
Formal Specification for Role Based
Access Control User/Role and Role/Role

Relationship Management

Serban I. Gavrila
VDG Inc.

6009 Brookside Drive
Chevy Chase, MD 20815

gavrila@csmes.ncsl.nist.gov

John F. Barkley
National Institute of Standards and Technology

Gaithersburg, MD 20899
jbarkley@nist.gov

Abstract

Role Based Access Control (RBAC), an access control
mechanism, reduces the cost of administering access control
policies as well as making the process less error-prone. The
Admin Tool developed for the NIST RBAC Model manages
user/role and role/role relationships stored in the RBAC
Database. This paper presents a formal specification of the
RBAC Database and Admin Tool operations. Consistency
requirements for the RBAC Database are defined as a set of
properties. Alternative properties, substantially simpler to
verify in an implementation, are shown to be equivalent. In
addition, the paper defines the semantics of Admin Tool
operations, and shows that, given a consistent RBAC
Database and an operation which meets specified conditions,
the RBAC Database remains consistent after the operation is
performed.

1 Introduction

Role Based Access Control (RBAC) is an access control
mechanism that reduces the cost of administering access
control policies, as well as making the process less error-
prone. The NIST RBAC Model [I] supports complex access
control policies while also permitting efficient
implementation.

The Admin Tool developed for the NIST RBAC Model
manages user/role and role/role relationships. These
relationships are stored in the RBAC Database. In order to
maintain the integrity of the information in the RBAC

Database, a set of properties defining data consistency was
developed. The properties initially developed can be
simplified and reduced in number. The equivalent properties
are verified before the Admin Tool permits any RBAC
Database operation to be performed. This results in a more
efficient implementation of the Admin Tool.

This paper describes the Admin Tool developed for the
NIST RBAC Model. It presents a formal specification of the
initial set of consistency properties for the RBAC Database
consistency and the simplified set. These two sets of
consistency properties are shown to be equivalent.

In addition, the paper presents a formal specification of
RBAC Database operations. It is shown that, given a
consistent RBAC Database, database operations which meet
given conditions maintain database consistency.

The Admin Tool described in this paper is part of three
implementations of the NIST RBAC Model: one for the
World Wide Web (RBAC/Web) [2], one for use in relational
database environments, where the RBAC Database is
implemented by tables in a commercial DBMS, and one for
Windows NT.’ The Windows NT implementation does not
support Dynamic Separation of Duties.

Section 1 of the paper is this Introduction. Section 2
describes the NIST RBAC Model and Admin Tool. Section
3 presents the formal specification of RBAC Database
consistency properties, operations, and conditions under
which database operations preserve database consistency.
Section 4 summarizes.

2 NIST RBAC Model and Admin Tool

The NIST RBAC Model is a Sandhu RBAC3 Model [3]. It
extends the basic RBAC Model by adding role hierarchies,
role cardinality, and conflict of interest relationships. The
Role hierarchy is a partial ordering on the set of roles. If one
role inherits another and a user is authorized for the
inheriting role, then that user is also authorized for the
inherited role. Role cardinality is a role attribute which
restricts the number of users for which a role may be
authorized.

There are two types of conflict of interest relationships:
Static Separation of Duties (ssd) and Dynamic Separation of

i Because of the nature of this report, it is necessary to
mention vendors and commercial products. The presence or
absence of a particular trade name product does not imply
criticism or endorsement by the National Institute of
Standards and Technology, nor does it imply that the
products identified are necessarily the best available.

81

Duties (dsd). If two roles have an ssd relationship, then no
user may be authorized for both roles. If two roles have a dsd
relationship, then a user may be authorized for both roles,
but that user may not have both roles active at the same time
(in the same session or different sessions).

The Admin Tool manages user authorization for roles, role
hierarchies, ssd, dsd, and role cardinality. In order to reduce
errors in administration, the Admin Tool makes use of the
concept of role assignment. A role gets assigned to a user
explicitly through the Admin Tool. A role is authorized for a
user if that role is assigned to the user or is inherited by a
role which has been assigned to the user. This concept of
role assignment helps an administrator maintain awareness of
the role hierarchies which describe an organization. The
Admin Tool does not permit a role, which is inherited by a
role already assigned to a user, to be assigned to that user.
This design decision is reflected in rule P3 of Section 3.4.

Another design decision is required to address the problem
illustrated by the following example. Suppose role r-1 and
role r2 have a dsd relationship, rl is authorized for user u,
and rI inherits r2. When establishing u’s active role set for a
session, the following apparent contradiction results. Role r-2
belongs in u’s active role set because r-1 inherits r-2, but r-2
cannot be in u’s active role set because rl and r-2 have a dsd
relationship.

In order to address this problem, the Admin Tool does not
permit a role pair to simultaneously have both a hierarchical
and a dsd relationship. Thus, the apparent contradiction in
active role set contents can never occur. This design decision
is based on the desire to have all role relationships specified
in the RBAC Database hold at all times and in all situations.
The goal is to simplify the task of administration.
Administrators are not required to be aware of situation-
sensitive rules. They are able to know that what is reflected
in the RBAC Database holds throughout the administration,
session establishment, and enforcement of role relationships
and access. This design decision is reflected in rules P15,
P16, and P17 of Section Y3.4.

It is recognized that alternative approaches may be equally
valid depending on implementation requirements. One such
alternative approach is described by Sandhu [4].

Figure 1 shows the Admin Tool’s graphical display for a
hypothetical policy in a bank. In the bank there are roles
such as branch-manager, teller, and account-holder. The
display shows:

. The bank’s role hierarchy. For example, the financial
advisor is a special kind of account representative
authorized to market non-insured bank products. The
financial advisor, account representative, branch

manager, internal auditor, and teller are all bank
employees.

. The number of users to which a role is authorized and
the cardinality for each role. For example, no users are
currently authorized for the role invited_guest and an
unlimited number of users may be authorized for that
role.

. The conflict of interest relationships for a selected role
teller. The red (in a color display) pentagon indicates
that teller and internal-auditor have a ssd relationship,
and the blue (in a color display) rectangles indicate that
the roles financial-advisor, account-rep, and
account-holder each have a dsd relationship with teller.

Figure 2 shows the main display of the Admin Tool. With
this display, user/role and role/role relationships are
managed. Using the left panel of the display, users are
created, deleted, and their role assignments managed and
displayed. The left panel shows that user ko has role
assignments account-holder and teller indicating that ko is
employed as a teller and has an account in the bank where
employed. User ko may also be assigned the roles
account-rep, branch-manager, financial-advisor, and
invited_guest. User ko may not be assigned the roles
employee, internal-auditor, role-admin, and visitor for the
reasons indicated.
Using the right panel of the display in Fig. 2, roles are
created and deleted, and role hierarchies, role cardinality,
and conflict of interest relationships between roles (ssd, dsd)
are defined. Mirroring the graphical display of Fig. 1, the
right panel shows that the role teller is currently selected.
The role teller can now be deleted, or its cardinality, position
in a hierarchy, or conflict of interest relationships with other
roles modified.

3 RBAC Database Consistency

3.1 Basic Sets and Functions

USERS: is the set of users.

ROLES: is the set of roles.

OPERATIONS = (addUser, rmUser, addRole, rmRole,
addAssignment, rmAssignment, addlnheritance,
rmlnheritance, addSsd, rmSsd, addDsd, rm Dsd,
setcardinality, addActiveRoles, rmActiveRoles). This set
contains administrative operations, such as add a user,
remove a user, etc., as well as operations to add/remove
active roles, which may be initiated by users.

82

assigned-roles: USERS+2RoLES. assigned-roles(u) denotes
the set of roles assigned to user u.

active-roles: USERS-+2RoL”. active-roles(u) denotes the set
of active (currently assumed) roles of user u in his sessions.

inherits E ROLESxROLES is the inheritance relation
between roles. If (rl, r&inherits, we write also rl-+r2. We
denote the transitive closure, respectively transitive and
reflexive closure of the -+ (inherits) relation by -++,
respectively +*.

ssd c ROLESxROLES is the static separation of duties
relation between roles.

dsd c ROLESxROLES is the dynamic separation of duties
relation between roles.

cardinality: ROLES-+fk{-}. cardinality(r) denotes the
cardinality of role r, i.e., the maximum number of users
authorized for that role.2

3.2 Derived Functions

authorized-roles: USERS--+2RoLES returns the roles
authorized for a given user. We say that a role r is authorized
for a user u if either r is assigned to u, or r is inherited by
another role that is assigned to u. For example, if John is
assigned the teller role, and teller inherits (“is a”) employee,
then both the teller and employee roles are authorized for
John. Formally:
VrE ROLES, Vue USERS, t-E authorized-roles(u) w

3pe ROLES such that PE assigned-roles(u) A p+*r.

authorized-users: ROLES-+2USERS returns the users
authorized for a given role. This is simply a convenience
function; a user is authorized for a role if the role is
authorized for that user. Formally:
Vre ROLES, VUE USERS, UE authorized-users(r) w

rE authorized-roles(u).

3.3 States and Transitions

A state is a tuple

’ In the context of the Admin Tool implementation, the
symbol “CO” means that the number of roles which can be
authorized to users by means of the Admin Tool is unlimited,
i.e., will not be checked by the Tool. The other integer
values are, of course, limited by the implementation’s
environment, i.e., the size of the integer used to contain the
value of a role’s cardinality.

(USERS, ROLES, assigned-roles, active-roles, inherits, ssd,
dsd, cardinality).

We denote the set of states by STATES.

The state transitions are triggered by administrators
performing administrative operations and by users assuming
or dropping roles during their RBAC sessions. Each
operation needs one or more arguments, that we leave
unspecified for the time being, but we denote their set by
ARCS. The transition function is a partial function:

6: STATESxOPERATIONSx2ARGS+STATES,

such that 6(s, op, args) = s’ if and only if the RBAC
Database goes from state s to state s’ by performing
operation op with arguments args on the sets and functions
defined above.

3.4 RBAC Database Consistency Rules

During system operation, we require each database state to
satisfy the following properties:

Pl. The number of authorized users for any role does not
exceed the cardinality of that role. Formally:

VrE ROLES, Iauthorized-users(r)1 I cardinal@(r).

P2. No role inherits (directly or indirectly) itself. Formally:
VrE ROLES, +r++r).

P3. Any two roles assigned to same user do not inherit
(directly or indirectly) one another. Formally:
VUG USERS,Vr,, rzE ROLES, rl, r2 E assigned-roles(u)*

-7(rl ++r2).

P4. Any two roles authorized for same user are not in static
separation of duties. Formally:
VUE USERS,Vrl,r+ ROLES,r,,r2 E authorized-roles(u):

(t-1, r& ssd.

P5. There is no role in static separation of duties with itself.
Formally:

VrE ROLES * (r, r)e ssd.

P6. The static separation of duties relation is symmetric.
Formally:

Vr,, r+ ROLES, (r,, r& ssd =+ (t-2, r,)E ssd.

P7. Any two roles in static separation of duties do not inherit
(directly or indirectly) one another. Formally:

Vr,, r2E ROLES, rI++r2 3 (r-1, r&z ssd.

83

Theorem 1. P9 w P18. P8. There is no role inheriting (directly or indirectly) two
roles in static separation of duties. Formally:

Vr, t-1, r2e ROLES, r+‘r1, r+‘r2 j (r-1, r&ssd.

P9. If a role inherits (directly or indirectly) another role and
that role is in static separation of duties with a third role,
then the inheriting role is in static separation of duties with
the third one. Formally:

Vr, rl, r2E ROLES, r++r,, (rl, r2)Essd j (r, r&ssd.

PlO. The active role set of any user is a subset of his or her
authorized roles. Formally:

VUE USERS, active-roles(u) c authorized-roles(u).

Pl 1. Any two roles in dynamic separation of duties do not
belong both to the active role set of any user. Formally:
VE USERS, Vrl, r2e ROLES, t-1, t-2 E active-roles(u) j

(rl, r2)g dsd.

P12. The dynamic separation of duties and static separation
of duties relations are disjoint. Formally:

Vr,, r2E ROLES, (r,, r2)E dsd ti (rl, r2)g:ssd.

P13. There is no role in dynamic separation of duties with
itself. Formally:

VrE ROLES * (r, r)P dsd.

P14. The dynamic separation of duties relation is symmetric.
Formally:

V/r,, r+ ROLES, (t-1, r&z dsd j (rz, r& dsd.

P15. Any two roles in dynamic separation of duties do not
inherit (directly or indirectly) one another. Formally:

Vr,, ryz ROLES, rl+‘r2 * (r-1, r&!dsd.

P16. There is no role inheriting (directly or indirectly) two
roles in dynamic separation of duties. Formally:

Vr, rl, r2E ROLES, r++r,, r++r2 3 (rl, r2)@dsd.

P17. If a role inherits (directly or indirectly) another role and
that role is in dynamic separation of duties with a third role,
then the inheriting role is in dynamic separation of duties
with the third one. Formally:

Vr, rl, r2E ROLES, r++rl, (rl, r&dsd ti (r, r&dsd.

Definition 1. We say that the RBAC Database is consistent
in a state if and only if properties Pl-P17 hold in that state.El

We successively try to substitute simpler but equivalent
properties for some of the consistency properties defined
above. First we show that property P9 can be substituted by a
similar one that only involves direct inheritance, and is
defined below.

Proof. P18 is a particular case of P9, hence P9 3 P18. Now
assume that P18 holds. We show the property r-++r, A (r,,
r2)E ssd 3 (r, r2)E ssd by induction on the number of steps in
the inheritance r++r,. For one step (direct inheritance), (r,
r2)Essd follows directly from P18. Assume the property
holds for any role rl and any number of steps < n (where
n21), and let r--++r, in n+l steps and (r,, r2)E ssd. There
exists a role r’ such that r+r’ and r’++r, in n steps. Then
(r’, r2)Essd by the induction hypothesis, and (r. r&ssd by
P18.0

Property P17 can be substituted by a similar one that only
involves direct inheritance:

P19. Vr, rI, r-26 ROLES, r-+rI, (r,, r2)Edsd * (r, r&dsd.

Theorem 2. P17 @ P19.

Proof. P19 is a particular case of P17, hence P17 3 P19.
Now assume that P19 holds. We show the property r-++r, A
(rl, r&dsd 3 (r, r&dsd by induction on the number of
steps in the inheritance r-++r,. For one step (direct
inheritance), (r, r&dsd follows directly from P19. Assume
the property holds for any role rl and any number of steps I
n (where &I), and let r--++rl in n+l steps and (rI, r&dsd.
There exists a role r’ such that r+r’ and r’++r, in n steps.
Then (r’, r&dsd by the induction hypothesis, and (r,
r2)Edsd by Pl9.0

The following two theorems show that not all properties Pl-
P17 are independent. Consequently, some of them can be
omitted from the consistency requirements.

Theorem 3. P5r\P6r\P9 j P7r\P8.
Proof. Assume that P5, P6, P9 hold, and let us prove P7.
Assume that rl--+‘rz, and, by way of contradiction, that (rl,
r&ssd. P6 implies that (r2, r,)E ssd. P9 applied to rl++r2
and (t-2, r,)Essd results in (t-1, r,)Essd, which contradicts P5.

Let us prove P8. Assume that r++r,, r++rz, and, by way of
contradiction, that (rI, r&zssd. P9 applied to r++rl and (rl,
r2)Essd gives (r, r&ssd, or (r2. r)Essd by P6. P9 applied
again to r+‘r2 and (t-2, r)Essd gives (r, r)Essd, which
contradicts P5.0

Theorem 4. Pl3~Pld~Pl7 + P15~P16.

Proof. Assume that P13, P14, P17 hold, and let us prove
P15. Assume that r,+)+r2, and, by way of contradiction, that
(t-1, r&dsd. P14 implies that (r-2, rI)Edsd. P17 applied to

P18. Vr, t-1, ryz ROLES, t-+-l, (r,. r+ssd 3 (r, r&ssd.

84

r,++rz and (t-2, r,)E dsd gives (r,, r,)E dsd, which contradicts
P13.

Let us prove P16. Assume that r-+)+r,, r+‘r2, and, by way of
contradiction, that (rl, r&dsd. P17 applied to r-++r, and (r,,
r&dsd gives (r, r&dsd, or (r2, r)Edsd by P14. P17 applied
again to r++r2 and (r2, r)E dsd gives (r, r)Edsd, which
contradicts P 13.0

In conditions already satisfied in a consistent state, property
1’4 can be relaxed to P20, defined below, which forbids only
roles assigned to same user to be in static separation of
duties.

P20.v~ USERS,Vrl,r2~ ROLES, t-1, r+ assigned-roles(u)
3 (r-1, r& ssd.

Theorem 5. In any state such that P6r\P9 holds, P4 w P20.

Proof. Assume that P6r\P9 holds. P20 is a particular case of
P4, hence P4qP20. Assume that P20 holds, and let us prove
P4. Let t-1, r+authorized-roles(u), and assume by way of
contradiction that (r,, r&ssd. There exist roles pi,
p+ assigned-roles(u), such that p,+*r,, p2+*rz.

If pi = t-1, then @I, r2)Essd. If pl#rl, then pt--++r,, (r,,
r&ssd, and P9 implies (pi, r&ssd. Anyway, (r2, p,)~ssd
by P6.
If p2 = t-2, then (~2, p,)Essd. If p2#r2, then p2-++r2, (r2,
plkssd, and P9 implies (p2, p,)~ssd. But p2, p, belong to
assigned-roles(u), and by P20 (p2, pi)e ssd, contradiction.O

Now we can establish a set of consistency conditions,
equivalent to, but fewer and simpler to verify than the
original set.

Theorem 6. The RBAC Database is consistent if and only if
the following properties hold:

Pl. Vre ROLES, Iauthorized-users(r)1 5 cardinality(r).
P2. VrE ROLES, T(r-++r).
p3.V~ USERS,bfrl,r2E ROLES, rt, r2 E assigned-roles(u)

p20.V~ USERS,kfr,,r2~ ROLES, rl, r2e assigned-roles(u)
=a (t-1, r2)p ssd.

P5. VrE ROLES d (r, r)@ ssd.
P6. Vrl, r+ ROLES, (r-1, r& ssd * (12. rl)E ssd.
P18. Vr, rl, r2E ROLES, r-t-1, (rl, r&ssd j (r, r&ssd.
PlO. Vtz USERS, active-roles(u) cauthorized-roles(u).
Pl 1 .V’UG USERS, Vr,, r2E ROLES, rl, r2 E active-roles(u)

3 (r,, r&? dsd.
P12. VrI, r2E ROLES, (r,, r2)Edsd a (r-1, r&ssd.
P13. kfrtz ROLES 3 (r, r)@dsd.

P14. b‘r,, r2E ROLES, (t-1, r2)Edsd 3 (t-2, r&dsd.
P19. Vr, rl, r2E ROLES, r+rt, (r,, r&dsd 3 (r, r+dsd.

Proof. The proof is a simple exercise of predicate calculus
using the results of Theorems l-5.0

3.5 Operations

This section shows under what conditions each operation in
OPERATIONS preserves the database consistency.
Specifically, we show that if the database is in a consistent
state, and a certain set of conditions is satisfied by (the
arguments of) an operation, then the database remains in a
consistent state after that operation is performed.

For each operation in OPERATIONS, we specify its
arguments, semantics, and consistency preserving conditions.
In the semantics specification of a database operation, a
primed variable denotes its value after that operation has
been performed.

adduser
Arguments:

user
Semantics:

USERS’ = USERS v { user)
active-roles’ = active-roles V (user ++ 0}
assigned-roles’ = assigned-roles u {user I-+ 0)

Conditions:
C 11: user E USERS

The new user is added to the USERS data set; its active and
assigned roles are set to empty.

rmUser
Arguments:

user
Semantics:

USERS’ = USERS 1 (user)
active-roles’ = active-roles \

(user ++ active-roles(user))
assigned-roles’ = assigned-roles \

(user I-+ assigned-roles(user))
Conditions:

C2 1. usetx USERS
C22. assigned-roles(user) = 0

The user is deleted from the USERS data set; its entries in
the active roles and assigned roles are removed. Note that
condition C22 corroborated with PlO implies that user has
no active roles.

addrole
Arguments:

role

85

Semantics:
ROLES’ = ROLES v (role]
cardinality’ = cardinal&y u {role +-+ -)

Conditions:
C31: role P ROLES

inherits relation, role and all roles inherited by it must satisfy
the requirement related to the cardinality (C.56).

The new role is added to the ROLES data set. By default, the
roles receives an infinite cardinality.

rmRole
Arguments:

role
Semantics:

ROLES’ = ROLES 1% { role]
cardinality’ = cardinality \

[role ++ cardinality(role)]
Conditions:

C4 1. roles ROLES
C42. Vug USERS, role P assigned-roles(u)
C43. ‘V’~IZ ROLES, -,@-+role) A Y(role-+p)
C44. V’pe ROLES, (p, role) g .ssd
C45. v’p~ ROLES, (p, role) e dsd

The role is removed from the ROLES data set; its entry in the
cardinality is also removed. The role may be removed only if
it is not assigned to any user (condition C42), it is not part of
a role hierarchy (C43), and it is not in separation of duties
relationships with other roles (C44, C45). Note that
conditions C42, C43, corroborated with PlO, imply that role
is not active for any user.

addAssignment
Arguments:

user, role
Semantics:

assigned-roles’ = (assigned-roles \
(user ++ assigned-roles(user)}) u
(user I--+ assigned-roles(user) u (role]]

Conditions:
C5 I. user E USERS
C52. role E ROLES
C53. role P authorized-roles(user)
C54. ‘dp~ ROLES, role++p ti

p P assigned-roles(user)
C55. Vpe ROLES, PE assigned-roles(user) *

(p, role) +Z ssd
C56. t)‘p~ ROLES, role+*p j

Iauthorized-users(< cardinality(p)

The entry for user in assigned-roles is updated to reflect the
new assignment. The role may not be already authorized for
that user, or inherit another role assigned to that user, or be
in static separation of duties with another role assigned to
that user. Because the authorization propagates along the

rmAssignment
Arguments:

user, role
Semantics:

assigned-roles = (assigned-roles 1
{user H assigned-roles(user))) u

(user ++ assigned-roles(user) \ (role))
Conditions:

C6 1. users USERS
C62. roles ROLES
C63. roles assigned-roles(user)
C64. b’rE ROLES, rE active-roles(user) A role+*r =+

3p~ ROLES: p#role A p-+‘r A PE assigned-roles(user)

The entry for user in assigned-roles is updated. Condition
C64 forbids a role r to remain active for user after
deassignment if r is no more authorized for user.

addInheritance
Arguments:

role,, role2
Semantics:

inherits’ = inherit u {(role,, rolez))
Conditions:

C7 I. role,, role2E ROLES
C72. rolelfrolez
C73. +role,++rolez) A +role++rolel)
C74. \JUE USERS, VrE ROLES, role2+*r,

role,Eauthorized-roles(u) 3
rE assigned-roles(u)

C75. ‘VrE ROLES, (r, role2)E ssd 3 (r, role& ssd
C76. ‘Vre ROLES, (r, role& dsd 3 (r, role,)E dsd
C77. Vre ROLES, role2+*r =+

Iauthorized-users(role,) v authorized-users(r)/ 2
cardinality(r)

The pair (role,, role2) is added to the inherits relation. The
roles may not already be part of the hierarchy. Establishing
the new inheritance must not result in a user being authorized
to role, and assigned to another role inherited by role2 (C74).
The inherited role role2 may not be in separation of duties
with another role without the inheriting role role, being in
separation of duty with that role. The new inheritance may
increase the number of authorized users for some roles;
condition C77 takes care of that.

rmInheritance
Arguments:

role,, role2
Semantics:

inherits’ = inherits \ ((role], rolez))

86

Conditions:
C81. role,, role+ ROLES
C82. rolrl+role2
C83. Vue USERS, VrE ROLES,

UE authorized-users(rolel) A
r-E active-roles(u) A
role+*r *

3p~ ROLES: pi assigned-roles(u) A
(p-+*r without using rolel+role2)

The inheritance rolel+role2 is removed. Condition C83
forbids a role r to remain active for a user u after removing
the inheritance roleI--+rolez, if r is no more authorized for u.

add&d
Arguments:

role,, role2
Semantics:

ssd’ = ssd v ((role,, role& (role2, role,))
Conditions:

C9 1. role,, role2E ROLES
C92. rolel#rolez
C93. (role,, role& ssd
C94. (role,, role2)P dsd
C95. \dre ROLES, r+rolel =+ (r, role& ssd
C96. VrE ROLES, r--+role2 j (r, role,)E ssd
C97. VUG USERS, (role,, role21 e assigned-roles(u)

The ssd relation is updated. The two roles may not be in
either separation of duties relation, and any role inheriting
one of the arguments must be in ssd with the other. The
arguments may not be both assigned to same user.

rmSsd
Arguments:

role,, role2
Semantics:

ssd = ssd \ ((roleI, role& (role2, role,))
Conditions:

ClOl. role,, role2E ROLES
C102. (role,, role&ssd
C103. VrE ROLES, rolel-+r 3 (r, role& ssd
C104. Vrc ROLES, role2+r =+ (r, role,)@ssd

The ssd relation is updated. After deleting the ssd relation
between the two roles, no one of them may remain in ssd
with a role inherited by the other.

addDsd
Arguments:

role,, role2
Semantics:

dsd’ = dsd u ((role,, role2), (role;?, role,))
Conditions:

C 111. role,, role+ ROLES
Cl 12. role,#role2
Cl 13. (role,, role&ssd
Cl 14. (role,, role&dsd
Cl 15. ‘VrE ROLES, r+rolel 3 (r, role&dsd
C 116. Vrg ROLES, r+role2 d (r, role,)E dsd
Cl 17. ‘v’u~ USERS, (role,, role21 GZ active-roles(u)

The dsd relation is updated. The two roles may not be in
either separation of duties relation, and any role inheriting
one of the arguments must be in dsd with the other. The
arguments may not be both active for same user in same
state.

rmDsd
Arguments:

role I, role2
Semantics:

dsd = dsd \ {(role,, role& (rolez, role,)}
Conditions:

Cl21. role,, role2c ROLES
C122. (role,, role2)sdsd
C123. ‘drE ROLES, role,+r j (r, role&dsd
C124. VrE ROLES, role2-+r ti (r, role,)@ dsd

The dsd relation is updated. After deleting the dsd relation
between the two roles, no one of them may remain in dsd
with a role inherited by the other.

setcardinality
Arguments:

role, c
Semantics:

cardinal@ = (cardinality \
(role I+ cardinality(role))) u (role H cl

Conditions:
Cl31. c~Nu(=)
C 132. roles ROLES
C133. lauthorized~users(role)l I c

The cardinality for role is updated. The new cardinality must
be numeric or infinite, and not smaller than the number of
users currently authorized for role.

addActiveRoles
Arguments:

user, roleset
Semantics:

active-roles’= (active-roles 1
(user ++ active-roles(user))) U

(user H active-roles(u) U roleset]
Conditions:

C 14 1. user-E USERS
C142. roleset G authorized-roles(user)

87

C143. Vr,, r2E rolesetuactive-roles(u), (t-1, t-2) g dsd

The entry for user in active-roles is updated. The added
active roles must be authorized for user. The new set of
active roles of user may not contain roles in dsd.

rmActiveRoles
Arguments:

user, roleset
Semantics:

active-roles’= (active-roles \
(user - active-roles(user))) u
(user t-b active-roles(u) \ roleset]

Conditions:
C 15 1. users USERS
C 152. roleset c active-roles(user)

The entry for user in active-roles is updated.

Theorem 7. Let op be one of the operations defined above
and args its arguments. If s is a consistent state and args
satisfies the conditions specified for operation op, then s’ =
6(s, op, args) is a consistent state.

Proof. We present the proof for the addAssignment
operation. The proofs for other operations are similar.

Assume that the arguments user, role of the addAssignment
operation satisfy the conditions C51-C56. Let us prove that,
after executing addAssignment for user and role, the state s’
is still consistent. We will show that the consistency
conditions provided by Theorem 6 hold in state s’.

Pl. There are two cases. If role r is such that +role+*r),
then our operation does not modify authorized-users(r). If
role+*r, condition C56 ensures that Iauthorized-users(r)1 <
cardinal@(r) in state s. Assigning user to role may increase
Iauthorized-users(by at most 1, hence Pl holds in s’.

P3. Let t-1. r2E assigned-roles’(u) in state s’, where r-1, r-2 are
roles and u is a user, and let us show that +rl-+)+r2).
If t&user, or rl, r2 # role, then r-1, r2Eassigned_roles(u) in
state s, and, consequently, +rI--++r2), which is preserved by
the transition from state s to state s’, because the inherits
relation does not change.

If u=user and r,=role, assume by way of contradiction that
ro1e-i+r2 in state s’. Then role++r2 and

r2Eassignebroles(user) must have held also in state s, and
contradict C54.

If u=user and r2=role, assume by way of contradiction that
rz++role. Then r2+‘role and r2E assigned-roles(user) must
have held also in state s, and imply that

roles authorized-roles(user) in state s, which contradicts
c53.

P20. Let rl, r2E assigned-roles’(u) in state s’, where t-1, r-2 are
roles and u is a user, and let us show that (t-t, r2)p ssd’.

If ufuser, then rl, r2E assigned-roles(u) also in state s, hence
(t-t, r& ssd, which is preserved by addAssignment.

If u=user, and, for example, r,=role, then
r2Eassigned_roles(user) also in state s, and C55 implies that
(role, r-z)@ ssd, hence (role, r& ssd’.

P2, P5, P6, P18, PlO, Pll, P12, P13, P14, P19 do not
depend in any way on addAssignment; thus, if they hold in
state s, then they hold also in state S’.O

4 Conclusions

Formal specification of the consistency requirements of the
RBAC Database leads to the development of an equivalent
reduced set of consistency properties and results in a more
efficient Admin Tool implementation. Showing that specific
preconditions for each RBAC Database operation assure
preservation of RBAC Database consistency (Theorem 7)
increases the efficiency of the Admin Tool. This proof
alleviates the need for performing a full database consistency
check at each operation. Theorem 7 shows that a single
consistency check at the beginning of an administrative
session and a precondition check for each operation are
sufficient to ensure database integrity.

Careful implementation of the Admin Tool following the
formal specification of RBAC Database consistency checks
and operation preconditions results in a higher assurance
Admin Tool. In fact, in proving Theorem 7, it was realized
that some preconditions were initially omitted from the
implementation.

Further work on performance analysis of the algorithms used
to implement Admin Tool’s consistency checks would be
useful. In addition, it would be desirable to discover a
minimal set of RBAC Database consistency properties.

References

111

PI

D. Ferraiolo, J. Cugini, and D. R. Kuhn. Role Based
Access Control: Features and Motivations. In Annual
Computer Security Applications Conference, IEEE
Computer Society Press, 1995.

J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrila, and
D.R. Kuhn. Role Based Access Control for the World
Wide Web. In 20th National Information System
Security Conference, NIST/NSA, 1997.

88

[3] R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E.
Youman. Role Based Access Control Models. IEEE
Computer 29 (2), February 1996.

[4] R. Sandhu. Role Activation Hierarchies. Proceedings of
the Third ACM Workshop on Role-Based Access
Control, October 1998.

Role “teller” assigned to:
ko,rk

Legend

- “Inherits” relation

Selected role

0 Role in SSD with the
selected role

Figure 1. Admin Tool: Graphical Display

89

User Administration

ko

Assigned
roles

Not assignable roles

I account-rep
// branch-manager ;.:$

financial-advisor ::/

I invited-guest

employee: already authorized

Figure 2. Admin Tool: Main Display

90

