
On Permissions, Inheritance and Role Hierarchies

Jason Crampton

Information Security Group
Royal Holloway, University of London
Egham, TW20 0EX, United Kingdom

jason.crampton@rhul.ac.uk

ABSTRACT
Role-based access control and role hierarchies have gener-
ated considerable research activity in recent years. In many
role-based models the role hierarchy partially determines
which roles and permissions are available to users via vari-
ous inheritance mechanisms. In this paper, we consider the
nature of permissions more closely than is customary in the
literature and propose a particular structure for permissions.
We then introduce a role-based access control model that
contains a novel approach to permission inheritance and il-
lustrate how this model can be used to derive a role-based
model with multi-level secure properties. We also consider
the issue of redundant and consistent permission-role assign-
ments and describe how such assignments can be avoided.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls; K.6.5 [Management of Computing and
Information Systems]: Security and Protection; I.6.0
[Computing Methodologies]: Simulation and Modeling

General Terms
Security, Theory

Keywords
role-based access control, mandatory access control, permis-
sions, inheritance

1. INTRODUCTION
Role-based access control is now widely accepted as an al-

ternative to techniques based on the protection matrix such
as access control lists. The basic idea of associating a set
of privileges or permissions with a named role and assign-
ing that role to users is well established and is deployed in
several commercial computer systems and applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’03, October 27–31, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-738-9/03/0010 ...$5.00.

The concept of a (role) hierarchy is central to many the-
oretical role-based access control models [6, 12, 16]. It is
customary to use the hierarchy to aggregate permissions;
that is, a role is assumed to inherit the permissions assigned
to roles below it in the hierarchy. In addition, the role hier-
archy also determines the roles that are available to a user;
that is, a user assigned to a particular role can also activate
any subordinate roles in the hierarchy.

It has been observed that these assumptions have a num-
ber of inconvenient consequences [7, 11]. Most importantly,
senior roles have access to all permissions assigned to junior
roles. This may be inappropriate within many organiza-
tions, where senior managers are neither competent nor ex-
perienced enough to undertake the activities of more junior
positions [7]. Moreover, it becomes impossible to define sep-
aration of duty requirements on roles that have a common
senior role (unless of course no user is assigned to that se-
nior role) [8]. Finally, the inheritance characteristics of the
role hierarchy make it awkward to implement multi-level
secure systems using role-based methods. Specifically, all
inheritance of permissions is upward within a role hierarchy,
unlike write permissions in the Bell-LaPadula model [1].

In an effort to address some of these consequences we con-
sider the effect of using a different model for the aggregation
of permissions within the hierarchy. In particular, we as-
sume that permissions can be inherited in one of three ways
within the hierarchy: by more senior roles, by less senior
roles and by no other roles. The motivation for this ap-
proach is supplied by a consideration of certain correlations
between the Bell-LaPadula model and role-based access con-
trol models. Firstly, we make an explicit connection between
the security level of a subject in the former with the user-
assignment relation in the latter. Secondly, we note that
the acquisition of access rights in the Bell-LaPadula model
is governed by the security level of the user, not by permis-
sion inheritance. Finally, we observe that the *-property in
the Bell-LaPadula model can be considered to be a form of
separation of duty which is supported by the use of con-
straints in role-based models.

We find that our model offers certain advantages over ex-
isting role-based models: it simplifies the evaluation of re-
quests by users to exercise permissions; it does not preclude
the use of separation of duty constraints; and it provides a
more natural implementation of multi-level secure features
than has previously been possible using role-based models.

The main contributions of this paper are: to make ex-
plicit and strengthen the similarities between role-based and
mandatory access control, and to propose a new mechanism

85

for permission inheritance within a role hierarchy. In doing
so, we elucidate the relationships between sessions, users,
roles and permissions in role-based models, and construct a
simple role-based model for multi-level secure systems.

In the next section we recall the basic features of role-
based access control. In Section 3 we describe our approach
and in the following section we illustrate how our model can
be used to implement multi-level secure systems with the
addition of surprisingly few constraints to the basic model.
Finally, we summarize the contributions of the paper and
discuss opportunities for further research.

2. ROLE-BASED ACCESS CONTROL
There are several role-based access control models in the

literature, but the best known is undoubtedly the RBAC96
family of models due to Sandhu et al [16], which consists of
four role-based access control models of varying degrees of
expressive power. All but the simplest model of this family
assume the existence of a role hierarchy. It is generally as-
sumed that the role hierarchy supports two different types
of inheritance: permissions are inherited upwards and the
set of roles available to a user is aggregated downwards. For
example, if role r is less senior than r′, then any permission
assigned to r is implicitly assigned to r′, and any user as-
signed to r′ can activate r. To the author’s knowledge, most
role-based access control models and systems adopt a simi-
lar approach to RBAC96 with respect to the role hierarchy
and inheritance.1

More formally, the role hierarchy is either defined as (the
graph of) a binary relation RH ⊆ R × R or simply as the
Hasse diagram of the partially ordered set of roles R.2 Users
and permissions are associated with roles by the binary re-
lations UA ⊆ U ×R and PA ⊆ P ×R, where U is the set of
users and P is the set of permissions.

A user u is implicitly assigned to a role r′ if there ex-
ists (u, r) ∈ UA such that r′ < r [16]. Hereafter we
will adopt the following notation: given a partial order
X, y ∈ Y and Y ⊆ X, let ↓y = {x ∈ X : x � y} and
↓Y = {x ∈ X : ∃y ∈ Y, x � y}; then we write R(u) ⊆ R for
the set of roles explicitly assigned to user u by the user-role
assignment relation and ↓R(u) for the set of roles assigned
(implicitly and explicitly) to u. Similarly, R(p) denotes the
set of roles explicitly assigned to a permission p and ↑R(p)
denotes the set of roles assigned to p. Figure 1 shows a role
hierarchy [15] and illustrates the use of the notation. The
roles in the set ↑ {PE1, QE1} are contained within the closed
curve in the upper part of the diagram; the roles in the set
↓ENG2 are contained within the other curve.

It is worth noting that a common assumption in RBAC
models is that permissions can be aggregated to form more
complex permissions. In other words, we can define a partial
ordering on permissions, where p1 < p2 if p2 includes all the
access rights available to p1. (Dependencies of this sort are
found in the access rights supported by certain operating
systems: the Multics access right w permits both read and
write access to an object, whereas the r access right only
permits read access.) It is rarely noted that this can lead

1One exception is OASIS (Open Architecture for Secure In-
terworking Services) developed at Cambridge University in
the United Kingdom.
2The Hasse diagram of a partial order X is the (directed)
graph of the transitive, reflexive reduction of the order rela-
tion on X [3].

�����
�

�
�
�

�
��

�
�
�

�
�

�����
�

�
�
�

�
��

�
�
�

�
�

����������

�

E

�ED

�ENG1

�PE1

�PL1

�QE1

�DIR

� ENG2

� QE2

� PL2

� PE2............
............
............
.............
.............
.............
..............
..............
..............
................
................
.................
...................
...................
......................
......................
...........................

...............................
......................................

...
..

..
..
.................................
....................

.............
.............
.............
..............
..............
................
................
..................

..................
.....................

......................
..........................

...............................
..

..................
..............
...........
...........
..........
...........
............
............
.............
...............
................
...................
................

Figure 1: A role hierarchy showing ↑ {PE1, QE1} and
↓ENG2

to redundancies in the assignment of permissions to roles.
In particular, if p1 < p2 then the set of roles to which p1

is available should not be a subset of the set of roles to
which p2 is available. Formally, if p1 < p2 then ↑R(p1) �⊆
↑R(p2); otherwise, the permission-role assignments of p1 are
redundant. We will return to these issues in Section 3.2.

3. A NEW MODEL FOR INHERITANCE IN
RBAC

In the next two sections we define the sets and relations
used by our model. Our treatment of the role hierarchy and
the user-role assignment relation is entirely conventional.
Our model diverges from existing approaches when we con-
sider permissions and permission inheritance in Section 3.2.

3.1 Basic features
We assume the existence of a partially ordered set of roles

〈R, �〉. We denote the set of edges in the Hasse diagram of
R by the binary relation RH ⊆ R × R.

We also assume the existence of a set of users U and define
the user-role assignment relation UA ⊆ U×R. If (u, r) ∈ UA
then we say that the user u is explicitly assigned to the role
r, and that u is assigned to all roles in ↓r. As before, we
denote the set of roles explicitly assigned to u by R(u).

A user’s interaction with the system is modelled by a ses-
sion, where a user u activates a subset S(u) of the roles to
which he is assigned. That is, S(u) ⊆ ↓R(u). A user u
may create more than one session, S1(u), . . . , Sk(u), where
Si(u) ⊆ ↓R(u), 1 � i � k.

3.2 Permissions
We assume the existence of a set of permissions P and

define the permission-role assignment relation PA ⊆ P ×R.
If (p, r) ∈ PA then we say that the permission p is explicitly
assigned to the role r. We denote the set of roles explicitly
assigned to p by R(p).

We will assume that a permission has the form
(o, {m1, . . . , mk}), where o is an object and mi, i = 1, . . . , k,
is an access mode. We will write p � p′ if p = (o, M) and
p′ = (o, M ′) with M ⊆ M ′.3 We write p < p′ if p � p′ and
p �= p′.
3We do not wish to elaborate further on the nature of per-

86

The most important innovation in our model is that each
permission is “oriented” (with respect to inheritance) and
can be either “up”, “down” or “neutral”. That is, P is the
disjoint union of the sets P+, P− and P 0, where P+ is the
set of up permissions, P− is the set of down permissions and
P 0 is the set of neutral permissions.4

Each permission p ∈ P is available to some subset of roles
in the hierarchy called the effective roles of p and denoted
RE(p). That is, we define the function RE : P → P(R),
where

RE(p) =




↑R(p) if p ∈ P+,

↓R(p) if p ∈ P−,

R(p) if p ∈ P 0.

The set of permissions implicitly assigned to a role r is
defined to be {p ∈ P : r ∈ RE(p)} and the set of roles to
which p is implicitly assigned is simply RE(p).

Note that our model can be interpreted as a standard
RBAC model. In this case, all permissions are “up” permis-
sions.

Given a session S(u) ⊆ ↓R(u), a request by u to exercise
permission p is only granted if u has activated one of p’s
effective roles; that is, S(u) ∩ RE(p) �= ∅.

Informally, we require that the assignment of permissions
to roles must reflect the “power” of the permissions. For-
mally, we require that the following two constraints be sat-
isfied.

Constraint 1. If p < p′ then either p and p′ have the
same orientation or p′ ∈ P 0.

Constraint 2. If p < p′ then RE(p) �⊆ RE(p′).

Constraint 1 is essentially a consistency constraint, re-
quiring that the direction of inheritance of a permission is
consistent with weaker permissions. Constraint 2 is essen-
tially a redundancy check, requiring that a permission is not
implicitly assigned to more roles than any weaker permis-
sion.

Note that if an alternative model for permissions is used
and a different ordering is defined on those permissions, it
is still possible and indeed pertinent to insist that Con-
straint 2 be satisfied. In particular, in the case of stan-
dard RBAC models, Constraint 2 means that if p < p′

then ↑R(p) �⊆ ↑R(p′). (Clearly, Constraint 1 is irrelevant
if permission inheritance is uni-directional.) For example,
if r < r′, p < p′ and (p, r′) ∈ PA, then the assignment
(p′, r) introduces redundancy. (How such a violation of Con-
straint 2 is handled is an implementation matter.)

3.3 Administration
It is self-evident that a role-based access control system

is not static: for example, assignments to roles may need to

missions: several different possibilities exist and there is no
consensus in the research community on which is best. In-
deed, some authors prefer to treat permissions as “uninter-
preted symbols” [5]. The approach we have chosen enables
us to form complex permissions from simpler ones, with the
limitation that a permission cannot be defined on more than
one object. This approach is well suited to the development
of our model as an alternative to the Bell-LaPadula model.
4In practice the orientation of a permission (o, M) could be
determined by the access modes in M .

be added or removed and the structure of the role hierarchy
may need to be updated in order to reflect organizational
changes. It seems reasonable to assume that changes to
the PA, UA and RH relations will be performed by roles
and hence this area of research is often referred to as role-
based administration. In short, role-based administration
uses roles to control the propagation of permissions.

There have been several attempts to define a role-based
administrative model, the most well known being the AR-
BAC97 model due to Sandhu et al [15]. However, we will
use the RHA4 model as the basis of our administrative
model [2]. There are several reasons for preferring RHA4

to ARBAC97 [2], but the primary reason for our choice is
that administrative scope, the central concept of RHA4, can
be incorporated into our framework more easily than the
associated concepts in ARBAC97.

The RHA4 model defines the admin-authority rela-
tion, where admin-authority ⊆ R × R. If (a, r) ∈
admin-authority, then we say that a is an administrative
role and r is controlled by a; C(a) denotes the set of roles
controlled by a. The graph of the admin-authority relation
can be superimposed onto the role hierarchy to create an ex-
tended hierarchy (as shown by the dotted lines in Figure 2).

The administrative scope of a role a is a subset of the
role hierarchy that can be administered by a. A role r is
in the administrative scope of a if any directed path from
r and any directed path from any point on that path all
pass through a role controlled by a. Informally, this means
that any changes made to r do not cause unforseen side
effects elsewhere in the hierarchy by virtue of inheritance.
Formally, the administrative scope of a, denoted σ(a), is
defined to be

σ(a) = {r ∈ R : r ∈ ↓C(a), ↑r \ ↑C(a) ⊆ ↓C(a)} .

The RHA4 model can be used to control changes to the
UA relation and the role hierarchy. In particular,

• the user-role assignment (u, r) can be added to UA (by
administrative role a) provided r ∈ σ(a);

• the user-role assignment (u, r) can be deleted from UA
provided r ∈ σ(a);

• an edge (r, r′) can be added to the role hierarchy pro-
vided r, r′ ∈ σ(a);

• an edge (r, r′) can be deleted from the role hierarchy
provided r, r′ ∈ σ(a);

• a role r can be added to R with parents P ⊆ R and
children C provided C, P ⊆ σ(a);

• a role r can be deleted from R provided r ∈ σ(a).

An illustrative example of administrative scope, based
on a hierarchy first used by Sandhu [15], is shown in Fig-
ure 2. A dotted edge (r, r′) indicates that r controls
r′. In particular, PSO1 controls PL1 and hence σ(PSO1) =
{ENG1, PE1, QE1, PL1}.

In the RHA4 model the legitimacy of updates to R, UA,
RH and PA relations are all determined by the adminis-
trative scope of the role making the update. We can adopt
most of these aspects of RHA4 without modification, but we
need to review the administration of the PA relation because
permission inheritance is not uni-directional in our model.

87

�����
�

�
�
�

�
��

�
�
�

�
�

�����
�

�
�
�

�
��

�
�
�

�
�

����������

�

E

�ED

�ENG1

�PE1

�PL1

�QE1

�DIR

� ENG2

� QE2

� PL2

� PE2

�
DSO

�PSO1

..........

..........

..........

...........

...........

............
............
............
.............
..............
..............
................
.................
...................
......................
..........................

..................................
...

..
...............................

..........................
.......................

.....................
...................
..................
.................
...

Figure 2: A role hierarchy showing the administra-
tive scope of PSO1

3.3.1 Controlling permission assignment
Every permission p is associated with an effective set of

roles RE(p). Hence we make the following modifications to
the RHA4 model:

• if p ∈ P+ then (p, r) can be added to or deleted from
PA (by administrative role a) provided r ∈ σ(a);

• if p ∈ P 0 then (p, r) can be added to or deleted from
PA provided r ∈ σ(a);

• if p ∈ P− then (p, r) can be added to or deleted from
PA provided ↓r ⊆ σ(a).

There is a certain asymmetry in the conditions that need
to be satisfied for permission-role assignment (or revocation)
to take place. In particular, if p ∈ P− we require that
↓r = RE(p) ⊆ σ(a) (which is a stronger condition than that
required when p �∈ P−). The reason for this asymmetry
is that the concept of administrative scope was introduced
specifically to handle inheritance upwards through the role
hierarchy.

We now consider a simple example based on the hierarchy
in Figure 2. Let (p, PE1) ∈ PA. Then PSO1 can delete this
assignment if p ∈ P 0 since RE(p) = {PE1} ⊆ σ(PSO1). PSO1

can also delete this assignment if p ∈ P+ since p is inherited
in the same way as a permission in a standard RBAC model
and the RHA4 model would permit such a deletion from
PA. However, if p ∈ P−, the deletion of this assignment
is not permitted (since ED ∈ RE(p) but ED �∈ σ(PSO1), for
example). (Note that σ(DSO) = R and hence DSO can delete
(p, PE1) for any p.)

4. ROLE-BASED AND MANDATORY AC-
CESS CONTROL

The Bell-LaPadula model [1] is probably the most widely
known security model and incorporates a mandatory in-
formation flow policy [4]. The key features of the Bell-
LaPadula model are the security lattice, the simple secu-
rity property and the *-property. Every subject (user) and

object is associated with a (security) label, which is an el-
ement of the security lattice. The simple security property
and *-property require that certain inequalities comparing
the security labels of subjects and objects are satisfied.

There have been several attempts to simulate the Bell-
LaPadula model using role-based models [9, 13, 14]. The
motivation for such research has generally been to demon-
strate the versatility and policy neutrality of role-based
models; the basic approach has been to make use of inheri-
tance in the role hierarchy.

We now briefly consider three connections between the
Bell-LaPadula model and role-based models. The first of
these connections is well known in the literature, but, to
our knowledge, the others have not been noted previously.

4.1 Permissions
The inheritance of permissions is one reason why it seems

attractive to simulate mandatory access control using role-
based techniques. Recall that in the standard RBAC mod-
els, if p ∈ P and (p, r) ∈ PA, then p is assigned to all roles
in ↑r. Hence, any user assigned to a role at least as senior as
r can exercise permission p. This is analogous to the abil-
ity of a subject to read any object whose security label is
dominated by that of the subject.5

In its simplest form, the *-property requires that the se-
curity label of a subject is no greater than that of any ob-
ject to which the subject tries to write. In other words, if
a subject can write to an object, any subject with a lower
security label can also write to that object. Since the inheri-
tance of permissions in the role hierarchy is always upwards,
role-based access control models do not directly support a
simulation of the *-property, which requires that certain per-
missions be inherited downwards.

Role-based approaches have circumvented this problem by
introducing two partial orderings, �r and �w, on the set of
roles, where r �r r′ if and only if r′ �w r. This gives rise
to two hierarchies RHr and RHw to which read and write
permissions are respectively assigned [13].6

However, this begs the question“How should read/write
permissions be handled?”. In Section 4.4 we show how our
approach to permission inheritance can be used to simulate
the behaviour of the Bell-LaPadula model using a single
hierarchy. Furthermore, it is possible to assign read/write
permissions to roles in the hierarchy.

4.2 Security labels and role hierarchies
In this section we examine why the set of roles assigned

to a user can be interpreted as a security label for that user.
We also discuss why the set of roles assigned to a permission
does not have the same interpretation and briefly consider
how we might define suitable security labels for permissions
and objects in a role-based model.

Let 〈R, �〉 be a partially ordered set of roles and let R(u)

5The analogy is not exact because the Bell-LaPadula model
permits access only if the simple security property is satis-
fied and the relevant entry exists in the protection matrix.
In this sense, any role-based simulation of Bell-LaPadula
assumes that the protection matrix contains every possible
access right in each cell, which is hardly a realistic assump-
tion. Nevertheless, the simple security property is accurately
captured in role-based models.
6Formally, 〈R, �w〉 is the dual of 〈R, �r〉 [3]. Informally,
the Hasse diagram of 〈R, �w〉 is obtained by inverting the
Hasse diagram of 〈R, �r〉.

88

denote the set of roles explicitly assigned to the user u. Then
R(u) can be regarded as a security level in a suitable security
lattice. In particular, let I(R) = {↓S : S ⊆ R}. 〈I(R),⊆〉
is the lattice of order ideals in R [3]. Then for any user u
we associate the set R(u) with the “security label” ↓R(u) in
I(R).

For example, Figure 3 depicts a role hierarchy in which
R = {r1, r2, r3}, r1 < r3 and r2 < r3. The antichains in
R(u) are ∅, {r1}, {r2}, {r3} and {r1, r2}, which correspond
to the sets ∅, {r1}, {r2}, {r1, r2, r3} and {r1, r2}, respec-
tively.7

�

r1

�

r2

�

r3

�
�

�
�

��
�

�
�

�

(a) 〈R, �〉

�

∅
�

�
�

�
�

�
�

�
�

�
�

{r1}
�

�
�

�
�

�

{r2}
�

�
�

�
�
�{r1, r2}

�

{r1, r2, r3}

(b) 〈I(R),⊆〉

Figure 3: A role hierarchy and the associated lattice
of order ideals

It is generally assumed that a user u activates a session
S(u) ⊆ ↓R(u) using some subset of the roles assigned to
u. The Bell-LaPadula model is usually extended to include
the concept of a current security function, which enables
a privileged user to downgrade his security level, thereby
allowing him to write to less privileged objects. Hence we
can regard the label ↓S(u) as the current security label of u.
For example, a user assigned to r3 can create a session using
role r1, thereby creating a current security label of {r1}.

However, the concept of a security level for a permission is
more problematic. RBAC models generally assume the ex-
istence of a permission-role assignment relation and that a
user u can use permission p if there exist roles r and r′ such
that (u, r) ∈ UA, (p, r′) ∈ PA and r′ � r; in other words,
the criterion for permission usage is “existential” with re-
spect to permission-role assignment. However, in the Bell-
LaPadula model the criterion is “universal” – the security
label of a subject must dominate every part of the security
label of an object. In other words, if we defined the secu-
rity level of a permission to be R(p), we would require that
R(p) � R(u), where this order inequality is interpreted as
↓R(p) ⊆ ↓R(u).

In general, therefore, the requirements of permission us-
age are incompatible with the requirements of object access
in the Bell-LaPadula model. The two sets of requirements

7The RBAC96 model does not require that the set of roles
explicitly assigned to u be an antichain; nevertheless, the
mapping to a security label is still valid. For example, if
R(u) = {r1, r3}, then ↓R(u) = ↓r3 = {r1, r2, r3}.

converge when R(p) = {r} for some r ∈ R; that is, there
exists a permission-role assignment function. In this case,
the security level of the permission is ↓r. However, this is
likely to be too restrictive a requirement in general RBAC
models.

The concept of a security level for an object in RBAC
is also problematic. We could insist that all permissions
for a particular object are assigned to the same role r. (In
this case, the security level of the object is ↓r.) However,
this definition is rather limiting; we discuss an alternative
in Section 4.4.2.

4.3 The *-property and separation of duty
Let λ(o) denote the security level of an object o and let

or and ow be two objects in the Bell-LaPadula model. Then
the *-property states that a subject s that currently has
read access to or will only be permitted write access to ow

if λ(ow) � λ(or). That is, a system that implements the
Bell-LaPadula model necessarily implements what might be
called dynamic permission-based separation of duty. In par-
ticular, whenever λ(ow) < λ(or), the *-property will prevent
any user obtaining read access to or and write access to ow

contemporaneously. The purpose of this feature of the *-
property is to prevent information flow from more secure
objects to less secure objects, thereby providing inter alia
protection against Trojan horses.

4.4 Simulating the Bell-LaPadula model
In this section we demonstrate how, with the addition of a

few constraints, our model can be used to simulate the Bell-
LaPadula model. The simplicity of this simulation compares
favourably with previous attempts, which typically require
changes or additions to the underlying RBAC model (such
as the inclusion of a second role hierarchy). Our approach
also supports the assignment of “mixed” permissions, which
include both read and write access to permissions. A de-
tailed comparison of our approach with earlier research is
beyond the scope of this paper.

4.4.1 Permissions
The Bell-LaPadula model makes a distinction between

read access modes and write access modes because of the re-
quirements of the information flow policy it enforces. In par-
ticular, the w access right in the Multics implementation of
the Bell-LaPadula model provides simultaneous read/write
access to an object.

For each object o we assume there exists a set of access
modes M and that M = Mr∪Mw, where Mr and Mw are
read and write modes respectively. This set of access modes
will typically vary from object to object. It is not necessarily
true that Mr ∩Mw = ∅. That is, some access modes can be
both read and write modes. For example, a complex mode
might invoke get and set methods on the object.

Definition 1. A permission of the form (o, {m}), where
m ∈ M is called an atomic permission. A permission
(o, Mr), where Mr ⊆ Mr, is called a read permission; a
permission (o, Mw), where Mw ⊆ Mw, is called a write
permission; a permission is simple if it is either a read or
write permission; and a permission is compound if it is not
simple.

A permission p is minimal if there exists r ∈ R such that
(p, r) ∈ PA and for all p′ � p, if (p′, r′) ∈ PA then r′ = r.

89

A permission p is maximal if there exists r ∈ R such that
(p, r) ∈ PA and for all p′ � p, if (p′, r′) ∈ PA then r′ = r.

A consequence of the definition is that any minimal per-
mission (or maximal permission) is assigned to a unique
role. Note that there may be more than one minimal per-
mission associated with an object. For example, we could
assign atomic permissions p = (o, {m}) and p′ = (o, {m′})
(m �= m′) to PE1 and QE1 respectively; then, by definition,
p and p′ are minimal permissions.

4.4.2 Constraints
In order to simulate the Bell-LaPadula model our role-

based model must be constrained in the following ways:

Constraint 3. PA is a (partial) function.

In other words, every permission is assigned to a unique
role. The justification for this constraint is provided in Sec-
tion 4.2. The security level of p is defined to be R(p), which
equals {r} for some r ∈ R.

Constraint 4. For each object o, there exists a unique
minimal read permission pr and a unique maximal write per-
mission pw.

Hence there exist roles rmin and rmax such that
(pr, rmin) ∈ PA and (pw, rmax) ∈ PA. The security level
of the object is defined to be the range

[rmin, rmax] =



{r ∈ R : rmin � r � rmax} if rmin � rmax

∅ otherwise.

Constraint 5. If p′ < p then RE(p) ⊂ RE(p′).

This constraint is stronger than Constraint 2, which was
formulated to prevent redundant permission-role assign-
ments. In the case of mandatory access control, we require
a stronger constraint, which requires that a permission is
available only to a strict subset of the effective role sets of
weaker permissions.

Constraint 6. If p is a write permission, then p ∈ P−.

If p is a write permission then for all p′ < p, p′ is a write
permission and Constraint 5 requires that RE(p) ⊂ RE(p′).
Hence for all write permissions p, p′ such that p < p′, R(p) >
R(p′).

Constraint 7. If p is a read permission, then p ∈ P+.

If p is a read permission then for all p′ < p, p′ is a read
permission and Constraint 5 requires that RE(p) ⊂ RE(p′).
Hence for all read permissions p, p′ such that p < p′, R(p) <
R(p′).

Constraint 8. If p is a compound permission, then p ∈
P 0.

Proposition 1. A compound permission p = (o, M) can
only be assigned to a role within the security level of o.

Proof. Let p = (o, Mr ∪ Mw), where ∅ �= Mr ⊆
Mr and ∅ �= Mw ⊆ Mw. Then by Constraint 5,

RE(p) ⊆ RE(pr) and RE(p) ⊆ RE(pw), where pr = (o, Mr)
and pw = (o, Mw); that is,

RE(p) ⊆ RE(pr) ∩ RE(pw)

= ↑R(pr) ∩ ↓R(pw)

⊆ ↑rmin ∩ ↓rmax

= [rmin, rmax].

Now p ∈ P 0 and hence, by Constraint 8, RE(p) = R(p).
Therefore, R(p) ∈ [rmin, rmax].

If the security level of an object is ∅, no role can both read
and write that object. This may be useful for an object such
as an audit file f : low level roles (must) write to f , while
high level roles can read f but must not be able to change
it.

Constraint 9. No user can run more than one session
at a time. The set of roles in a session must form an an-
tichain.

4.4.3 Example
A formal comparison of our role-based model and the Bell-

LaPadula model is beyond the scope of this paper. However,
we will briefly consider an illustrative example using a simple
set of access modes.

Let M = {mr, mw}, where mr is a read access mode and
mw is a write access mode. Let pr = (o, {mr}) be a read
permission assigned to r1 and let pw = (o, {mw}) be a write
permission assigned to r2. (Hence, pr and pw are minimal
permissions provided neither permission is assigned to any
other role.) Then RE(pr) = ↑r1 and RE(pw) = ↓r2.

The example is summarised in Figure 4. Figure 4a shows
the partial ordering on permissions; Figure 4b shows the
permission-role assignment relation; the three remaining
sub-figures show different role hierarchies. We write λ(o)
to denote the security level of o.

A user u can only use permission pr if u can activate a
session containing a role r′, where r′ � r. In other words,
u can use permission pr only if R(u) � R(p). Similarly, u
can use permission pw only if u can activate a role r′, where
r � r′.

If pc = (o, {mr, mw}) is a compound permission, then
pc can only be assigned to a role in the range [r1, r2] (if
it exists). In Figure 4c, pc can be assigned to either r1 or
r2. However, in Figure 4d, pc can not be assigned to any
role. A user u can use permissions pr and pw only if u can
activate role r1 and r2 in the same session. (Separation of
duty constraints can be specified to prevent any user from
activating r1 and r2 if necessary.)

Note that if r1 = r2 and hence (o, {mr}) and (o, {mw})
are assigned to the same role, then the security level of o
is {r1}, RE(p) = {r1} and hence u must activate r1 to use
permission p. This is analogous to the situation in the Bell-
LaPadula model where a user must have the same security
level as an object in order to read and write to it.

4.5 Administration
One problem with the Bell-LaPadula model has been the

difficulty of maintaining a secure system when arbitrary
changes can be made to security levels.

In particular, McLean showed that a secure system as de-
fined by Bell-LaPadula does not necessarily imply that the
system exhibits secure behaviour in any practical sense. He

90

�pr = (o, {mr}) � pw = (o, {mw})

�

pc = (o, {mr, mw})

�
�

�
�

��
�

�
�

�

(a) Permission hierarchy

PA

pr r1

pw r2

(b) Permission assignments

�r1 �

�

r2

�
�

�
�

��
�

�
�

�

(c) λ(o) = [r1, r2]

�r1 � r2

�

�
�

�
�

��
�

�
�

�

(d) λ(o) = ∅

�r1 = r2 �

�

�
�

�
�

��
�

�
�

�

(e) λ(o) = {r1}

Figure 4: Security levels using RBAC

suggested a solution in which changes to the security func-
tion were made in a controlled way [10]. Specifically: let
S be the set of subjects and O be the set of objects, with
S ⊆ O; we define a function ψ : S ∪ O → P(S), where ψ(o)
determines the set of subjects that can change the security
level of o; a state transition is assumed to be initiated by
a subject s and is said to be transition secure only if any
changes to the security function are permitted by the func-
tion ψ. In other words, the subject s must be authorized
(by ψ) to change the security level of o. (If ψ(o) = ∅ for
all o, then the security function cannot be changed. Such a
system is said to have the property of tranquillity.)

In the context of role-based access control, we assume that
each change to the configuration of the system is made by a
role (which is analogous to a subject). Using our administra-
tive model we have a natural implementation of ψ using the

concept of administrative scope. Specifically, a role r can
change user-role and permission-role assignments (the secu-
rity levels of subjects and objects) for all roles r′ ∈ σ(r).
In other words, σ is a natural choice for ψ. The simplest
implementation is to let the set of roles controlled by a
role r be {r}. In this case, σ(r) = {s ∈ ↓r : ↑s \ ↑r ⊆ ↓r}.
Using the hierarchy in Figure 2, for example, σ(PL1) =
{ENG1, QE1, PE1, PL1} and σ(DIR) = R.

5. CONCLUSIONS AND FUTURE WORK
We have defined a model with a different approach to

permission inheritance. The obvious questions to ask are:
“Does this approach address any of the perceived shortcom-
ings of the standard RBAC approach to inheritance?”; and
“Does this approach provide any tangible advantages over
the standard approach?”.

In answer to the first question, we note that it is possible
to implement separation of duty constraints on two roles
that have a common senior role and for a user to activate the
senior role; it requires that all sensitive permissions assigned
to the two junior roles are neutral permissions. This is not
possible in standard RBAC. However, our approach does not
prevent a senior role having access to all possible permissions
because we have not placed any restrictions on the roles
that a user can activate. (Recall that a user u may activate
any role in ↓R(u).) Therefore, we could augment our model
with the concept of a user-role-assignment floor, which could
be modelled as an antichain F (u) in R. Then a user u
could only activate roles in the set ↓R(u) \ ↓F (u). Using
the hierarchy in Figure 2, for example, we could imagine
assigning a floor of {PE1, QE1, PE2, QE2} to any user who is
assigned to DIR. Such a user would only be able to activate
the (senior) roles PL1, PL2 and DIR. This is an area for
further research.

In answer to the second question, we note that our ap-
proach provides considerably more flexibility than standard
role-based models. (It would appear that our approach does
not introduce any significant additional overheads. In exist-
ing role-based models it is necessary to traverse the role
hierarchy in both an upward and downward direction: in
the former case to determine the roles implicitly assigned
to a permission; and in the latter to determine the roles
implicitly assigned to a user.)

We also note that our approach provides a more direct im-
plementation of the Bell-LaPadula model using role-based
techniques. Our approach also provides a rigorous defini-
tion of the security level of a permission and of an object.
Moreover, we do not require an additional hierarchy and are
able to assign complex permissions to roles.

A useful side effect of our study of permission inheri-
tance has been the definition of constraints that all role-
based models should enforce. These constraints are neces-
sary whenever there exists an (implicit or explicit) ordering
on the set of permissions in order to provide consistency
and prevent redundancy in the permission-role assignment
relation. Moreover, such constraints provide a useful insight
into the form of constraints that would be required when
simulating the Bell-LaPadula model.

The natural extension of the ideas in this paper is to de-
velop a formal statement of the security properties of our
role-based model when constrained in the ways described
in Section 4.4.2. In short, can we develop a result analo-
gous to the “Basic Security Theorem” for the Bell-LaPadula

91

model [1]? It is this question that will occupy our research
in the short term.

Acknowledgements. I am grateful to Kenny Paterson and
George Loizou, whose helpful comments contributed to the
readability of this paper.

6. REFERENCES

[1] Bell, D., and LaPadula, L. Secure computer
systems: Unified exposition and Multics
interpretation. Tech. Rep. MTR-2997, Mitre
Corporation, Bedford, Massachusetts, 1976.

[2] Crampton, J., and Loizou, G. Administrative
scope: A foundation for role-based administrative
models. ACM Transactions on Information and
System Security 6, 2 (2003). 201–231.

[3] Davey, B., and Priestley, H. Introduction to
Lattices and Order. Cambridge University Press,
Cambridge, United Kingdom, 1990.

[4] Denning, D. A lattice model of secure information
flow. Communications of the ACM 19, 5 (1976),
236–243.

[5] Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn,
D., and Chandramouli, R. Proposed NIST standard
for role-based access control. ACM Transactions on
Information and System Security 4, 3 (2001), 224–274.

[6] Gavrila, S., and Barkley, J. Formal specification
for role based access control user/role and role/role
relationship management. In Proceedings of Third
ACM Workshop on Role-Based Access Control
(Fairfax, Virginia, 1998), pp. 81–90.

[7] Goh, C., and Baldwin, A. Towards a more
complete model of role. In Proceedings of Third ACM
Workshop on Role-Based Access Control (Fairfax,
Virginia, 1998), pp. 55–61.

[8] Kuhn, D. Mutual exclusion of roles as a means of
implementing separation of duty in role-based access
control systems. In Proceedings of Second ACM
Workshop on Role-Based Access Control (Fairfax,
Virginia, 1997), pp. 23–30.

[9] Kuhn, D. Role based access control on MLS systems
without kernel changes. In Proceedings of Third ACM
Workshop on Role-Based Access Control (Fairfax,
Virginia, 1998), pp. 25–35.

[10] McLean, J. Security models. In Encyclopedia of
Software Engineering, J. Marciniak, Ed. John Wiley &
Sons, 1994.

[11] Moffett, J., and Lupu, E. The uses of role
hierarchies in access control. In Proceedings of Fourth
ACM Workshop on Role-Based Access Control
(Fairfax, Virginia, 1999), pp. 153–160.

[12] Nyanchama, M., and Osborn, S. The role graph
model and conflict of interest. ACM Transactions on
Information and System Security 2, 1 (1999), 3–33.

[13] Osborn, S., Sandhu, R., and Munawer, Q.
Configuring role-based access control to enforce
mandatory and discretionary access control policies.
ACM Transactions on Information and System
Security 3, 2 (2000), 85–106.

[14] Sandhu, R. Role hierarchies and constraints for
lattice-based access controls. In Proceedings of Fourth
European Symposium on Research in Computer
Security (Rome, 1996), pp. 65–79.

[15] Sandhu, R., Bhamidipati, V., and Munawer, Q.
The ARBAC97 model for role-based administration of
roles. ACM Transactions on Information and System
Security 1, 2 (1999), 105–135.

[16] Sandhu, R., Coyne, E., Feinstein, H., and
Youman, C. Role-based access control models. IEEE
Computer 29, 2 (1996), 38–47.

92

