
Managing Role/Permission
Relationships

Using Object Access Types

John Barkley
Anthony Cincotta

National Institute of Standards and
Technology

Gaithersburg MD 20899
jbarkley@nist.gov

July 24, 1998

Abstract

The role metaphor in Role Based Access Control (RBAC)
is particularly powerful in its ability to express access
policy in terms of the way in which administrators view
organizations. Much of the effort in providing
administrative tools for RBAC has been devoted to tools
for associating users with roles and roles with roles. This
paper introduces the concept of an “Object Access Type”
and describes the tool “RGP-Admin” for administering
associations between roles and permissions using Object
Access Types. RGP-Admin is applicable to most RBAC
mechanisms and Access Control List mechanisms which
support groups. A prototype demonstration of RGP-
Admin was developed to illustrate how Object Access
Types are used to manage associations between Windows
NT groups, representing roles, and file permissions within
the Windows NT File System.

1 Introduction

Administering users’ access to resources is often
accomplished by directly associating users with
permissions. This approach can be particularly difficult,
error-prone, and costly to administer when users enter and
leave an organization, and when users’ responsibilities
change within an organization. Role Based Access Control
is designed to address this problem. Simple RBAC
mechanisms and Access Control List (ACL) mechanisms
which support groups are often equivalent in their
functionality and their ability to describe policy[I].

3rd ACM Workshop on Role-Based Access Fairfax VA
1998 l-581 13-l 13-5/9X/10

With RBAC, users are assigned to roles. Roles are
assigned permissions and when users’ responsibility
changes, their role assignment changes. As a result, a
user’s permissions change. The advantage of this approach
is that once an organization’s role permissions are defined,
then administering permission assignments when user
responsibility changes is no longer necessary.

Because permissions are usually attributes stored with
objects and objects are usually widely dispersed among
storage media, administering permission assignments can
be inherently expensive. Within an organization, changes
in user responsibility typically occur more often than
changes in role permissions. Thus, by associating
permissions with roles and by moving users in and out
these roles, the amount of permission assignment
administration can be reduced and consequently, the total
cost of security administration can be reduced.

With RBAC, much of the effort in providing
administrative tools has been devoted to tools for
associating users with roles and roles with roles. This
paper introduces the concept of an “Object Access Type”
and describes the tool “RGP-Admit? for administering
associations between roles and permissions using Object
Access Types. The use of Object Access Types is
applicable to most RBAC and ACL mechanisms. A
prototype demonstration of RGP-Admin which runs on
Windows NT’ was developed to illustrate the use of RGP-
Admin with Windows NT groups, which represent roles,
and file permissions.

Much of this paper has been derived from the experiences
of the NIST team which implemented RBAC on the World
Wide Web (RBACIWeb)[2J for Unix servers and adapted
the RBAC/Web Admin Tool for use directly with
Windows NT. A version of the Admin Tool has also been
developed for use in a relational database environment.
RBAC has several advantages over ACLs. Even a very
simple RBAC model affords an administrator the
opportunity to express an access control policy in terms of
the way that the organization is viewed, i.e., in terms of the
roles that individuals play within the organization. With
RBAC, it is not necessary to translate a natural
organizational view into another view in order to
accommodate an access control mechanism. In addition,
most RBAC models have features which most ACLs do

’ Because of the nature of this report, it is necessary to
mention vendors and commercial products. The presence
or absence of a particular trade name product does not
imply criticism or endorsement by the National Institute of
Standards and Technology, nor does it imply that the
products identified are necessarily the best available.

73

not. In particular, many RBAC models[3][4] have role
hierarchies where one role can “inherit” another.

Section 2 introduces the concept of an Object Access
Type. Section 3 describes in general terms the features of
RGP-Admin. Section 4 describes a prototype
demonstration implementation of RGP-Admin for
Windows NT.

2 Object Access Types

A permission can be described as authorization to perform
an operation on an object. An access control policy which
uses roles defines an association between a role and the
permissions for that role. This association can be
represented as a 3-tuple:

(role, object, permitted operations on object)

which means that a user assigned to the role is authorized
to perform an operation on the object only if the operation
is a member of the set of permitted operations for that
object.

This representation is isomorphic to a representation of the
form :

(object, role, permitted operations on object)

where the first and second elements of the 3-tuple are
interchanged. In this equivalent representation, for each
object, there is a list of roles and associated permitted
operations for those roles on that object. This list is the
RBAC information for the object. For each object, this
information may be different. However, for many objects
this information may be the same. An “Object Access
Type” is an access control information specification which
can be manipulated as an entity separate from the object
with which it is associated. Object Access Types can be
created, edited, deleted, assigned to objects, and removed
from objects.

. Defines, saves, and recalls Object Access Types and
Object Access Type collections.

RGP-Admin has three components: the Object Access
Type View, the Object Access Type Editor, and the Role
Permission View.

3.1 Object Access Type View

Object Access Type assignment may be viewed by
selecting an Object Access Type and a set of objects. For
each object in the selected set, RGP-Admin displays the
object icon as green, if the object has access control
information which is an instance of the selected Object
Access Type, or red, if the object does not. The selected
Object Access Type may be set to a selected object and
optionally, to objects inherited by that object, if the object
is displayed red, or removed from a selected object and
optionally, objects inherited by that object, if the object is
displayed as green. The Object Access Type View also:

. creates, saves, and recalls Object Access Type
collections; and,

. obtains the access control information for an object
and adds it to an Object Access Type Collection.

Figure 2 shows a sample Object Access Type View as it is
implemented in the RGP-Admin Prototype Demo for
Windows NT.

3.2 Object Access Type Editor

The Object Access Type Editor creates and edits Object
Access Types. Object Access Types are managed by
adding or removing a role from the Object Access Type
and by modifying the permissions associated with that
role. RGP-Admin’s Object Access Type View sets objects
to Object Access Types or removes Object Access Types
from objects. Figure 3 shows a sample Object Access Type
Editor as it is implemented in the RGP-Admin Prototype
Demo for Windows NT.

3 RGP-Admin
3.3 Role Permission View

RGP-Admin manages the association of roles and
permissions by means of views of Object Access Types,
roles, objects, and permissions and an Object Access Type
Editor. RGP-Admin:

. Provides views of associations between Object Access
Types and objects, and between role permitted
operations and objects; and

. Sets or removes an object’s Object Access Type; and,

RGP-Admin graphically displays object access by role in
order to verify the access permissions set by means of the
RGP-Admin Object Access Type View or by means of
some other tool, such as, Windows NT Explorer in the
case of the prototype implementation. RGP-Admin defines
object access by means of Object Access Types in the
Object Access Type View. When an Object Access Type
definition is not required, e.g., the number of objects to be
set to specific access control information is small, then
tools other than RGP-Admin might be used to set the
access control information. In the Role Permission View.

74

RGP-Admin displays the access associated with selected
objects for a selected role. Different kinds of access may
be displayed in order to answer the questions in sections
3.3.1 and 3.3.2. Figure 4 shows a sample Role Permission
View as it is implemented in the RGP-Admin Prototype
Demo for Windows NT.

3.3.1 To which objects does a selected role have
specifically selected access?

This question is answered by selecting a set of objects, a
role, and specific permissions. For each object in the
selected set, RGP-Admin displays the object icon as green,
if the selected role has all of the selected permissions, or
red, if the selected role does not have all of the selected
permissions.

3.3.2 To which objects does a selected role have any
access?

This question is answered by selecting a set of objects, a
role, and by leaving all specific permissions unselected.
For each object in the selected set, RGP-Admin displays
the object icon as blue, if the selected role has any access,
i.e., any permission to access the object, or red, if the
selected role has no access to the object.

3.3.3 Hierarchy Mode

The capability for one role to inherit another role is a
common feature of RBAC models, e.g., the Sandhu

RBAC, Model[S], the NIST model[3], the SQL3 RBAC
model[4]. A role hierarchy is a strict partial ordering[6]
(i.e., like “<“, asymmetric and transitive) on the set of
roles. One can think of role inheritance as the capability
for one role to be authorized for (or “included in”) another
role. SQL3 implements role hierarchies in this manner.

When roles or groups have hierarchies, it can be important
to know whether a given role effecbvely has access to an
object. With hierarchies, access is permitted either as a
result of the permissions associated with that role or as a
result of the given role inheriting some other role that has
permission to access the object. It can also be important to
know whether access is permitted to the object as a result
of the permissions defined for the role itself or is based on
permissions associated with inherited roles.

In the Role Permissions View, if hierarchy mode is
selected, then the questions of sections 3.3.1 and 3.3.2 are
answered based on the effective access of the selected role,
i.e., based on the permissions authorized for the selected
role and any of its inherited roles. In addition, the roles
inherited by the selected role is displayed. If hierarchy
mode is not selected, then the questions of sections 3.3. I

and 3.3.2 are answered based only on the permissions
authorized for the selected roIe.

3.3.4 Path Mode

Like roles, objects, such as, files and processes, can be
organized into hierarchies. In such object hierarchies, it is
important to know not only the access of a role to an
object, but also, to know whether the path in the hierarchy
to the object can be traversed.

In Role Permission View, if Path Mode is selected, then
for nodes in the hierarchy not shown as end nodes, the
questions of sections 3.3.1 and 3.3.2 are answered based
on whether the selected role has permission to traverse
these intermediate nodes. Nodes in the hierarchy shown as
end nodes are displayed normally. If Path Mode is not
selected, then the questions of sections 3.3.1 and 3.3.2 are
answered for all nodes based on the selected role. Note
that when no permissions are selected, Path Mode is
irrelevant since the permission to traverse an intermediate
node is included in the concept of any access.

4 RGP-Admin Prototype Demo

In the prototype demonstration of
Windows NT:

. Objects are NT File System
directories.

. Roles are Windows NT groups.

RGP-Admin for

(NTFS) tiles or

. Object Access Types are NTFS ACL specifications.

. Permissions are the NTFS tile permissions: Read(R),
Write(W), Execute(X), Delete(D), Change
Permissions(P), Take Ownership(O).

Figure 1: Roles in a bank.

75

The Prototype Demo illustrates a small portion of a
banking environment where the roles and their hierarchy
are shown in figure 1. The roles branch-manager and teller
are two that one might expect at a bank’s branch office.
The role account-rep is authorized for the bank’s account
representatives who sit at the desks outside of the teller
windows. The role financial advisor is authorized for an
account representative who 7s trained in recommending
non-insured investment products. The role
financial-advisor inherits account-rep because
financial-advisor needs to be able to open and close
accounts. The roles account-rep, branch-manager,
financial-advisor, and teller inherit the role employee
since any user authorized for these roles is a bank
employee.

Table 1 shows the role permissions defined for each of the
Object Access Types. There are four Object Access
Types:

* The Object Access Type account applies to files that
contain individual account information and to
directories that hold such files.

. The Object Access Type cd to-dir provides all roles
with the capability of traversing a directory in order to
access files in the directory.

l The Object Access Type employee applies to files
readable by all employees and to directories which
contain employee related files. Employees need to be
able to write in such directories in order to create
suggestions files.

l The Object Access Type suggestions applies to files
created by employees containing suggestions for more
efficient bank operations.

The RGP-Admin Prototype Demo uses a pair of
parenthesized permission lists for describing file and
directory permissions. This notation is also used in
Windows NT Explorer. For example, table 1 shows that
role branch manager has permissions “(RX) (R)” for the
accounts Object Access Type. When a file is the accounts
Object Access Type, then branch-manager has Read
permission for that file. When a directory is an accounts
Object Access Type, then branch-manager has Read and
Execute permission for the directory. When a directory or
file is created within a directory of Object Access Type
accounts, then the file or directory created has Object
Access Type accounts.

In support of bank policy, the role permissions for each of
the Object Access Types are:

l The role account-rep must be able to create and delete
account files. Thus, account-rep has permission to
traverse and write into the accounts directory, and
read and delete account files. Note that account-rep
does not have permission to read the accounts
directory because bank policy is that account-rep does
not need to be able to create a list of all account
holders. Also, the account-rep does not need to write
into an account file. When an account is created or
deleted, the initial deposit or final withdrawal from the
account must be performed by a teller.

. The role branch-manger has permission to read the
account directory and account tiles, and to read and
delete suggestion files.

Object Access Type

Table 1: Role permissions for each Object Access Type

l The role employee has permission to read all
employee information but does not have any
permissions to access information about accounts.

l The role financial-advisor is able to read the accounts
directory, thus, obtaining a list of all account holders.
This permission is necessary in order for
financial advisor to be able to derive marketing
information about current account holders in order to
identify account holders who might be interested in
the bank’s uninsured investments. Since
financial-advisor inherits account-rep,
financial-advisor is has the permissions necessary to
function as an account-rep. A financial-advisor needs
permission to open and close both insured and
uninsured accounts.

. The role teller must have the permission to make
changes (deposits and withdrawals) from the account
files. Thus, teller has permission to traverse the
account directory and read/write account files. Note
that teller has no permission for creating or deleting
accounts. That is the responsibility of the account-rep.

In order for all roles to be able to traverse the directory tree
to access tiles for which they have permissions, all roles

76

have Execute permission on directories with cd to dir - -
Object Access Type.

4.1 Example Displays

Figure 2 shows a sample Object Access Type Window of
the RGP-Admin Prototype Demo. This view color-codes
file icons green if the file has the selected Object Access
Type or red if not as shown. In figure 2, the Object Access
Type accounts is selected and the icons for the directory
accounts and the files *.acc are displayed in green
indicating that those files have Object Access Type
accounts. The icons for the tiles a:\, bank-files, and
empl-info are displayed in red indicating that those files
have some other Object Access Type. On a black and
white display, “red’ is the darker shading.

Files shown in red can be set to the accounts Object
Access Type. If the file to be set is a directory, then tiles
and/or directories in the directory or in the directory tree
can be set to accounts. In addition, using this display, a
file’s Object Access Type can be copied and added to a
collection.

Figure 3 shows a sample of the Object Access Type Editor
Window. Using this display, an Object Access Type can be
created and/or edited from a collection. In figure 3, the
accounts Object Access Type has been selected from the
collection for editing. Figure 3 shows that employee is the
only role available to be added to the accounts Object
Access Type. The Permissions checkboxes are used to set
the permissions for a selected role in accounts.

Figure 4 shows a sample of the Role/Group Permission
View Window. Because the Prototype Demo illustrates a
Windows NT implementation, the title “Role/Group
Permission View” serves as a reminder that roles are
Windows NT groups. This view color-codes file icons
green if the selected role has the selected permission for
the file and red if not. If no permissions are selected, then
file icons are color-coded blue if the selected role has any
access. If Hierarchy Mode is selected, then the color-
coding is based on the selected role and any additional
permissions that the selected role inherits from the roles
which it inherits.

In figure 4, the role financial-advisor, Hierarchy Mode,
and Read permission are selected. All files except a:\ and
bank files are shown in green indicating that
tinan&-advisor has read permission on those files. On a
black and white display, “green” is the lighter shading.
Note that financial-advisor has Read permission for the
accounts directory as a result of the fact that the directory
has Object Access Type accounts (see tab. 1 and fig. 2).
,The role financial-advisor has Read permission on all of
the other files displayed in green as a result of inheritance.

If Path Mode were also selected, then the directories a:\
and bank-files would also be shown in green indicating
that financial-advisor has either Read or Execute
permission. If so, financial advisor is able to traverse
those directories. If no pet&sions are selected, then file
icons are colored blue if the selected role has any access.

4.2 Windows NT Implementation Issues

Windows NT does not support multilevel group
hierarchies. Windows NT Local Groups can contain
Domain Groups as members, but Domain Groups cannot
contain Local Groups or other Domain Groups. The RGP-
Admin Prototype Demo includes multilevel group
hierarchy in order to demonstrate how RGP-Admin could
be implemented with such a feature. Most RBAC
mechanisms support role hierarchies. The use of
hierarchies in administering the user/role relationships can
significantly reduce administrative costs.

One approach to implementing multilevel role hierarchies
in Windows NT is to represent role hierarchies by
manipulating user membership in NT groups according to
a hierarchy representation external from the NT User
Manager Database. This is the approach taken in the
adaptation of the RBAClWeb Admin Tool for Windows
NT. If role A inherits role B, then all users in the NT group
representing role A are members of the NT group
representing role B.

Windows NT supports users as entries in ACLs and
negative permissions associated with ACL entries. These
features present a problem with regards to what it means
for a role, i.e., an NT group, “to have a permission for a
file.” The preferred meaning would be: “any user who is
authorized for a role (i.e., a member of an NT group which
is an entry with positive permissions in a file’s ACL) has
the access indicated by the permissions associated with the
entry.” **‘h ‘,, >, t ‘9 +t$ I<#%&

With ACLs that can have entries with negative
permissions overriding entries with positive permissions,
this preferred meaning is not possible in general. For
example, an ACL may have an entry for a role with
positive permissions and also an entry negating those
permissions for a user authorized for that role. The result is
that although the user is authorized for the role and the role
associated with permission, that particular user does not
have permission while all other users authorized for that
role have permission. Thus in general, the meaning of the
statement “role having a permission for a file” becomes:
“the role has an entry with positive permissions in the
file’s ACL.”

The nature of Windows NT ACLs also implies an
alternative meaning for Hierarchy Mode. Hierarchy Mode

77

becomes “Effective User Access” mode which only
applies to users. When this mode is selected, the effective
access of a selected user (i.e., whether this user has access
to the file as determined by Windows NT criteria) color-
codes the file icons according to the selected permissions.
When this mode is not selected, then the color-coding of
the tile icons indicates that the selected user or role has an
entry in the ACL with the selected positive permissions.

5 Summary

The use of roles in administering access policy is usually
less error-prone and less costly than directly associating
users with permissions. Much of the effort in developing
administrative tools to support the use of roles has been
devoted to tools which associate users with roles. RGP-
Admin is a tool that manages the association of roles and
permissions by means of Object Access Types.

An Object Access Type is an access control information
specification which can be manipulated as an entity
separate from the object with which it is associated. Just as
roles and objects can have hierarchies, hierarchical
relationships could also be defined for Object Access
Types based on permission inheritance. This might be
useful for reusing access specifications across applications,
projects, and/or organizational units. The concept of an
Object Access Type hierarchy is a subject for further work.

RGP-Admin allows Object Access Types to be created,
edited, and associated with objects. In addition, RGP-
Admin displays graphically the association of Object

Access Types and objects, and the association of roles,
permissions, and objects.

References

[II

PI

[31

[41

PI

[61

John Barkley. Comparing Simple Role Based Access
Control Models and Access Control Lists. In Second
ACM Workshop on Role Based Access Control,
November 1997.

J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrilla, and
D.R. Kuhn. Role Based Access Control for the
World Wide Web. In 20th National Information
System Security Conference. NISTNSA, 1997.

D. Ferraiolo, J. Cugini, and D.R. Kuhn. Role Based
Access Control: Features and Motivations. In Annual
Computer Security Applications Conference. IEEE
Computer Society Press, 1995.

ISO/IEC 9075, (Working Draft) Database Language
SQL - Part 2: Foundation. Document ISO/IEC
JTCl/SC21 N10489, July 1996.

R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E.
Youman. Role Based Access Control Models. IEEE
Computer, 29(2), February 1996.

Patrick Suppes. Axiomatic Set Theory. Van Nostrand,
Princeton, New Jersey, 1960.

78

