A Meta Model for Authorisations in Application Security
Systems and their Integration into RBAC Administration

Axel Kern — Martin Kuhlmann — Rainer Kuropka — Andreas Ruthert
Beta Systems Software AG
Hermann-Heinrich-Gossen-Str. 3
50858 Koln, Germany

{axel.kern | martin.kuhlmann | rainer.kuropka | andreas ruthert} @betasystems.com

ABSTRACT

This paper presents a new concept for efficient access rights
administration and access control. It focuses on the special
requirements of application security and reflects experiences
from the implementation of security for large industry ap-
plication systems.

Application security shows a considerable inherent complex-
ity due to the large number of combinations of objects and
processes for which access rights must be defined. Based on
practical experiences, this paper introduces a new approach
for the implementation of access control for application sys-
tems which reduces this complexity. After describing the
challenges for such an approach, we introduce process spaces
and object spaces as a basis for authorisations. We show
how they make application security maintainable, control-
lable and offer sufficient flexibility for reaction to changing
business needs. In addition, we discuss how a separation
of administration and access layers allows for convenient
administration as well as optimised access decision perfor-
mance in business-critical applications. To facilitate the
integration of this rule-based concept into enterprise-wide
security administration, we show how application security
can be integrated into role-based access control (RBAC)
systems. In particular, this goal is achieved by enhancing
Enterprise RBAC (ERBAC) with variable roles. These roles
can contain variable process and object spaces referencing
user and role attributes. Finally, we give a short overview
over related work.

Categories and Subject Descriptors

D.4.6 [Operating Systems|: Security and Protection—
Access controls; K.6.5 [Management of Computing and
Information Systems]|: Security and Protection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

SACMAT’04 June 24, 2004, Yorktown Heights, New York, USA.
Copyright 2004 ACM 1-58113-872-5/04/0006 ...$5.00.

87

General Terms

Management, Security

Keywords

Automated identity management, security provisioning, se-
curity administration, role-based access control (RBAC),
enterprise role-based access control (ERBAC), enterprise
roles, application security, SAM Jupiter

1. MOTIVATION

Application security is a security world of its own. While
topics such as firewalls, intrusion detection, virtual private
networks and security features are increasingly the focus
of discussions and publications, little is being said about
application security. This is clearly a mistake, as the pro-
tection of application data - in terms of both integrity and
authenticity - is an essential element for an integrated, com-
prehensive, enterprise-wide security infrastructure. As an
initial approach to this topic, it makes sense to take a closer
look at the challenges that arise in application security.
Although a database can be protected effectively using the
means provided by system security, these measures cannot
achieve differentiated protection of the objects contained
in the database. Any attempt to implement an authori-
sation concept for millions of bank accounts or insurance
policies based upon system security concepts seems nearly
impossible. Arranging users in groups containing identical
users and the grouping together of authorisation objects in
units specific to particular target groups merely creates huge
amounts of authorisations and opens the door to problems
concerning administration and the quality and auditing of
the mapped authorisations.

Protection of the objects alone does not meet all require-
ments. We must also consider the ability to describe pro-
tection of objects depending on the processes accessing the
objects. Should it be possible to view data via Web interface
and to maintain this same data via a host application? This
differentiation introduces a new dimension of complexity for
the authorisations to be mapped.

If an authorisation concept is to be structured according to
how an organisation operates, then it must use the organi-
sation’s business processes and the individuals who perform
these processes as reference points. Both the attributes of
the acting individuals and the attributes of the processes
and protected objects should be considered integral parts of

Access Layer Administration Layer
User Process Administrator
Administration of
Access Request Access Rights
Data Access Acgegs Administration
Object Enforcement Decision Logic
Function Function

Figure 1: Application Security Overview

the authorisation concept. An authorisation resulting from
such a concept could be formulated as follows:

An employee assigned to the Berlin branch of a bank can
debit sums less than 100 EUR for all accounts in the branch
office in which he is currently working.

An additional challenge lies in the establishment of roles
for the purpose of bundling such authorisations. Roles are
usually formulated in general terms and do not normally
incorporate user attributes and attributes of the involved
objects and processes. With eBusiness, the use of applica-
tion servers and portals, and the increasing interconnect-
edness of IT infrastructures, the consistent enforcement of
enterprise-wide security policies has become a primary con-
cern.

In summary we can say that a solution of the challenges de-
scribed here resolves the complexity of application security
and makes a significant contribution towards increasing ease
of administration, transparency, and suitability for practi-
cal use. The following factors are therefore decisive for the
success of a meta model for authorisations in application
security systems and their integration into RBAC:

e Authorisations can be qualitatively described in the
same way for different security concepts.

e Authorisations are not described according to techni-
cal security concepts; rather, they reflect the security
policy for each respective business process.

e Bundled authorisations based on business processes
represent roles which are used within the context of
role-based access control (RBAC).

e Administration is simple and efficient.

e The authorisations can be used in standardised form
for authorisation verification in different applications
on different platforms.

e Authorisation checks meet the performance require-
ments for business-critical applications, while at the
same time remaining easy to administer.

The following text describes a meta model which takes into
account all of the factors for success enumerated above.

88

2. CHALLENGES OF APPLICATION SE-
CURITY

From our experience in the design and implementation of
security systems and their administration in a number of
large organisations (e.g., in the financial industry), we know
that there is a fundamental difference between security for
application systems and system security. We first face the
situation that the number of system security concepts is
relatively small due to the rather small number of standard
operating systems and standard middleware systems (e.g.,
databases). In contrast, the components that provide secu-
rity for applications are often proprietary. There are a great
many of them, all following various concepts. The rising
popularity of web applications has fuelled the development
of access control systems available as commercial products
(e.g., Netegrity Site Minder or Tivoli Access Manager).
Before describing a general application security manage-
ment concept, we shall provide a brief definition of applica-
tion security and review an ISO access control model which
meets the needs of application security. We present some
characterisations of application security and list the main
challenges regarding its design and implementation.

2.1 What isApplication Security?
2.1.1 Definition

An application security system provides controlled access to
data stored in a computer system and to processes used by
subjects to manipulate this data (e.g. view, change, delete,
transfer).

As a basis for further discussion, we can use ISO 10181-3 [7],
which defines a standardised model for access decisions and
the enforcement of access decisions. The model describes
the following (see Figure 1):

1. The access rights for application security are defined
and stored in a repository via administration.

2. When a user starts a process or application, the access
enforcement function (AEF) is called.

3. This function enforces the access decision by calling
the access decision function (ADF) and allowing the
required access to the data objects if the response from
the access decision function is positive.

Authori- Protected
Role = . .
e sation object
/ ..
Limit 20.000 1 7
Cashier / VIP no goject Attributes
,' B h B Account 1234
! ranc onn Branch Bonn
/! VIP yes
’/
User +---
User Attribute
Branch Bonn Process
Function Cashier

Figure 2: Problem of Integrating Application Security into an RBAC Concept

4. The access decision function compares the given pro-
cess data with the defined access rights and returns
Access if an access right could be found, and No ac-
cess otherwise.

The introduction of an access enforcement layer has a high
impact on application development, as the entire applica-
tion architecture must be adapted accordingly. Therefore,
many organisations do not implement a separate access en-
forcement layer, but depend on the programmers to call the
access decision function when needed.

2.1.2 Characteristics of Application Security Sys-

tems

Examples for processes include transactions in a mainframe
environment or distributed (web) services; the data to be
accessed may be a bank account, a contract or a patient
record, for example.

To control the access of users via a process to data objects,
an ”access decision function” performs an access permission
check. The access decision function uses the following cri-
teria for determining access permission or denial:

e User attributes (e.g., the user’s organisational unit)

e Attributes related to the process (such as amount of
withdrawal)

e Attributes of the data object (i.e., part of the data,
such as account balance)

2.1.3 Example

A bank cashier is allowed to access an account via the ser-
vice Withdraw from account if it is a VIP account belonging
to the branch Berlin-Mitte or Berlin-Wedding and the max-
imum amount is less than or equal to 10 000 EUR.

The following constraints define the authorisation space for
this access right definition:

1. Branch of account = (Berlin-Mitte or Berlin-Wedding)
2. Account type = VIP
3. Maximum amount <= 10000 EUR

The attributes used for the access decision are not usually
technical attributes (such as the "read/write/execute” at-
tributes used in system security), but terms reflecting the
semantics of the action to be performed and the data to
be used (”business-oriented language”). The access rights
should therefore be administered with business-oriented ex-
pressions.

On the other hand, the execution of the access decision
function is highly time-critical because decision time has
an impact on the execution time of the business function.
Many companies require a response time between 10 and
100 milliseconds for the access decision. This means that
the decision process must be optimised on an IT-technical
level.

2.2 Wherearethe Main Challenges?

Several challenges for the design and implementation of ap-
plication security become apparent from the characterisa-
tion provided above.

2.2.1 Complexity

The complexity of the described ternary relation (user - pro-
cess - object) is quite high in the application security domain
in comparison with system security:

e In the system security domain, we normally find a
large number of users and a large number of objects,
but only few processes (such as read, write, execute
in file systems). This means that the complexity of
one element of the relation (processes) is quite low.
Therefore, authorisations in system security are nor-
mally defined as a binary relation with the process as
attribute.

e In the application security domain, however, we find a
large number of users, a large number of objects and
a relatively high number of processes (e.g., all IMS
transactions of an organisation). Therefore, we have a
high complexity of all elements in the ternary relation.

The following example comparing authorisations for Win-
dows 2000 system security and the application area for a
company with 10000 users illustrates this higher level of

89

Process

Example

User ‘HUGO’

is authorised for
object ‘Account 4711’
using process
‘Withdraw from account’

User

Object

Figure 3: Authorisations - Points in a Three-Dimensional Space

complexity. Considering 6 access methods and 1000 system
objects for which authorisations can be established in the
Windows 2000 domain, we find 60 million potential autho-
risations. Considering that every user is actually authorised
for 100 Windows 2000 objects using one access method each,
we reach a sum of 1 million actual authorisations. In the ap-
plication area, the company must authorise their users on
1000 contracts using 100 different processes (such as con-
clude contract, change contract amount, change address).
This results in 1 billion possible authorisations. As every
user has on average authorisations for 100 contracts via 20
specified processes, there are 20 million actual authorisa-
tions.

The number of actual authorisations is a measure for the
performance requirements of the system, the number of po-
tential authorisations is a measure for the complexity of the
administration.

A further aspect of application security not mentioned in
the above example is the additional complexity resulting
from process attributes, such as posted amount.

2.2.2 Flexibility

Organisations are subject to a continuous process of change.
The reasons for such change vary. Some examples include
mergers, acquisitions or business process re-engineering ac-
tivities. It is therefore unlikely that the structure of the ap-
plication security system will remain unchanged for a long
period of time.

If, for example, a bank decides to separate their accounts
into VIP and non-VIP accounts, the access rights to the
account must be able to reflect the VIP attribute of the
accounts. As a result, it must be possible to supplement
the application security system with new authorisation at-
tributes easily. Therefore, we need a flexible, semantic-free
representation of all information required for the adminis-
tration of the system. These attributes can be part of the
users, the processes or the objects that are to be protected.

2.2.3 Generic Application Security

Many modern companies have different objects that require
protection, such as accounts, contracts, etc., each with dif-

90

ferent processes and different attributes. This requires gen-
eric application security that is able to handle access rights
on all these different objects, processes and attributes.
2.2.4 Integration of Application Security into an
RBAC Administration Concept

Modern enterprises use roles to administer user access rights
in their IT environments. Of course, the administration of
application security must be integrated into the role con-
cepts. Roles define bundles of access rights which are then
assigned to users [14]. Roles exist independently of users and
do not take any characteristics of the users into account.
Authorisations in application security, however, are built
using sets described by rules using authorisation attributes
of the user. This means that authorisations contain refer-
ences to values which are not known when a role is created.
Figure 2 shows an example of this situation. A user is to
receive the role Cashier for all accounts in his branch. Such
an authorisation cannot be specified using the classic RBAC
concept. A cashier role would have to be created for every
branch. This would lead to an unmanageably large number
of roles.

2.2.5 Access Decision Performance

The performance of access decisions is of vital interest to
companies because an access decision is required for each in-
dividual access request. Slow access decisions are business-
critical; e.g., for a bank the availability of its core banking
applications is directly related to turnover and therefore to
profit. In spite of the high number of attributes involved
from different sources, the business requirement for high
performance access decisions must be met.

3. SOLUTION
3.1 TheMetaModel for Application Security

3.1.1 Definitions

Before starting, we would like to define the relevant terms
in the application security domain. As already mentioned,

16 Authorisations
PUNN
=

Process

User

» Object

3 Authorisations
Process

User

> Object

Figure 4: Authorisations - Enhancement Using the Descriptive Approach

the main issue is to define which user is allowed to use which
object via which process.

The user is the representative of a real-life user in the IT
system. In this context, it is also the subject of an access
right.

A process is an action through which a user accesses an
object. A process is part of an application. For example,
the process Withdraw from account is part of the applica-
tion Account administration. Considering access control,
the process is the entity via which a user is authorised to
access an object.

An object is the instance of a system resource which is to
be protected. Examples for objects include a directory in
Windows 2000 or a bank account in the application Account
administration.

An authorisation can be defined as a triple (cf. [3])

(user, process with execution attributes, object)
or - more abstractly -

(specified set of users, specified set of processes with
execution attributes, specified set of objects).

Therefore, every single authorisation can be defined as a
point in a three-dimensional space which is built using all
users, all processes (with execution attributes) and all ob-
jects (see Figure 3).

3.1.2 Characteristics of the Meta Model

A user is characterised by a number of attributes and their
values. For example, the user Smith is assigned an attribute
branch with the value Bonn. On the other hand, by speci-
fying one or more attributes it is possible to define a set of
users. For example, the set all cashiers in branch Bonn is
defined as all users for which the attribute branch has the
value Bonn. Attributes which are used to specify a set of
users are called authorisation attributes of the user.

In the following, a set of users is mapped to the entity role
and can be used for the definition of access rights (see section
3.5.1). As an alternative, we could have defined sets of users
implicitly via rules. However, explicit definition of roles
normally fits better to the business processes as it allows the
specification of business roles and provides a sound base for

91

auditing purposes. The attributes of a user can nevertheless
be used to automate the assignment of roles.
A process is connected with two types of attributes:

e Like users and objects, the process definition can have
attributes. These attributes can be used to specify
processes or sets of processes. Attributes which are
used to specify a set of processes are called authorisa-
tion attributes of the process.

The process is executed with specific values for at-
tributes of the process execution. For example, the
process Withdraw from account will be executed with
a specific amount. Attributes used during the execu-
tion of processes are called execution attributes of the
process.

An object is characterised by a number of attributes and
their values. For example, the account 5050505 is assigned
the attributes branch with the value Bonn and account type
= VIP. This again allows the definition of a set of objects
by specifying one or more attributes. For example, the set
all VIP accounts of branch Bonn is defined as all account
objects where the attribute branch has the value Bonn, and
the attribute account type is equal to VIP. Attributes used
to specify a set of objects are called authorisation attributes
of the object.

3.2 Reduction of Complexity

The following section leads to an administration model for
application security that is able to meet the requirements
of higher complexity.

3.2.1 Using the Meta Model of Application Security

Using our meta model and the definitions of users, processes
and their attributes, we can define any authorisation in a
security system as follows:

Authorisation = (specified set of users/role, specified set
of processes with specified execution attributes, specified set
of objects), where

e the set of users is specified by rules using the authori-
sation attributes of the user,

e the set of processes is specified by rules using the au-
thorisation attributes of the process,

e the set of objects is specified by rules using the autho-
risation attributes of the object.

Using the three-dimensional presentation already introduced
in Figure 3, the result is shown in Figure 4. It is obvious that
the number of authorisations can be reduced considerably
by using rules.

3.2.2 Using Rule-Based Description for Sets of Ob-

jects and Processes in Authorisations

Referring to the definitions of application security in section
2.1, we propose the following model:

Users are the subjects of authorisations in a system. They
are normally human users, but there are also technical user
IDs used by automated processes. The user record contains
a set of standard and company-specific attributes. These
include attributes describing the user, such as name, title,
and telephone number, as well as authorisation attributes
such as the users branch, organisational unit, job function(s)
and so on. These latter attributes provide the basis for the
application security authorisations as described below.

Transaction No.

50009 |

50000 L Account type

/'

e Function

Figure 5: Process Space “T500*%,F2-5,T1-4”

By defining rules using the process attributes, it is possible
to group processes, e.g., a set can be ”all transactions from
number range 50000 - 50099 with functions 2 - 5 and type
= private”. With these attributes we can construct a multi-
dimensional space containing all elements of the process set.
We define a process space as a set of processes described
by such a set of rules (see Figure 5).

As there are usually a number of different process types, pro-
cess spaces are classified by a class attribute. Classes differ
between different installations. Examples for such classes
might be IMS transactions or Web services.

To facilitate administration, process spaces that are organi-
sationally linked are bundled in process space folders. These
folders are used for pre-selections in the user interface (see
Figure 7).

92

It is possible to group objects by defining rules using the
object attributes, e.g., a set can be ”all private savings ac-
counts (type 1 to 4) from number range 4711*. With these
attributes we can construct a multi-dimensional space con-
taining all elements of the object set. We define an object
space as a set of objects described by such a set of rules
(see Figure 6).

Account No.
4711999 |
4711000 L /Accomt category
business / e
private _/)
ll |l Account type

Savings type 1 Savings type 4

Figure 6: Object Space “Accounts S4711*,T 1-4,p”

As there are usually a number of different types of objects,
object spaces are classified by a class attribute. Classes dif-
fer between different installations. Examples for such classes
might be bank accounts or contracts.

To facilitate administration, object spaces that are organi-
sationally linked are bundled in object space folders. These
folders are used for pre-selections in the user interface (see
Figure 7).

An authorisation in the application security system au-
thorises a user or - as previously mentioned - a set of users
represented via a role to execute specified processes on spec-
ified objects. It is defined as a triple of the already defined
entities user/role, process space and object space. A typical
authorisation is defined by the following steps:

1. A process space folder is assigned to a user/role. Such
a folder contains process spaces which are linked to-
gether in terms of a particular business topic and are
described by a business term that is also comprehen-
sible to a non-technical administrator.

2. An object space folder is now assigned to this tuple.
Such a folder contains object spaces which are linked
together in terms of a particular business topic and
are described by a business term that is also compre-
hensible to a non-technical administrator.

3. We now attain a matrix of process spaces and object
spaces for this user/role (see Figure 7). In this matrix
we can define which permissions the user/role receives.
Every 'x’ in Figure 7 indicates that the user/role is
authorised for the appropriate combination of process
space and object space.

Process Spaces, Authorisation
“ Savings Accounts 0815pp”
TX 0815, 2-5,1-4 X | x| x| x
TX0815,1, 1-4 X X
TX0817,2-5,1-3 X
TX0817,1, 1-3
TX 0819, 4-5,1 X | x
R q® q° Object
*'\\) ;\,\,b\ ;\,\ﬂ, */\\SL Spajces
,\’\\\,\’Q : '<\\ ’\Q’\
PO gV R
RIS
& P
Aol o S o

Figure 7: Authorisation Matrix

By using the process described above, we have reduced the
high complexity of application security authorisations in two
steps:

1. By grouping processes and objects in process spaces
and object spaces using rules, we have considerably
reduced the number of instances relevant for our au-
thorisations.

2. By grouping process and object spaces in folders and
combining them to form authorisations using an au-
thorisation matrix, we have rendered the administra-
tion more comprehensible.

These measures allow even large organisations to manage
their usually large authorisation space in the application
security domain.

3.3 TheFlexibleand Generic Approach

To ensure that the application security system can be easily
supplemented with new authorisation attributes, we need
a generic, semantic-free representation of all information
needed for the administration of the system:

e All entities are represented by attribute/value combi-
nations.

e All rules use an attribute/operator/value representa-
tion.

Generic approaches have the disadvantage that checks for
valid values and syntax are not possible. We therefore use
an attribute repository containing type, syntax and valid
values for all attributes used in the systems.

3.4 Enhanced Access Decision Performance

The meta model described in the previous section is con-
venient for administration, and the access control informa-
tion can theoretically be used directly by an access decision

93

mechanism (e.g., as described by the ISO standard in sec-
tion 2.1). However, in practical implementations, some ad-
ditional constraints for the access decision mechanism of an
application system exist:

e For business critical applications such as core bank-
ing applications, the access decision mechanism must
demonstrate optimal performance and availability.

e For regulatory compliance and to satisfy security poli-
cies of the organisation, it must have a sound audit
functionality.

The first point in particular is not in accordance with ad-
ministrative convenience and a possibly delegated admin-
istration model. The data model underlying our security
meta model is optimised for administration; this will have a
negative impact on the performance of the operative access
control decisions: The data needed for the access decision
must be collected from different sources and combined at
run-time.

On the other hand, a representation of authorisation data
optimised for performance would be difficult to handle by
human administrators.

To solve this conflict, we use a two-layered architecture for
our system, consisting of an administration and an access
layer (see Figure 1). The administration layer is optimised
to simplify the use for human administrators. The integra-
tion of our model with RBAC will consequently be for this
layer. Additionally, we introduce an access layer consist-
ing of the access control data optimised with respect to the
performance of the access decision. This version of the ac-
cess control data can be physically located "near” the access
decision mechanism, which also improves availability. Be-
tween these two layers, access control data is converted by
appropriate routines. To provide a general solution, both
layers use the generic approach as described above.

3.5 Integration of Application Security into

an RBAC Administration Concept

As already stated, it is state-of-the-art for medium and large
organisations to administer users and their access rights us-
ing roles. Therefore, it is very important to integrate the
administration of application security - which normally con-
tains the most important and critical authorisations of an
enterprise - into an RBAC concept. In the following we show
how this goal can be achieved. We are using the Enterprise
Role-Based Access Control Model as our basis. However,
the presented concept is more general and can also be in-
corporated into other RBAC models.

3.5.1 The Enterprise Role-Based Access Control
Model (ERBAC)

Roles are a powerful concept for simplifying access control.
In Role-Based Access Control (RBAC), permissions are not
directly associated with users, but are instead collected in
roles. Users are then assigned to these roles, thereby ac-
quiring the roles’ permissions. A role normally contains all
rights needed in an organisational unit or for a specific job
function [14, 5]. In 2001, an RBAC standard was proposed
which defines the core and extended capabilities of roles [6].
In [9] and [8] the Enterprise-Role Based Access Control

Static Separation of Duty Role Hierarchy

S

Permission
User Permission .
User Assignment Role Assignment || Operation > Object Enterprise Level

T : : T

: : : : Propagation
T : : I~ " Permission in TS~ ™
1 1 ‘ * [et B e] 1
! A_ccglysnt : LTS TS Target Systems
! n ! 1'Operation| | Object |
Lo __ J [piplinteloteteledii ot bl Rl i

Figure 8: The Enterprise Role-Based Access Control Model (ERBAC)

Model (ERBAC)' was introduced. Enterprise Roles allow
the administration of users and their access rights across
all systems in the IT environment of an organisation. En-
terprise Roles span over more than one target system and
consist of permissions in multiple systems. These permis-
sions are specific to a target system and can be of various
natures.

Figure 8 shows the resulting ERBAC model. Enterprise
Roles include all permissions needed to perform a specific
business role. Users are then assigned to these roles. The
permissions a user receives through the assignment of a role
are propagated to the administered target systems. The En-
terprise User definition leads to the creation of user accounts
(user IDs) in the target system. A permission can be any
operation for an object in one of the underlying target sys-
tems. The assignment of a permission to an Enterprise Role
does not necessarily cause any update in the target system.
The permissions defined for the role are propagated, and
the users accounts receive the associated permissions in the
respective target system only when a role is assigned to the
user. The process is the same, of course, when permissions
are added to or removed from roles.

In addition to the core RBAC features, a general role hierar-
chy is supported. Enterprise Roles can be assigned to other
roles in a directed acyclic graph (DAG). Child roles inherit
all permissions from their parent roles (including all permis-
sions that these roles inherit). A user assigned to a child role
thus receives all permissions assigned to this role, plus all
permissions which the role inherits from its ancestors. Sep-
aration of Duty is implemented in ERBAC by rules defining
constraints between roles. These rules are evaluated when
assigning users to roles and connecting roles to other roles,
thus preventing a user from receiving illegal combinations
of roles, even in the presence of a role hierarchy.

3.5.2
BAC

Our application security system is a specific target system
and as such is integrated into our ERBAC model. However,

'For a more comprehensive description of ERBAC and its
comparison to the proposed NIST RBAC standard see [8].
ERBAC has been implemented in the commercial security
Fro]visioning and identity management tool SAM Jupiter
13].

Integration of Application Security into ER-

94

as we have already shown in section 2.2.4, it is not easy
to use typical application security authorisations in roles,
as they contain variables referencing e.g. user attributes.
Some examples include:

e A loan manager may grant loans only up to a specific
amount.

e A bank cashier may only work with a specific set of
customer accounts.

It would be possible to build separate loan manager roles for
every different maximum amount or separate bank cashier
roles for every range of customer accounts. Obviously, this
is not a good solution as it would lead to a large number of
similar roles.

The entities of our application security meta model can be
mapped to ERBAC in Figure 8 as follows: The administra-
tion layer maps to the ERBAC enterprise level, whereas the
access layer (see section 3.4) is our target system. Applica-
tion security permissions contain process spaces and object
spaces which can be compared with operations and objects
in standard RBAC. All entities in ERBAC are supplied with
attributes which can be used to define variable role defini-
tions. For application security permissions, we use three
types of attributes in particular:

e Process space attributes, such as account type (see e.g.
Figure 5),

e Object space attributes, such as branch,

e Execution attributes, e.g. the mazimum amount al-
lowed for a withdrawal from an account. These at-
tributes are compared with the actual values of the
transaction during run-time. In the example above,
the transaction is rejected if the actual amount to
be withdrawn is greater than the defined mazimum
amount.

To provide flexible roles for application security, we leave
one or more of these attributes in a role permission assign-
ment variable, meaning that we define a reference to at-
tributes of other ERBAC entities instead of defining fixed
values. It is possible to reference attributes from the user,
the user role assignment or the role. Using some real-life
examples, we go into more detail about these three cases in
the following:

Maximum amount = <Max. amount of Role>

Branch = <Branch of User>

/
Appl. Sec. Permnssn,bn

User Role Cashier [y .
User Permission Process Object Enterprise Level
Branch Assignment | Max. amount|” Assignment Space |7| Space (Administration Layer)
= Bo = 1Mio. Euro
. nn ! i ur : |
N | \ I Propagation

] | ' : T~ " Permission n" TS ™7
' o R e R o
\ A.chlygt : 'l Process :_J Object ! App Sef S
| in | \ ! Space |7 Space ! (Access Layer)
Lo ___ J [Intplutatletela il bR i

Maximum amount = 1 Mio. Euro
Branch = Bonn

Figure 9: Role with Generic Application Security Permission

e Attributes from the user record: As described
in section 2.1, a user record contains a number of at-
tributes. These attributes can be used to define a data
space which is referenced by variable permissions of the
role. These references are only evaluated when the
role is assigned to a user. Thus, we are able to define
generic roles for such items as job functions which can
be restricted to a specific data space for every assigned
user. This results in a much smaller number of roles
and makes administration easier.

Figure 9 shows a real-life example from a bank: A role
Cashier is defined which will allow access to all ac-
counts in the branch of the user. Therefore, we assign
a permission containing the process space post for ac-
count and an object space accounts with the attribute
branch = <branch of assigned user> to the role. When
assigned to a user, the variable in the object space is
filled with the value of the attribute branch of the user
record resulting in the desired permission for this user.
If the user’s branch changes, the permission is adapted
accordingly. Thus, role and role assignment become
resistant to organisational changes.

e Attributes from the user assignment: We can
also specify attributes from the user assignment to
roles and use them as references in variable permis-
sions. The functionality is quite similar to that de-
scribed for user attributes above, but has some im-
portant differences. We can define different attributes
for every role a user is assigned instead of always using
the one defined in the user record. If, for example, an
individual has different jobs in different branches of
a company, we assign him the appropriate roles and
specify the attribute branch with the appropriate value
for each assignment.

e Attributes from the role definition: Similarly, we
can specify attributes from the role definition and use
them as references in variable permissions. This fea-
ture does not provide additional flexibility when using
the role, as in the two cases described above. How-
ever, referencing role attributes in the permissions can

95

make sense as a means of facilitating the administra-
tion of changes. We then only need to change the role
attributes instead of all referencing permission assign-
ments.

An example is shown in Figure 9: The permission as-
signment receives a constraint ”Maximum amount =
<Mazx. amount of Role>”", which refers to the Maz.
amount attribute in the role definition.

The use of attributes in variable roles is also possible in the
presence of a role hierarchy:

e User attributes are valid for all roles to which a user
is connected, be it directly or via inherited roles.

e Attributes specified for a user assignment also apply
for roles which are inherited via this assignment. Pos-
sible conflicts which may occur when the same role is
assigneed to a user via different inheritance paths are
normally solved by cumulating the assigned attribute
values. For example, a user is directly connected to
the role Cashier with attribute branch = Bonn and
also inherits role Cashier via another role with assign-
ment attribute branch = Berlin. As a result, our user
is authorised for the role Cashier for both branches.

e Role attributes are not affected by role hierarchies, of
course. Attributes apply only to the role to which they
are directly assigned.

4. RELATED WORK

[12] describes how the access control system of a legacy bank
application can be mapped to the proposed NIST RBAC
standard. In the conclusion, it is suggested that it should
be possible to attach rules to roles. An example would be a
rule which says that the target object may only be accessed
when it has the same branch attribute as the user holding
the role. Our generic role definitions as described in the
previous section fulfil these requirements.

Like other authors, we have emphasised elsewhere that au-
tomation of user administration is very important (see e.g.

[9, 10]). User data from databases such as HR systems is
used to automatically create, maintain and delete users in
the RBAC system. [1] presents a rule language which is
used to assign roles to users by evaluating user attributes.
The use of rules based on user attributes is similar to our
approach. However, the two approaches differ considerably:
[1] uses rules to define which user receives which role. In
contrast, our rules define which permissions a user receives
when he is assigned a role.

The Administrative Enterprise RBAC concept (A-ERBAC)
in [11] describes the administration of ERBAC itself. It re-
sembles the concept presented in this paper in some aspects,
as it also describes the administration of an application. For
example, the implementation of A-ERBAC also separates
administration and access layer to provide fast operation of
the access check. A permission in A-ERBAC is defined by
a triple (operation, object, scope). Whereas the tuple (ob-
ject, scope) is similar to the definition of an object space in
this paper, the number of allowed operations is quite small,
so that process spaces are not needed.

We know of several case studies for application security sys-
tems for health care organisations (see [2, 4]). These sys-
tems fulfil the special requirements in this field. In contrast,
our approach is more general and meets the needs of most
commercial enterprises.

5. CONCLUSION AND FUTURE WORK

This paper presents a new approach for the practical im-
plementation of access control for application systems. Ap-
plication security shows a considerable inherent complexity
due to the large number of combinations of objects and pro-
cesses for which access rights must be defined. We propose a
solution which reduces this complexity. The introduction of
process spaces and object spaces makes application security
maintainable, controllable and offers sufficient flexibility for
reaction to changing business needs. Together with a sep-
aration of administration and access layers, our approach
fulfils the requirement of optimised access decision perfor-
mance in business-critical applications.

With the integration of this rule-based concept into RBAC,
we achieve a further reduction of complexity on the adminis-
tration layer. Additionally, this concept provides the possi-
bility of integrating application security with an enterprise-
wide role concept (ERBAC).

Our approach was mainly derived from experiences made
working with conventional distributed and mainframe ap-
plication systems. It would be interesting to see if and
how this concept is influenced by web services architec-
tures in which it might be difficult to decide where ap-
plications reside and where security checkpoints should be
posted. Emerging standards such as SAML or XACML (see
www.oasis-open.org) will influence application security, and
as a future task we will analyse the impact of these tech-
nologies on our model.

6. REFERENCES

[1] M. A. Al-Kahtani and R. Sandhu. A Model for
Attribute-Based User-Role Assignment. In
Proceedings of the 18th Annual Computer Security
Applications Conference, Las Vegas, Nevada, USA,
pages 353-362, December 2002.

96

[2] B. Blobel, R. Nordberg, and P. Pharow. Privilege
Management und Zugriffskontrolle in verteilten
Gesundheitsinformationssystemen. In P. Horster,
editor, D-A-CH Security — Bestandsaufnahme,
Konzepte, Anwendungen, Perspektiven, pages
374-382. syssec, March 2003.

D. D. Clark and D. R. Wilson. A Comparison of
Commercial and Military Computer Security Policies.
In IEEE Symposium on Security and Privacy, pages
184-194, 1987.

A. A. El Kalam, R. El Baida, P. Balbiani,

S. Benferhat, F. Cuppens, Y. Deswarte, A. Miege,
C. Saurel, and G. Trouessin. Organization Based
Access Control. In Proceedings of the Fourth IEEE
International Workshop on Policies for Distributed
Systems and Networks, Como, Italy, pages 120-131,
June 2003.

D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli,
editors. Role-Based Access Conitrol. Artech House,
Norwood (MA), USA, 2003.

D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,
and R. Chandramouli. Proposed NIST Standard for
Role-Based Access Control. ACM Transactions on
Information and System Security (TISSEC),
4(3):224-274, August 2001.

ISO/IEC 10181-8, Information technology — Open
Systems Interconnection — Security frameworks for
open systems: Access control framework, 1996.

A. Kern. Advanced Features for Enterprise-Wide
Role-Based Access Control. In Proceedings of the 18th
Annual Computer Security Applications Conference,
Las Vegas, Nevada, USA, pages 333-342, December
2002.

A. Kern, M. Kuhlmann, A. Schaad, and J. Moffett.
Observations on the Role Life-Cycle in the Context of
Enterprise Security Management. In Proceedings of
the Tth ACM Symposium on Access Control Models
and Technologies (SACMAT 2002), Monterey,
California, USA, pages 43-51, June 2002.

A. Kern, M. Kuhlmann, and R. Wick. Ein
Vorgehensmodell fiir Enterprise Security
Management. In P. Horster, editor, Sichere
Geschdftsprozesse, pages 81-90. I'T Verlag fiir
Informationstechnik, Hohenkirchen, September 2002.
A. Kern, A. Schaad, and J. Moffett. An
Administration Concept for the Enterprise
Role-Based Access Control Model. In Proceedings of
the 8th ACM Symposium on Access Control Models
and Technologies (SACMAT 2008), Como, Italy,
pages 3-11, June 2003.

A. D. Marshall. A Financial Institution’s Legacy
Mainframe Access Control System in Light of the
Proposed NIST RBAC Standard. In Proceedings of
the 18th Annual Computer Security Applications
Conference, Las Vegas, Nevada, USA, pages 382-390,
December 2002.

For more information about SAM Jupiter see

http: //www.sam-security.com.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models. [EEE
Computer, 29(2):38-47, February 1996.

3]

[4]

[5]

[6]

7

8]

[9]

