Figure A shows an inter-organization workflow (i.e., Task1 that
is a top-level network task) that consists of three levels of
abstractions (views). In Figure A, Task1 and Task 5 are network
tasks that were realized by a network of tasks. Other tasks are
simple tasks that can be realized by other means (e.g., human,
database, executable). Transition Tj represents a transition from
Task2 to Task3 (i.e., Task2 has been completed and Task3 can
make use of results that were produced by Task2).

73

Realized by

Task1

Task2

Task3

Task4

Task5

Task6

Task7

Task8

Task9

Transition Tj

Realized by

Realized by

Task1

Task2

Task3

Task4

Task5

Task6

Task7

Task8

Task9Task6

Task7

Task8

Task9

Transition Tj

Realized by

Figure A. An enterprise application model

A task may play the role of a source task or a destination task
(e.g., Task2 is the source task and Task3 is the destination task
of the transition tj in Figure A) for a number of transitions. All of
the transitions for which a task is the destination task are called
the input transitions for that task (e.g., transition tj is an input
transition for Task3). Likewise, all of the transitions for which a
task is the source task are called its output transitions (e.g.,
transition tj is an output transition of Task2). A transition may
have an associated Boolean condition, called its guard. A
transition may be activated only if its guard is true.

The classes (i.e., types of objects) that are associated with an input
transition to a task are called the task’s input classes, and those
appearing on an output transition are called output classes of that

task. A task's output class, which is not its input class, is created
by the task. A task's input class, which is not its output class, is
dropped (consumed). Note, that some input classes may be unused
by the task. They are simply transferred to the task’s successor(s).

A group of input transitions is called an AND-join if all of the
participating transitions must be activated for the task to be
enabled for execution. An AND-join is called enabled if all of its
transitions have been activated. All the input transitions of a task
may be partitioned into a number of AND-joins. A group of input
transitions is called an OR-join if the activation of one of the
participating transitions enables the task.

A group of transitions is said to have a common source if they
have the same source task and all lead either from:

• its success state, or

• its fail state

A group of common source transitions may form either:

1. AND-split: Each of the transitions in the group has the
condition set to true. It means that all of the transitions in
the group are activated, once the task completes.

2. OR-split (selection): An ordered list of transitions where all
but the last transition may have arbitrary conditions (i.e., the
last transition on the list has the condition set to true). The
first transition whose condition is satisfied will be activated.

3. Loop: A special case of an OR-split, where the list is
composed of exactly two transitions: loopback and
continue. Loopback implies branch taken and continue
implies branch not taken (i.e., fall through).

74

