
SecureFlow: A Secure Web-enabled Workflow
Management System

Wei-Kuang Huang* Vijayalakshmi Atlurit
Department of Operation and Information Management MSIS Department and

University of Connecticut

368 Fairfield Road, Storm CT 06269

uhuangQsba.uconn.edu

Abstract
The objective of this paper is to present a web-based Work-
flow Management System (WFMS), called SecureFlow that
can serve as a framework for specification and enforcement
of complex security policies within a workflow, such as sep-
aration of duties. The main advantage of SecureFlow is
that it uses a simple 4GL language such as SQL to spec-
ify authorization constraints, thereby improving flexibility
and user-friendliness. Due to the modular nature of the
SecureFlow architecture, the security specification and en-
forcement modules can be layered on top of existing work-
flow systems that do not provide adequate support for secu-
rity. SecureFlow relies on the Workflow Authorization Model
(WAM) recently proposed by Atluri and Huang.

1 Introduction

Since timely services are critical for any business, there
is a great need to automate or reengineer the busi-
ness processes. Typically many organizations achieve
this by executing these coordinated activities (tasks)
that constitute the business process (workflow) through
workflow management systems (WFMS). Today, with
the explosion of the Internet technologies, the demand
on business process management has raised to a new
level. Web and workflow management systems to-
gether serve as an ideal combination to integrate the
distributed processes that are across or within enter-
prise boundaries. This is because, first Web is already
globally distributed, robust and reliable communica-
tion mechanisms are already in place, web browsers

*The work of W.-K. Huang was supported by the summer
grant from the department of Operation and Information Man-
agement (OPIM), University of Connecticut.

whe work of V. Atturi was supported in part by the National
Science Foundation under grant IRI-9624222.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without lee provided that
copies are not made or distributed for profit or commercial advan-

tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

RBAC ‘99 10199 Fairfax. VA, USA
0 1999 ACM 1-581 13-lSO-1/99/0010...$5.00

Center for Information Management,

Integration and Connectivity (CIMIC)

Rutgers University

180 University Avenue, Newark NJ 07102

atluriOandromeda.rutgers.edu

are commonplace, and web servers can interact with
the databases via CGI programs to store, retrieve, and
route data. Second, with the global naming scheme for
resources (e.g. URLs), protocols for acckssing named
resources (e.g., HTTP), HTML, Javascript and some
other emerging Web technologies such as extensible
Markup Language (XML) and Java, all together pro-
vide an ideal combination for the development of client-
server collaborative workspace.

Such web-enabled workflow systems can serve effec-
tively for more dynamic internet-based business pro-
cesses over heterogeneous computing platforms. Some
examples of such processes include global supply chain
management, universal telecommunication service man-
agement, and mobile patient care service management.

The Internet-based workflow systems have drawn a
lot of attention recently ([7], [151)) as they offer a number
of advantages. First, they support better mobility by
allowing users to access workflow systems from virtually
any computer connected to the Internet with a standard
web browser. Also, by using Java applets, the user can
acquire the program that performs the task on demand
without prior installation on user machine. Second,
they are extremely scalable. Due to this, companies
are anticipating to use the public Internet as a vehicle
to conduct business-to-business transactions such a~
electronic commerce.

There are a number of prototypes using web technol-
ogy as a major user interface. Mobile [5] uses web for
building user interface and integrating gxternal applica-
tions. Panta Rhei [8] primarily uses web as the messag-
ing tool to exchange forms between users. WASA [16],
constructed in Java, supports dynamic modification of
Workflow specification. Commercial products that fall
into this category include IBM FlowMark [lo] and HP
Changengine [151, etc.

The desired security to ensure the secrecy, correctness
and integrity of a business process is specified through
a set of security policies. These high level policies
state which user is authorized to execute a specific
task within the business process (or workflow). To
simplify the security administration, they are typically

83

specified on roles rather than on specific users, and
users are in-turn assigned to one or more roles. An
example of such a policy may be “the paper submitted
to a research conference can be reviewed only by a
member of its program committee.” This simple role-
based access control [14] may not be adequate for
expressing many business policies. An example of
such policy is “none of the authors of the paper is
eligible to review a paper, even though the author is
a program committee member.” These policies, also
known as separation of duties [6, 131 should be specified
as additional constraints.

Most of the existing systems provide minimal security
features such as user authentication. Although some
commercial WFMS such as FlowMark, Notes and
Changengine can support role-based access control,
they do not provide support to specify and enforce
separation of duties constraints. They have to be
implemented in an ad-hoc manner through a script type
language. Such ad-hoc implementation makes analysis
and maintenance of security policies more difficult. In
addition, many efforts in WFMS implementation have
been placed in protecting data transmitted over the
network, little emphasis has been given on providing
access control for workflow activities.

Karlapalem and Huang [12] have raised some impor-
tant security issues in activity management system in-
cluding role management, support of separation of du-
ties constraints, dynamic assignment of access privileges
along with activity execution and inference control of in-
formation. Their system, named as CapBasED-AMS,
provides a general architecture for incorporating discre-
tionary access control, mandatory access control, event
based constraints to the activity management system.
However, the system does not provide capability to han-
dle separation of duties constraints nor be able to syn-
chronize the propagation of the authorization with the
workflow execution.

Since existing authorization models developed for
Database Management Systems (DBMS) are not ad-
equate for WFMS, in [2], Atluri and Huang have pro-
posed an authorization model suitable for workflows,
called WorkfZow Authorization Model (WAM). Later, in
[3], they have enhanced WAM to incorporate separation
of duties constraints. This paper presents a web-based
Workflow Management System (WFMS), called Secure-
Flow that can serve as a framework for specification
and enforcement of complex security policies within a
workflow such as separation of duties. The main ad-
vantage of SecureFlow is that it uses a simple 4GL lan-
guage such as SQL to specify authorization constraints,
thereby improving flexibility and user-friendliness. Due
to the modular nature of the SecureFlow, the security
specification and enforcement modules can be layered
on top of existing workflow systems targeted for In-

ternet, Intranet and traditional distributed processing
applications that do not provide adequate support for
security.

SecureFlow is based on WAM. WAM ensures that
the tasks that constitute the workflow are executed
only by authorized users or processes (subjects), and
makes sure that authorized subjects gain access on
the required objects only during the execution of the
task. This is achieved by granting and revoking of
privileges in synchronization with the progression of
the workflow through proper authorization mechanisms.
In WAM, authorization specification is done by way
of specifying authorization templates. The actual
authorization, i.e., the triple (subject,object,privilege)
is derived only during the execution of the task to
which the authorization template is associated. That
is, a subject assigned to a task of a particular workflow
instance is carried out by executing an SQL statement
since authorization repositories are stored as a simple
relational database. This enables us not only to specify
complex security policies such as separation of duties
and voting-based authorization ill], but also allows to
effectively manage large policy bases.

Due to the modular structure of the SecureFlow ar-
chitecture, the workflow authorization module, called
the workflow authorization server (WAS), can be sepa-
rated from the entire workflow system. WAS is respon-
sible for the authentication of subjects as well as to
specify and administer authorization constraints. The
workflow specification module and the workflow exe-
cution server allow remote users from various sites to
specify the workflow processes and execute the workflow
from their local web browser, respectively. Automatic
workflow execution where examination of the precon-
ditions and triggering subsequent tasks can all be in-
corporated in the workflow execution server. Thus, the
use of web enables execution and security administra-
tion of workflows running in a loosely coupled hetero-
geneous autonomous distributed environment through
these centralized servers.

This paper is organized as follows. In section 2, we
review the workflow authorization model proposed by
Atluri and Huang in [2, 31. In section. 3, we present
the architecture of SecureFlow. In section 4, we show
how complex security policies in workfiow systems can
be specified and enforced using simple SQL statements.
In section 5, we present the implementation details of
SecureFlow and report its current status. Finally, in
section 6, we present the conclusions.

2 Workflow Authorization Model

In this section, we review the Workjlow Authorization
Model (WAM) proposed in]2,3]. A workflow deals with
coordinated execution of tasks that involve processing
of relevant objects by subjects (either humans or

84

programs). To execute a task, relevant privileges on
required objects have to be granted to appropriate
subjects. WAM dynamica2ly delegates authorizations
to support workflow activities in a way that the time
interval associated with the required authorization to
perform a task changes according to the time during
which the task actually executes. WAM uses the notion
of an Authorization Template (AT) which specifies the
static parameters of the authorization that can be
defined during the design of the workflow. ATs are
attached to tasks. When the task starts execution, its
AT(s) is used to derive the actual authorization. When
the task finishes, the authorization is revoked. In the
following, we briefly review WAM.

Let S = {sr,s~. . .} denote the set of subjects, 0 =
{or, 02.. .} the set of objects, l? = {yr,^/z . . .} the set of
objects types and R = {T~,Q . . .} the set of roles. The
function F : 0 -+ r. That is, if F(oi) = “rj, then oi is
oftypeyj. G:S + R. I.e., if G(si) = rj, then si is
of role r-j. Let PR denote a finite set of privileges. Sri
denotes the set of subjects that belong to role ri, and
0,; the set of objects of type pi.

Definition 2.1 An authorization is a 4-tuple A =
(s, o,pr, [7-b, re]), where subject s is granted access on
object o with privilege pr at time 76 and is revoked at
time 7-,. 0

An authorization base AB = {Al, AZ. . .} is a finite
set of authorizations. As workflow execution progresses,
all authorizations that have been generated along with
the execution are added to the set AB.

Definition 2.2 Given a task twi, an authorization
template AT(twi) is defined as a 4-tuple AT(twi) =

((G, -1, (ri, -),pri, [-q,~,l) where
(i) (ri, -) is a subject hole which can be filled by a
subject si where G(si) = ri,
(ii) (r;, -) is an object hole which can be filled by an
object oi where F(o;) = yi,
(iii) pri is the privilege to be granted to .si on object oi.

Et??; zlcuted.
is the time interval during which the task

0

In the definition for AT(twi) (i) says that only subject
belonging to role ri or dominated by pi is allowed to
execute task twi thus the subject hole (ri, -) allows
only subjects that belong to role ri, (ii) dictates that
only objects of type “yi or subtype of pi can be processed
by twi thus the object hole (ri, -) allows objects of
only type yi to be filled in, (iii) says that a subject
requires a privilege pri on the objects that arrive at twi
for processing and (iv) says the default interval for the
authorization template will be the valid time interval
for the task.

Authorization templates are attached to the tasks
in a workflow. A new authorization is granted to a

subject on the specified object if the object’s type is
same as that specified in the template. A task may
have more than one authorization template associated
with it. More ATs are required in cases where there is
more than one type of object to be processed, or more
than one subject is required to perform the processing.

An authorization template enables one to specify
rules such as “Only a clerk is allowed to perform
check preparation during time 10 and 50.” These can
actually be stated during the design process by the
workflow designer. However, before workflow starts, no
authorization is derived. The actual authorization is
granted to a particular clerk only when the preparation
of check actually starts. When the task finishes, the
authorization will expire.

WAM with Separation of Duty Constraints
Separation of duties can be expressed as constraints
or rules. In [4], Bertino et al. have identified several
types of authorization constraints, including separation
of duties. For the sake of simplicity, in this paper, we
assume each constraint is a logical expression of the
form: q c p where q is a single literal since most
separation of durties are of this form. We identify the
following two basic groups of constraints: assertive and
exclusive.

Definition 2.3 Given an authorization template
AT(W) = ((ri, -1, (ri, ->, PC, [q, T,;]), we define’ a

set of potential authorizations, PAi, representing all
possible authorizations that can be potentially derived
from AT(twi). Each potential authorization pa in PAi
is a triple (si, oi,pri) such that si E ST;, oi E O,, •I

Definition 2.4 Given an authorization A = (s, o,pr,
[~6,7-,]) in AB, we define a non-temporal n projection
ANT of A as ANT = (s,o,pr). The non-temporal
projection of AB, ABNT = {ANTI, ANTS . . .}. 0

In our formalism, each constraint ci is a logical
expression of the form: q t p where p is any logical
expression consisting of ANT as literals and q is a single
literal which is either pa or N pa such that pa E PAi
of some twi. s(p) (or s(q)) denotes the set of subjects
that are specified in pa E PAj {or pa E PAL).

Assertive and exclusive type constraints are expressed
as the following rules 19, 31.

l Ezclusiwe type: In this type, q is always of the form
- pa where pa E PA, for some twj.

l Assertive type: In this type, q is always of the form
pa where pa f PA, for some twj.

The set of eligible users for each task changes dynam-
ically based on the current state of the authorizatibn

base. For example, based on whether a constraint ‘is

85

either assertive or exclusive, certain users in the role of
clerks are not eligible to execute the task of issuing a
check. Moreover, the eligible users vary from one task-
instance to another.

Furthermore, only certain constraints play a role in
deciding the eligibility of subject to execute a task.
Therefore we determine the set of relevant constraints
for each task, denoted as C,,,.

Definition 2.5 In the case of multiple constraints on
a task, we define C& as follows: C& = {ci] cj E C
which is of the form qi + pj and qi E PAi}. 0

For each task twi, we define a set of eligible subjects,
denoted as S;(o) with respect to object o.

Definition 2.6 Given an authorization template
AT(twi)((ri, -), (ri, -),pri, [T~~,T,~]), we define the set
of eligible subjects S:(o) as follows:

1.

2.

S:(o) = Sri, if C,,; = 0;

S;(o) = S1 n Sz n . . . S,, where each
Sk = s,-i-S(qi), if Ck : Qi + pj f Ctwi is an exclusive
constraint and pj is true with respect to ABNT, and
Sk = s(qi), if ck : qi + pj E Ctwi is an assertive
constraint and pj is true with respect to ABNT. Q

The above definition says that if the constraint
specifying the separation of duties is of exclusive type,
the set of eligible subjects is obtained by subtracting
the disallowed subject from the set of subjects playing
the role assigned to execute the task. On the other
hand, if the constraint is of assertive type, the set of
eligible subjects is simply the set of subjects specified
in pa E q, If no constraints affect the task, then the set
of eligible subjects is same as the set of subjects playing
the role. In the case where multiple constraints are
imposed on a task, the net Eligible Subject Set (ESS)
is the intersection of all the eligible subject sets derived
from each constraint G.

An appropriate authorization must be generated from
the authorization template at run time in such a way
that the subject to execute the task must be chosen
from the set of eligible subjects and only when the
task receives an object with type specified in the
authorization template. The following authorization
derivation rule ensures this.

Definition 2.7 [Authorization Derivation Rule for ex-
tended WAM] Given an authorization template AT(twi)
= ((ri, -)(=yi, -),pri, [rli, r,i]) of task twi, an authoriza-
tion Ai = (si, oi,pri, [rbi, rei]) is derived as follows:
Grant Rule: Suppose object x is sent to subject y at
rai to start twi.
If x E 0,i and y E Sz (x) and ra; 5 rUi,

si + y, oi t x, pri + pr(AT);

TCii + rUi >
if 7-,i < rli,

76; + “-li;

otherwise 7-b; + rai.
Revoke Rule: Suppose wi ends at rf, at which point
oi leaves twi.
If 7fi I TtL;,

rei +-- Tfi. 0

Without the separation of duties constraints, a
subject is chosen from the set of subjects playing
the specified role, whereas with separation of duties
constraints, a subject is chosen from the set of eligible
subjects which may be a subset of the previous set.

More details on WAM can be found in [3]. In
the following, we explain the process of deriving
authorizations by taking an example.

Example 2.1 Consider a workflow that deals with
check and purchasing processing which consists of four
tasks including preparation a request @WI), approval of
a request (tzuz), issuing a request (twj) and voiding a
request (twq). Assuming there is time specification to
be associated with each task indicating the valid time
interval during which the task can be performed, say
f10,50] for twl, [20,60] for twz and [40,80] for &wg and
tw4. Two object types are processed in the workflow:
check and purchase request. For brevity, we use request
to represent any of the two types. Suppose the security
policies specify that any individual belonging to the role
clerk is authorized to prepare, issue and void a request
and only a manager can approve a request. To initiate
the workflow, a clerk is given the privilege to prepare
a request. The prepared request is then forwarded to
a manager. The manager is given the privilege to ap-
prove or disapprove the request. When the approval
task finishes, the decision as to whether the request w,ill
be issued or voided is based on the result of the ap-
proval. i.e., check/purchase order will be issued if it is
approved, otherwise it will be forward to the request
void task. Suppose there are another two constraints
in business policy restricts that no any single individ-
ual is allowed to both prepare and issue a check and
a purchase order has to be approved by two managers
belonging to different departments. Obviously, the for-
mer is an exclusive type constraint whereas the latter is
an assertive one. In the following, we show the required
authorization templates and constraints associated with
each task:

ATl(twl) = ((clerk,-), (check,-), prepare,[10,50])
ATz(twl) = ((clerk-), (P urchaserequest,-), prepare,

PO7501)
ATI (twz)= (t manager,-), (check,-), approve, [20,60])

AT2&2)= ((manager,-), (purchaserequest,-),
approve, [20,60])
ATl(tws)= ((clerk,-), (check,-), issue, [40,80])

86

AT:!(tws)= ((clerk,-), (purchase-request,-), issue,

140,801)
AT~(tw4)= ((clerk,-), (check,-), void, [40,80])
AT2(tq)= ((clerk,-), (purchase-request,-), void, [40,

801)
c tW3 = (cl) and Ct,, = (cz> where
cl: (vz c S&-k, y E Ocheck) . (- (x, yT issue) t

(x3 Y, prepare))

c2: @xl, 22 E %mwm~err 3’ E Opwchase,equest) *

((x2, y, approve) +- (xl, y, approve)-xl.department <>
x2.department)

Cl

3 SecureFlow Architecture

The architecture of SecureFlow is comprised of four ma-
jor components, namely, workflow design/specification
module, workflow execution server, workflow authoriza-
tion server and workflow client. Figure 1 depicts the
architecture of SecureFlow.

3.1 System Components

Workffow Design/Specification Module (WDSM):
This module provides an interface for specifying the
workflow including tasks and dependencies. To spec-
ify a workflow, the user logins to the workflow design
and specification module and selects the workflow to
be defined. For defining a task, the user is required to
input the name of the task, the interval during which
it can be executed, and the location of the client pro-
gram that is invoked for executing the task. A task
ID is automatically generated at the completion of task
specification. For specifying the dependencies among
tasks, the child (activated) task and the parent (acti-
vating) task need to be specified. The system supports
a number of dependency types, namely begin on com-
mit, abort, begin on abort,, begin, exclusive, etc. (Refer
to [l] for a definition of various types of task dependen-
cies.) This information is maintained in three relations,
WORKFLOW, TASK and DEPENDENCY. (The cor-
responding database schema can be found in section
3.3.)

Workflow Execution Server (WES): This module
schedules the submission of execution request, of the
task based on the dependency requirement. The Work-
flow Execution Interface provides workflow users access
to workflow tasks. To execute a task, the user first lo-
gins to the workflow execution server and selects the
task to be performed. WES then consults with WAS
(described below) and determines whether the user pos-
sesses appropriate authorization to execute the task.
WES enables only those tasks that the user is autho-
rized to execute. As the workflow progresses, the sta-
tus of the tasks in the workflow is updated. Workflow
authorization is generated when the task is activated.

Each instance of an authorization has an unique ID and
is recorded in the AB.

Workflow Authorization Server (WAS): WAS is
the core part governing the security administration in
SecureFlow. WAS interacts with execution server and
provides authorization support for workflow execution.
The features of WAS include security policy specifica-
tion, session management, granting and revocation of
authorizations and authentication of users. Workflow
Security Administration Interface provides a web inter-
face for workflow related security administration arid
session management. It allows security officers to in-
quire, create, update and delete roles, users, AT as well
as separation of dGties constraints. To specify a secu-
rity policy, a security officer accesses WAS through the
Workflow Security Administration Interface. Since the
main focus of this paper is on this module, we provide
a detailed description in the next, subsection.

Workflow Client: The Workflow client resides on
each of the participating hosts and communicates with
the workflow execution server. On the client’s end,
it also provides API to interact with the underlying
application programs that perform the task.

A separate administrative authorization base is em-
ployed to provide access contro1 to access the workflow
specification module, workflow authorization server and
the workflow execution server. For example, the policies
such as “only workflow managers are allowed to specify
new workflows or modify existing workflows,” are en-
forced through the administrative authorization base,
which is not shown in the figure 1.

3.2 Workflow Authorization Server

The authorization server consists of an Authorization
Specification Module, an Authorization Generation
Module and an Authorization Repository.
Authorization Specification Module (ASM): This
module allows users to state workflow related access
control policies. These specifications are in-turn writ-
ten to the authorization repository that will be enforced
during the workflow execution. There are six sub-
modules in ASM: User Specification, Role Specification,
Role-user assignment, Authorization Template Specifi-
cation (ATS), Object type specification, and Constraint
Specification (CS). While specifying a role, a hierarchy
code is assigned to indicate the domination relationship
of the role in an authorization hierarchy. This informa-
tion is maintained in USER, ROLE, OBJECT-TYPE
and AT relations, respectively. All the constraint infor-
mation are stored in CONSTRAINT and CT relations,
respectively.

Authorization Generation Module (AGM): This

87

Authentication/
,,.

r-------

Authorization -<
Repository

I Workflow
Client

Workflow
Manager

Workflow
Specification
Interface

Figure 1: System Architecture for SecureFlow

module is responsible for computing ESS for each task,
and generating the appropriate authorization. AGM
comprises of two components: Constraint Manager
(CM) and Authorization Generator (AG). CM assem-
bles all the security constraints relevant to a task, exe-
cutes the constraints and generates an ESS that is used
to authorize the users. Since the ESS is computed based
on the authorization history, the current instance and
workflow status, the ESS is generated at run time. The
AG then takes the given request, consult the autho-
rization template and ESS to generate the required au-
thorization. Part of the AG serves as an authentica-
tion/Authorization check.

The authorization generation process is described in
the following steps:
(1) Based on the task information from the execution
request, CM first fetches the AT(s) that are associated
with the task.
(2) For each AT, CM assembles the constraints table
for the associated constraints for the given task.
(3) It then executes the SQL constraints and produces
the ESS for the particular execution request.
(4) AG authenticates the subject against the ESS and

verifies the object from the desired object type. If the
authorization is verified, the actual authorization is gen-
erated and archived at AB. Otherwise, the execution
request is rejected.

Authorization repository: It contains workflow re-
lated security information such as security policies, ATs,
and authorization base. Information of authorization
repository is stored in a relational database structure.
As workflow execution progresses, all authorizations
that have been generated along with the execution are
stored in the authorization repository. It requires only
a limited size as the content of authorization base will
be purged periodically.

Figure 7 in appendix B shows the entity relation-
ship diagram of the authorization repository. Some
workflow-related entities such as WORKFLOW, TASK,
DEPENDENCY and WORKFLOW STATUS are stored
in a separate workflow repository and are related
to other security-related entities in the authorization
repository.

88

3.3 Database Schema

CT(CTID,TemplateType,Template)
CONSTRAINT(ConstraintID,Constraint,taskID)
ESS(ESSID,TaskID,ObjectID,Subject)
AB(Subject,ObjectID,Privilege,StartTime,EndTime)
AT(ATID,TaskID,Role,ObjectType,Privilege,
StartTime,EndTime)
OBJECT-TYPE(ObjectType,Description)
OBJECT-INSTANCE(ObjectID,ObjectType,Status,
Value)
SUBJECT(Subiect.Denartment,Position.Role)
TO-DO(Ta‘skID,OdjectID) ’ ’ ’
ROLE(Role,HierarchyCode)
WORKFLOW(WorkflowID,WorkiiowDescription)
TASK(TaskID,WorkflowID,TaskDescription,
StartTime,EndTime)
DEPENDENCY(DependencyID,WorkflowID,
ParentTask,ChildTask,Dependency)
WORKFLOW-STATUS(WorkflowID,ObjectID,
CurrentStateSubject)

4 Security Policy Specification and
Enforcement

Since role and object types are partially ordered, we
allow authorizations to be inherited from child roles
to their parents and from parent object types to their
children. Consider a general authorization template
AT = {(R,-),(O, -),pr,[~l,~,]}. This says that all
roles that dominate role R and any sub-type objects of
object type 0 are qualified for this template.

Security constraints can be realized through a three-
phase process.

4.1 Constraint Specification Phase

During this. phase, the security officer specifies con-
straints with the help of built-in constraint templates.
We show below two examples of constraint templates,
one for exclusive type and the other for assertive type.
The system allows creation of new constraint templates.
The corresponding database schema is in section 3.3.

For example, the two constraint templates shown in
figure 2 can be used to specify constraints cl and c2
in example 2.1. That is the variables $selected-task,
$selected-object are instantiated by the appropriate
values such as check preparation, check, respectively.
Notice that the constraints are bound only at the task
level but not at the instance level during this phase.
In other words, they are not yet applied to a specific
instance of the workflow.

Some of the Workflow-wise variables:

l $selected-object[] refers to the current selected
item(s) from the list.

$selected-task refers to the task currently selected
by the user.

$currentrole refers to the role currently selected by
the user.

$currentsubject[] refers to the subject(s) who cur-
rently login to the WES and submit the execution
request.

$selected-workflow[] refers to the current selected
workflow by the user.

During the specification of a constraint, the task on
which the constraint is imposed will also be indicated.
At the end of constraint entry, constraints are stored in
CONSTRAINT table. Figure 3 shows the two actual
constraints that can be generated for cr and c2 in
example 2.1.

4.2 Constraint Binding and Execution
Phase

As the workflow progresses, the status of workflow
instances are monitored and recorded with a timestamp
in TO-DO and OBJECT-INSTANCE tables.

When a task is triggered automatically by a depen-
dency or is activated by a human subject, he or she is
authenticated against the role in AT. A list of object
instances in TO-DO list with respect to the task are re-
trieved and displayed to ask for execution. A user can
determine which objects, from the list of objects, to be
used to perform the task. The selected object is then
assigned to the variable $selected-object. Alternatively,
it can also be set to refer to the earliest item in the list
as a default. Constraints related to the task are then
retrieved from the CONSTRAINT database along with
the value assigned to the variables and from the ap-
plicable SQL statements. Since the binding of objects
and tasks are done at run time, the separation of duties
constraints are enforced at instance level. In the case
where multiple constraints are specified on a task, all
relevant SQL statements will be executed to derive the
result. For example, if a user selects cIcs for constraint
cl and purchase-request2 for cs as his choice, they will
result in the queries in figure 4, respectively.

4.3 Authorization Generation Phase

During this phase, the eligible subject set is computed
and if the user who submits a request is among this set,
authorization is granted. The ESSi($selected-object)
is implemented as a hash array where $selected-object
serves as a key to uniquely identify the element in ESSi.
The following is used to determine whether a subject
is authorized to perform the task on a certain object
($selected-object).

if $currentsubject E ESSi($selected-object) then
grant authorization; otherwise reject access

89

CTID Template Type Template
-----------_____--

ctl Exclusive select distinct subject from SUBJECT, AT
where SUBJECT.role=AT.role and
AT.taskid=$selected-task and
SUBJECT.subject not in (
select subject from AB, AT where
AB.objectid=$selected,object and
AB.subject=SUBJECT.subject
and AB.privilege=AT.privilege and
AT.taskid=$selected-source-task);

ct2 Assertive select distinct subject from SUBJECT where
SUBJECT.role =$selected-role and
SUBJECT.department not in (
select department from SUBJECT S2, AB where
S2.subject=AB.subject and
S2.role=$selected-role and
AB.privilege=$selected_privilege and
AB.objectid=$selected_object);

Figure 2: Constraint Templates

ConstraintID Constraint TaskID
--------------___---

Cl select distinct subject from SUBJECT, AT
where SUBJECT.role=AT.role and
AT.taskid='tw3' and
SUBJECT.subject not in (
select subject from AB, AT where
AB.objectid=$select-object and
AB.subject=SUBJECT.subject and
AB.privilege=AT.privilege and
AT.taskid='twl');

tw3

c2 select distinct subject from SUBJECT where
SUBJECT.role ='manager' and
SUBJECT-department not in (
select department from SUBJECT S2, AB where
S2.subject=AB.subject and
S2.role='manager' and
AB.privilege='approve' and
AB.objectid=$selected_object);

tw2

Figure 3: Generated Constraints

90

select distinct subject from SUBJECT, AT
where SUBJECT.role=AT.role and
AT.taskid='twS' and
SUBJECT.subject not in (
select subject from AB, AT where
AB.objectid='ck5' and
AB.subject=SUBJECT.subject and
AB.privilege=AT.privilege and
AT.taskid='twl');

select distinct subject from SUBJECT where
SUBJECT.role ='manager' and
SUBJECT-department not in (
select department from SUBJECT S2; AB where
S2.subject=AB.subject and
S2.role='managery and
AB.privilege='approve' and
AB.objectid='purchase_request2');

Figure 4: Queries

Workflow Security Administration Interl’ace

Avdlohle Fnnctlom
Definean AT

Avdluble Categories

Crate New B wthorization Template

Adlable ltcsm

tasks. Themclickon the.%vebutton.

Authorization Template templatd32

---~--

B Allow inheritance in role hierarchy
.% Disallow inheritance in role hierarchy

Figure 5: Specification of Authorization Templates

91

For example, if the result from the query in the
second phase is ES&(&s) = {John, Mary} and
$currentsubject is Mary, an authorization {Mary, I&,
Issue, [40,80]) will be generated.

5 Implementation

SecureFlow can be implemented on any platform as
long as it supports multi-threading and messaging.
However, the popularity of WWW, the standardization
of common protocols such as HTTP, Open Database
Connectivity (ODBC) and Simple Workflow Access
Protocol (SWAP) as well as JAVA enbedded browsers
present a readily available platform for developing
workflow processes across heterogeneous platforms.
Currently, we are in the process of implementing the
components of SecureFlow with HTML, Javascript,
Java and Per1 CGI programming. Figures 5 and 6 show
the interface of the authorization specification module.

As shown in figure 5, to specify an AT, a task is first
selected. The associated role(s), object type(s) and the
privileges can be specified from pull-down lists to assist
the input.

As shown in figure 6, the authorization specification
interface facilitates the specification of security con-
straints imposed in the workflow activities via the visual
interface and facilitates to input SQL statements. It al-
lows user to specify a constraint from a constraint tem-
piate list. The selected template is displayed as a form
prompting users for the value of the variables. User can
also create a new constraint template or a constraint
by expressing the constraint in SQL with workflow-wise
variables.

6 Conclusions

The objective of the paper is to present a web-based
Workflow Management System, called SecureFlow that
serves as a framework for specification and enforcement
of complex security policies within a workflow such as
separation of duties. The main advantage of Secure-
Flow is that it uses a simple 4GL language such as SQL,
thereby improving flexibility and user-friendliness in
specifying authorization constraints. Due to the mod-
ular structure of the SecureFlow architecture, workflow
authorization module, called the workfiow authoriza-
tion server, can be separated from the entire workflow
system. Thus, the security specification and enforce-
ment modules can be layered on top of existing work-
flow systems that do not provide adequate support for
security.

References

[l] Nabil R. Adam, Vijayalakshmi Atluri, and Wei-
Kuang Huang. ModeIing and Analysis of Work-

flows Using Petri Nets. Journal of Intelligent In-
formation Systems, 10(2), 1998.

[2] VJ ylkh i’a a a s mi Atluri and Wei-Kuang Huang. An
Authorization Model for Workflows. In Proceed-
ings of the Fijth European Symposium on Research
in Computer Security, in Lecture Notes in Com-
puter Science, No. 1146, Springer- Verlag, Septem-
ber 1996.

[3]VJylkh i’a a a s mi Atluri and Wei-Kuang Huang. A
Petri Net Based Safety Analysis of Workflow Au-
thorization Models. Journal of Computer Security,
to appear, 1999.

[4] Elisa Bertino, Elena Ferrari, and Vijayalakshmi
Atluri. A Flexible Model Supporting the Specifi-
cation and Enforcement of Role-based Authoriza-
tions in Workflow Management Systems. In Proc.
of the 2nd ACM Workshop on Role-based Access
Control, November 1997.

[5] C. Bussler, S. Jablonski, and H.Schuster. A
new generation of workflow management systems:
Beyond taylorism with mobile. ACM SIGOIS
Bulletin, 17(1):17-20, 1996.

[6] David D. Clark and David R. Wilson. A compari-
son of commercial and military computer security
policies. In Proc. IEEE Symposium on Security
and Privacy, pages 184-194, Oakland, California,
April 1987.

[7] Umeshwar Dayal, Qiming Chen, and Tak W.
Yan. Workflow technologies meet the internet. In
Asuman Dogac, Leonid Kalinichenko, M. Tamer
Ozsu, and Amit Sheth, editors, Advances in Work-
flow Management Systems and interoperability,
pages 343-358. NATO Advanced Study Institute,
1997.

[8] Johann Eder, Herbert Groiss, and Walter Lieb-
hart. The workflow management system panta
rhei. In Asuman Dogac, Leonid Kalinichenko,
M. Tamer Ozsu, and Amit Sheth, editors, Ad-
vances in Work/Tow Management .Systems and in-
teroperability, pages 129-144. NATO Advanced
Study Institute, 1997.

[9] Wei-Kuang Huang and Vijayalakshmi Atluri. Ana-
lyzing the Safety of Workflow Authorization Mod-
els. In Proc. of the 12th IFIP WG 11.5’ Workshop
on Database Security, July 1998.

[lo] IBM. Ibm flowmark: Modeling workflow, version 2
release 2. In Publication No. SH-19-8241-01, 1996.

[ll] S. Kandala and R. Sandhu. Extending the
BFA Workflow Authorization Model to Express

92

Workflow Security Administration Interface

Avdable Functions Avdlable Categories Avatlable Items

Access to Existing Constraint Templates n i CkmtraintOl = l”----.“-l”““” --- ““l---...--.l-ll--.“-lllll_

Use this form to modify an e&ing constraint Pkasespccify a constraint information includiigusm. roles, and tasks. Then click
on the Savebutton.

Constdnt Template: Cmwtrdntlll

Figure 6: Specification of Authorization Constraints

Weighted Voting. In 13th IFIP WG11.3 Working
Conference on Database Security, page to appear,
1999.

[12] KamaIakar Karlapalem and Patrick C. K. Huang.
Security Enforcement in Activity Management
Systems. In Advances in Workflow Manage-
ment Systems and Interoperability, pages 166-194.
NATO Advanced Study Institute, 1997.

[16] Gottfried Vossen and Mathias Weske. The
wasa approach to workflow management for sci-
entific applications. In Asuman Dogac, Leonid
Kalinichenko, M. Tamer Ozsu, and Amit Sheth,
editors, Advances in WorkjTow Management Sys-
terns and interoperability, pages 145-165. NATO
Advanced Study Institute, 1997.

[13] Ravi S. Sandhu. Separation of Duties in Comput-
erized Information Systems. In Sushi1 Jajodia and
Carl Landwehr, editors, Database Security, IV:
Status and Prospects, pages 179-189. North Hol-
land, 1991.

[14] Ravi S. Sandhu et al. Role-based Access Control
Models. IEEE Computer, pages 38-47, February
1996.

[15] Ming-Ch ien Shan, Jim Davis, Weimin Du, and ting
Huang. Hp workflow research: Past, present, and
future. In Asuman Dogac, Leonid Kalinichenko,
M. Tamer Ozsu, and Amit Sheth, editors, Ad-
vances in Workflow Management Systems and in-
teroperab ility, pages 91-105. NATO Advanced
Study Institute, 1997.

93

A The E-R Diagram of SecureFlow
Data

ONSTRAINT M

M
\I

AB

M
/

AT

c
M

OBJECT
-TYPE

-T-

I

I

I TASK 1 M DEPENDENCY
I

Figure 7: The E-R Diagram of the Authorization
Repository

94

