
Role-Based Access Control in JavaTM

Luigi Giuri
Fondazione Ugo Bordoni

Roma, Italy
e-mail: giuri@fub.it

Abstract

As the Java platform is becoming attractive and
convenient for the construction of cross-platform client-
server applications, the problem of developing and
managing effective security policies in that environment
becomes critical.

This paper analyzes the security features provided by
the new Java platform in order to identify how it is possible
to improve them by providing state-of-the-art role-based
access control mechanisms.

1 Introduction

The fact that government agencies, commerce operators,
etc. use automated information systems for almost every
activity makes the problem of designing, deploying and
administering an access control policy an overwhelming
task.

The research in the computer security area is toward in
many directions, but one of the most promising is the so-
called role-based access control (RBAC). This is probably
the most interesting and promising technique recently
proposed for design and implementation of modern system
security policies. It is based on the common practice in
organizations of assigning duties and responsibilities to the
employees on the basis of their role within the organization
itself. In this way the computer system security policy
resembles the corporate security policy and all the other
higher-level security policies on which it depends. The
result is an increase in security comprehensibility and
manageability for the entire organization, that is, an
improvement of the global degree of security.

In the last few years, researchers and vendors have
proposed many enhancements of RBAC models, and some

per~~~iss~on to nlakc digital or hard topics of all or part of this work for
prrsonal or classrwm ust: is granted without fee prwidcxl that coptes
are not rmadc or distrihutcd for pmlit or commercial adrantage and that
copies bear this notice and the full citation on 1hc first page. ‘I’o copy
otherwiac, to repuhlid~, to post on sewers or to redistribute to lists.
require5 prior specific permixslon and!or a fir.!

3rd ACM Workshop on Role-Based Access Fairfax VA
Copyright ACM 1998 l-581 13-l 13-5/98/10...$5.00

RBAC implementations are currently available. The
fundamentals of RBAC policies have been clearly identified
[SAN96], and many RBAC models have been proposed to
satisfy security requirements in different information
technology domains. For example, different RBAC models
have been developed for object-oriented databases
[BER94], collaborative and workflow systems [JAE95,
BER97], etc.

However, the considerable scientific results in the
RBAC area are not entirely considered by commercial
software producers. Actually, it is possible to find a lot of
products that implement some kind of RBAC mechanisms,
but generally they are not inspired by a common model of
RBAC. This implies, for example, that it is very difficult to
build a conceptual security modeling tool that can be used
to target different systems.

In conclusion, it seems that there is a need of
convergence to a standard model in the RBAC products
area. To help satisfy this need, we have started the RBAC
Implementation Project (RIP)[RIP]. RIP is an activity
mainly devoted to the study and implementation of
extensions for currently available systems to provide
affordable state-of-the-art role-based access control
mechanisms. As an example, we are working in the
database field for the extension and improvement of the
RBAC model required by the forthcoming IS0 SQL/3
standard [GIU98].

The topic of this paper is the RIP task that is oriented to
the analysis and implementation of RBAC mechanisms for
the Java platform. This is a very hot topic since Java is
becoming a practicable platform for both server-side and
client-side computing. Moreover, since Java programs can
virtually run on every hardware/OS platform and can be
automatically downloaded and executed from the Internet,
they can be the source of serious security problems.
However, a lot of work has been done in this field (for
example, see [MAR97], [MCG97], [MEH98]). As far as
access control is regarded, there are interesting works about
the definition of an extensible security architecture

Java is a trademark of Sun Microsystems, Inc. All other product names
mentioned herein are the trademarks of their respective owners.

91

[WAL97], the implementation of a secure multi-processing
virtual machine [BAL97], and the stack inspection
algorithm [WAL98].

The remainder of the paper is organized as follows. In
Section 2 we provide the basic concepts of the security
model implemented by the current Java platform. Section 3
presents a hierarchical RBAC model and two possible
implementations within Java, one as an extension and the
other as an evolution. Section 4 shows how the provided
solution can be used to implement complex RBAC models
that permit to specify security constraints. Finally, Section 5
provides conclusions and suggestions for future work.

2 JDK Security

At the time this paper is being written, the security
model provided by the current (non-beta) Java platform, i.e.
the Java Development Kit (JDK) 1 .l, is based on the so-
called sandbox model. The basic idea behind this model is
very simple. Java programs are partitioned into trusted and
untrusted programs. Trusted programs run in an
environment where they don’t have special restrictions, thus
they have full access to system resources (e.g., the file
system, the network, etc.). On the contrary, untrusted
programs run in a special environment (the sandbox) that
allows them to access a very limited subset of system
resources. For example, a program downloaded from the
network (i.e. an applet) running in the sandbox cannot
access files on the local file system, can open network
connections only if the target host is the host where the
applet was downloaded from, etc.

The final step for completing the sandbox model is to
specify how the set of Java programs is partitioned into
trusted and untrusted programs. The JDK 1.0 security
model considers every local program as trusted and every
remote program (i.e. every applet) as untrusted. The JDK
1.1 (which represents the latest non-beta version of the Java
platform) introduces the concept of signed applet, which is
simply an applet digitally signed using a cryptographic
mechanism. When an applet is downloaded the system
checks its signature. If the signature is correct then the
applet is considered as a trusted program, so it is allowed to
run outside the sandbox. Otherwise, the applet runs in the
sandbox as an untrusted program.

Starting from this basic model, various implementations
have provided some extensions. For example, Microsoft
Internet ExplorerTM provides four areas that represent
different groups of sites (namely Internet sites, Internet sites
with restrictions, trusted Internet sites, and intranet sites),
and for each area a different set of allowed action (i.e.
permissions) can be defined for signed and unsigned
applets. Moreover, a set of denied permissions can be
specified for signed applets for each area. Another example,

Netscape NavigatorTM provides the Capability API that
allows an applet to request particular permissions that can
be explicitly approved by the user that started the browser.

The basic need that pushed vendors to provide
extensions to the basic sandbox model is flexibility.
Actually, the objective of the above extensions is to provide
more than one sandbox where different applets can perform
different actions on an application-driven basis.

To satisfy these needs, the future JDK 1.2 will provide a
new security model that replaces the old sandbox with the
new concept of protection domain [GON98].

In JDK 1.2, a protection domain is a set of permissions
that is associated with every program that comes from a
particular origin and is signed with a specified set of public
keys. The origin of a program is specified through a URL
location, and the association between the origin and the set
of public keys is called CodeSource (and represented by
the corresponding class). In brief, the protection domain
represents a customized sandbox associated with every Java
program that belongs to a particular CodeSource (figure 1).

The model requires the Java runtime to provide a policy,
that is a set of rules that permits one to calculate the set of
permissions associated to a given CodeSource.

A policy is implemented by subclassing the
java. security. Policy abstract class. In particular, the
evaluate method must be implemented to return a
Permissions object for a given CodeSource. The JDK 1.2
provides a default policy through the PolicyFile class, but
everyone can provide his or her own policy. The
PolicyFile default policy provides a way to specify a
policy using a set of policy entries. A policy entry grants a
set of permissions to a specified CodeSource using the
following syntax:

grant [SignedBy "signer-name"]
[, CodeBase "URL"l

(:
Permissionl;
. . .
PermissionN;

1;

Moreover, since a URL can be used to specify, for
example, a directory or an entire host, then a single policy
entry can represent the assignment of permissions to
tdtipk CodeSourceS.

Note that the new security model does not make any
distinction between local programs and remote programs,
applying them the same policy. That is, an origin URL can
refer to both local and remote origins.

The rest of this chapter will introduce some details of
the JDK 1.2 security model and API that will be useful in
this paper. For a complete description of the JDK 1.2
security model, see [GON98].

92

:
[d.class’.“. ii’
: c.classi’.
!

i
b.c]ass ..‘*‘.....;. :

: a.class_.

:________.._______....

classes in
the runtime

. a

__.._________.________.____________________..______.......___.......-.-.......

securiq policy

Figure 1. Protection domains in JDK 1.2

Within the java.security package, the following
classes constitute the basis for the specification of sets of
permissions:

the Permission abstract class defines the basic features
required for permissions, i.e. every actual permission
class will be derived from this class. It represents the
authorization to access a particular system resource or to
execute a particular operation;
the PermissionCollection abstract class represents a
homogeneous collection of Permission objects, i.e. it
holds permissions of the same type;
the Permissions class, which contains a collection of
Permission objects organized into a collection of
PermissionCollection objects. This class is very
important since, as we will see, it makes design choices
on how the access control check is performed that will
have a strong influence on how the RBAC extension
will be defined.

For example, the FilePermission class is used to allow
a Java program to access files and directories, and the
corresponding FilePermissionCollection class is used to
hold FilePermission objects.

An interesting feature of the JDK 1.2 is that it is
possible to add new permission classes (eventually with the
corresponding permission collection classes) in order to
define application specific security policies. To do so, it is
only necessary to define the new classes as subclasses of the
corresponding base classes, i.e. by correctly implementing
the required methods.

Finally, the access control algorithm utilizes the
implies(Permission) method, provided by the
Permissions class and by the subclasses of

PermissionCollection and Permission classes, to verify
that a particular permission is authorized by the set of
permissions of a protection domain. Particularly, the
implies method of the Permissions class looks like the
following:

public boolean implies(Permission p)
(

PermissionCollection PC =
getPermissionCollection(p);

return pc.implies(p);

That is, it chooses the appropriate permission collection
based on the permission type, and then calls the implies

method on it.
Note that, since the Permissions class is a final class

and there is no way to replace it as for the PolicyFile

class, then the behavior of its implies method cannot be
customized for a new policy.

On the other hand, the implies method of new
subclasses of PermissionCollection and Permission

classes can be freely defined. However, since these classes
are utilized under the rigid rules of the Permissions class,
it does not make sense to define, for example, implications
that consider different permission types since the
Permissions class will only check a permission collection
for one type.

3 Implementing RBAC

The new security model provided by the JDK 1.2
represents a considerable improvement with respect to
sandbox models. It provides a basic access control
mechanism that is simple and sufficiently general, so it can
be easily extended (and, within certain limits, does not

93

elements
Permissions 0 PermissionCollection 3 + Permission

I ” 1 : n

A Lb

FilePermissionCollection & ‘- FilePermission
I n

Abstract class
Concrete class

Figure 2. Permissions in JDK 1.2

preclude extensions) to provide more complex security
policies than the PolicyFile default implementation.

In this section we propose an extension of the JDK 1.2
security model in order to provide role-based access control
mechanisms. In particular, Section 3.1 specifies the
requirements of what we name “basic JRBAC policy”. In
Section 3.2 we show how RBAC mechanisms can be
provided as a “legal” extension to JDK 1.2, whereas in
Section 3.3 we describe a set of (very simple) changes that
could be made to JDK 1.2 to provide a direct support for
RBAC.

3.1 Basic JRBAC Policy

In this proposal, roles are defined and structured as a
simple role hierarchy [SAN96]. With the following rules we
specify the basic requirements that must be fulfilled by an
implementation of a basic Java RBAC (JRBAC) policy:

. a role is a permission;

. a role is uniquely identified by a name;

. a role includes permissions of any permission type;

. the inclusion relationship is transitive;

. cycles in the role inclusion relationship are not allowed.

That is, roles represent abstract subjects organized into a
hierarchy where permissions are assigned to them and are
inherited from included to including roles.

Since a role is also a permission, it can be granted to a
CodeSource just like every other permission. However, to
honor the role semantics, at a given time, every permission
granted to a role is available to (i.e. is implied by) a
protection domain if the role is enabled (or activated) in
that protection domain. Since in this paper we will provide
several implementation proposals of JRBAC policies, in
this section we only provide the following general rules
regarding role activation:

. a role can be enabled in a protection domain only if the
role is granted to the corresponding CodeSource;

. the set of permissions available to a given protection
domain is the set of permissions directly assigned to that
protection domain plus the set of permissions included
in its enabled roles.

A graphical representation of the basic JRBAC policy is
shown in figure 3. A role hierarchy is represented by a
directed graph where each node represents a role and an
edge from a role r, to a role r, represents the fact that r2 is a
subrole of r,.

Note that a role can also be used as a simple permission,
i.e. a program can perform an
AccessController.checkPermission Operation Simply to
verify if the role is available (implied) by the current
protection domain.

In the previous definitions we have chosen to use the
new term “includes” even if, at first glance, it seems natural
to use the term “implies” already used by the JDK to
identify derivation of permissions from other permissions.
The problem is that there is a semantic difference between
implication and inclusion concepts, because the first is
restricted to directly assigned permissions, whereas the
second also comprises inherited permissions.

Practically, a role permission is implemented by the
RolePermission class, which simply represents the role and
identifies it through its name. Moreover a
RolePermissionCollection class is defined to hold
RolePermission objects.

From the basic rules, it follows that a basic JRBAC-
compliant policy must provide a way to specify the
assignment of permissions to roles. In our sample
implementation, we provide an extension of the PolicyFile

that also accepts the following syntax:

94

:.____________...._..~

classes in
the runtime

;.’
/..B

..: _. _ _. . _. .B

: I

.:. .:. .:- . ..’
Do-;” A ,.-. ‘LLIUIII rl

. ..*

I. _.._..... ____... ..
Domain B

security policy

Figure 3. Basic JRBAC policy

grant role "role-name"
(

Permisslonl;
. .
PermisslonN;

I:

The policy class that implements the basic JRBAC
policy is responsible for verifying the consistency of the
role hierarchy. That is, the policy must verify that there are
no cycles in the role inclusion relationship.

The final issue that must be considered is the permission
checking algorithm. The last rule of the basic JRBAC
policy means that the implies (permission) method of the
Permissions class must return true if permission is either
directly assigned to the protection domain or it is included
in one of the enabled roles. Since the JDK 1.2 defines the
Permissions class as a final class, the implies method
cannot be customized to realize a different behavior, so two
different approaches can be considered to satisfy the last
requirement:

. the first does not require modifications of the JDK 1.2
source code, i.e. it is a “legal” extension;

. the second requires modifications of the JDK 1.2 source
code, so it can be employed only if it is officially
accepted into the JDK as an evolution.

Next sections will provide details about the two
approaches.

3.2 JDK Extension

Since the JDK 1.2 does not allow any customization
regarding the Permissions class, to implement the JRBAC
policy without modifications to the JDK, we calculate the
permissions that are included by the protection domain’s
roles and add them directly to the protection domain itself.
Moreover, since there is no way to modify the set of
permissions of a protection domain at runtime, the
following activation rule must be added:

. the set of enabled roles for a protection domain
corresponds to the set of roles granted to the
corresponding CodeSource.

Practically, when a protection domain is created, each
role granted to the corresponding CodeSource is expanded
into its included permissions. This operation must be
performed by the evaluate method of the policy class.

In our sample implementation, the role policy is
represented by the RolePolicyFile class, which actually is
a subclass of the JDK PolicyFile class. The role policy
maintains an internal representation of the role hierarchy
through the following classes:

95

RolePermissions is the class that contains permissions
granted to roles. That is, an instance of this class
contains all the permissions granted to a given role. This
class is a very simplified version of the JDK
Permissions class.
Role is the class that represents a role definition. It
contains a role name and a RolePermissions object.
The policy will maintain only one Role object for each
role.

Since a Role object contains the set of its subroles as a
RolePermissionCollection object (contained within the
RolePermissions object), there is no need to provide
additional classes to represent the role hierarchy.

The code for the evaluate method is defined as shown:

public Permissions evaluate(CodeSource cs)

Permissions perms = super.evaluate(cs);
return expandRoles(perms) ;

When the evaluate method is called, first the evaluate

method of the PolicyFile class is called to obtain a
Permissions object, named perms, that contains all the
permissions directly granted to the specified CodeSource.

Then the expandRoles private method of the
RolePolicyFile class is applied to perms in order to add
every permission inherited from every role directly granted
to the specified CodeSource, i.e. from every role identified
by a RolePermission objectcontainedin perms.

In conclusion, it is possible to add RBAC features to the
current JDK, but they are limited to policies where it is
sufficient that the set of permissions for a given CodeSource

is fixed, and is statically computed at object creation time.
This also causes a proliferation of permission-related
structures within the system, with a possible reduction of
the overall system performance.

Nevertheless, the possibility of structuring the security
policy using this RBAC implementation improves the
comprehensibility and manageability of the policy
implementation. This is a typical advantage of every
hierarchically structured RBAC mechanism.

3.3 JDK Evolution

As previously shown, the solution presented as a JDK
extension correctly implements the basic JRBAC policy,
but has some drawbacks. A significant problem is that, after
the policy evaluates the CodeSource Of a
ProtectionDomain to calculate its Permissions, the system
treats every permission as if it was assigned directly to the
CodeSource, with the consequence that the complex
structure of the policy as shown in figure 3 is practically
lost.

This side-effect can be acceptable only if the application
security requirements do not exceed the ones fulfilled by
that implementation. If the application requires the
enforcement of a complex security constraint as, for
example, dynamic separation of duties, the implementation
of a complex RBAC policy as a JDK extension could be
impossible or at least unacceptable.

In this section we outline a possible JDK evolution that
takes into account RBAC as a core component. We will
show how little modifications to the source code of the
current JDK can provide a simple implementation of the
basic JRBAC policy that explicitly utilizes role structures
for both policy definition and run-time access control
checking.

This implementation can be used as a basis for the
specification and implementation of more complex JRBAC
policies. As stated in [SAN96], constraints are one of the
reasons that pushed research in the RBAC area. With
explicit role structures, it is possible to effectively and
efficiently implement complex security constraints. As an
example, in this paper we will describe extensions that
provide the capability to specify separation of duties
constraints and user-defined constraints.

In the rest of this section we describe the above
mentioned JDK evolution.

The objective is to define an access control checking
mechanism that is RBAC-aware, i.e. the system maintains a
set of structures that represent roles, their permissions and
the role hierarchy, and the check is performed by directly
traversing the role structure, instead of expanding the role
hierarchy into its included permissions and assigning them
to the protection domain as in the case of JDK extension.
Moreover, the evolution will provide a way to perform
explicit role activation.

The requirements of the basic JRBAC policy are not
modified, and only the following rule concerning role
activation is added:

. when an object is created, its default roles are enabled,

where the default roles for an object of a given class are
those defined as such within the policy for the
corresponding CodeSource. For example, the policy file
could be extended with a new default keyword that
indicates which role permissions are default roles for a
given CodeSource.

First of all, we extend the RolePermissions class
introduced in the previous section in order to add the
capability to check if a permission is implied by its
contained permissions. This new functionality is obviously
provided by the new implies method. This implication is
defined according to the original definition of implication of
the JDK 1.2, i.e. it checks only for permissions directly

96

granted to the role and does not consider permissions
inherited from subroles. This functionality will be useful to
check the permissions directly available from a single node
of the role hierarchy.

The Permissions::impliesO issue is another
important problem that must be considered. As previously
explained in Section 3. I, since this method cannot be
“legally” customized, the only practicable way is to propose
a modification of the Permissions class, particularly of its
implies method, that allows a more complex and
customizable definition of the permission checking
algorithm. We put customizability as a requirement since
we want to propose a RBAC architecture that can be
extended in order to implement different, arbitrarily
complex role semantics, without worsening the overall
system performance.

To provide a framework for the definition and
implementation of a JRBAC policy, we provide the
following abstract classes:

RoleChecker is the class that provides a container for a
set of roles that must be considered for permission
checking. This class provides the abstract method
includes(permission) that checks if permission is
included by the roles represented by a RoleChecker

instance. Every protection domain has an associated
RoleChecker object (contained within its Permissions

object) that represents the set of its granted and enabled
roles;
RoleIterator is the class that provides a specialized
way to navigate within the role hierarchy in order to
perform a correct and efficient permission check. Every
RoleChecker object organizes its enabled roles with a
corresponding RoleIterator object;
RoleController is the class that provides the means to
enable roles.

Next, the code of the modified version of the
Permissions: : implies () method looks like the following:

public boolean implies(Permission p)

PermissionCollection pc =
getPermissionCollection(p);

if (pc.implies(p))
return true;

else
return currentRoles.includes(p);

where currentRoles is private member variable that is an
instance of the RoleChecker class. AS shown, the implies

method checks if the permission is implied by the
permissions that directly belongs to the protection domain.

If this is not the..case then. the...method,,~h~Cks.,if the
RoleChecker objectincludes the permission.

Finally, the means to enable roles must be supplied by
implementations of the new RoleController public
abstract class, that requires the implementation of the
following methods:

. reset () : disables every role;

. resetDefaults0: disables every role and enables
default roles only;

. enableRole(String roleName): adds the role
identified by roleName to the set of enabled roles;

. grantedRoles () : retrieves the names of roles granted to
the Codesource.

Since roles that must be controlled are contained within
a RoleChecker object, this object has the responsibility to
provide a role controller through the method
getRoleController. Then, the role controller is propagated
up to the JDK’s AccessController so that applications can
perform role activation.

To summarize, the only modifications required to the
JDK 1.2 source code are primarily related to the
Permissions class and are the following’:

. anewprivatefield: RoleChecker currentRoles;

. a modification to the implies method as just shown;

. a new setCurrentRoles set method that allows a policy
to set the correct role checker within the evaluate

method;
. a new getRoleController method that retrieves the

role controller from the role checker.

Moreover, a getRoleController method is also added
to AccessController, AccessControlContext and
ProtectionDomainClaSSeS.

These are very simple modifications that allow a whole
new range of security policies to be implemented, providing
complete backward compatibility.

In the rest of this section we describe an implementation
of the basic JRBAC policy based on the framework.

From the definition of permission inclusion, to check if
a permission is included by a role it is sufficient to find one
of its subroles whose RolePermissions implies the given
permission. This means that it is sufficient to implement a
RoleIterator that simply enumerates every subrole of the
enabled roles. This is actually implemented by the
BasicRoleIterator class. Moreover, the
BasicRoleController class implements a simple role
controller that adds to the role iterator every subrole of the
enabled roles, on the basis of the role hierarchy provided by
the policy (in this case, a RolePolicyFile object).

97

RoleController

Permissions
BasicRoleController

Ll

BasicRoleChecker

Rolelleratot

t3asicRolelterator

Figure 4. JDK evolution

The last step is to define the role checker, which is
represented by the BasicRoleChecker class whose
Includes method is defined as shown:

public: boolean includes(Permission p)
f

Rolelterator r.i = getRoleIterator();

for(ri.reset(); ri.hasNextO; 1
(

(Role) r = ri.next();

if (r.qetRolePermissionsO .includes(p))
return true;

retur-n false;

4 Complex policy examples

4.1 Separation of duties

In this section we will utilize the framework presented
in Section 3.3 to define a complex JRBAC policy that
provides the ability to specify constraints for mutually
exclusive roles, i.e. it is possible to specify which roles
cannot be enabled together. Actually, we allow the
specification of the following entries within the policy file:

mutex
i

role "role-namel";
. .
role "role-nameN";

I;

and the semantics is that a role contained in a mutex entry
cannot be enabled if another role contained in the same
mutex entry is already enabled. This way, it is possible to
specify dynamic separation of duties constraints [FER9.51.

The implementation of this new policy is very simple. If
we start from the implementation of the basic JRBAC
policy, we only need to write a checking algorithm that
verifies the validity of a setRole with respect to the
currently enabled roles, or the validity of a resetDefau1 ts

at all. If the operation is valid, i.e. no mutex entry is
violated, the specified role (or roles) is enabled, otherwise
the enabled roles remain unchanged and an exception is
thrown.

4.2 Constrained roles

Another interesting example is the definition of a role
hierarchy with activation constraints. An activation
constraint is a boolean condition associated to either a node
or an edge of the hierarchy, with the following semantics:

. a node (or role) constraint must evaluate to trruf in
order to permit the activation of the associated role;

. an edge (or role assignment) constraint must evaluate to
true in order to permit the activation of the associated
assigned role as a subrole of the receiving role.

A formal specification of a superset of this model can be
found in [GIU96].

To implement this model within the framework, we
need to give a way to specify constraints code and to
associate them to elements of the hierarchy. To specify the
code, we provide the following interface:

98

interface RoleConstraint

boolean check0;

that must be implemented by every constraint, For example,
a TimeConstraint can be implemented to check that a role
is activated within a specified interval of time as shown:

class TimeConstraint
implements RoleConstraint
I

private Time fromTime, tolime;

public TimeConstraint(String from,
String to)

{ . . .)

public boolean check0
(

return (fromTime i= getCurrentTime0) &&
(getCurrentTime0 <= toTime);

private Time getCurrentTime0
I . . . 1

Next, the policy file must be extended to accept the
following syntax:

grant role "role-name"

Permission1
constraint ConstraintClass "parl"

. .
PermissionN;

role "role-name"
constraint ConstraintClass "parl"

Finally, the setRole and resetDefaults methods must
perform the correct checks while they traverse the role
hierarchy in order to enable only roles whose associated
RoleConstraints eValUateStO true.

For example, the following definitions:

role “Clerk”

constraint TimeConstraint "08:OO" "17:OO";

role "Clerk"
constraint DateConstraint "Man" "Fri":

means that the Clerk role can be enabled only during
working days, from 8:00 to 17:O0.

5 Conclusions and Future Works

RBAC is an access control model that is increasingly
gaining acceptance in several information technology areas,
so it is very important for the popular Java platform to be
ready to support it.

Direct RBAC support by the JDK should provide a
complete set of basic mechanisms that would satisfy the
requirements of a large part of application developers,
diminishing the need for proprietary extension. In this paper
we have analyzed the latest JDK security architecture in
order to identify how it is possible to provide such RBAC
mechanisms. We provided both a simple extension of JDK
security and an evolution of the JDK aimed to provide a
base framework that is capable to be customized for
different, arbitrarily complex RBAC policies.

Further work should be done in order to extend the
proposed framework to other interesting policy issues like
the specification of explicit denials of authorization and the
activation of roles within privileged security regions (like
the regions identified by beginPrivileged and
endprivileged () JDK primitives).

References

[BAL97] Balfanz D., Gong L., “Experience with Secure
Multi-Processing in Java”, Technical Report 560-97,
Department of Computer Science, Princeton University,
September, 1997.

[BER94] Bertino E., Origgi F., Samarati P., “A New
Authorization Model for Object-Oriented Databases”, in
Proceedings of the IFIP WG 11.3 Eight Annual Working
Conference on Database Security, August 1994.

[BER97] Bertino E., Ferrari E., Atluri V., “A Flexible
Model Supporting the Specification and Enforcement of
Role-based Authorizations in Workflow Management
Systems”, in Proceedings of Second ACM Workshop on
Role-Based Access Control, ACM Press, 1997

[FER95] Ferraiolo D., Cugini J., Kuhn R., “Role-Based
Access Control (RBAC): Features and Motivations”, in
Proceedings of 11” Annual Computer Security Application
Conference, New Orleans, LA, December 13-15, 1995.

[GIU96] Giuri L., Iglio P., “A Formal Model For Role-
Based Access Control with Constraints”, in Proceedings of
9’ IEEE Computer Security Foundation Workshop, County
Kerry, Ireland, June 10-12, 1996.

[GIU98] Giuri L., “An extension of the SQL/3 security
model for a better support of role-based access control”,
Document ISO/IEC JTCl/SC21 WG3/DBL, n. CWB013,
ftp://jerry.ece.umassd.edu/isowg3/dbl

/CWBdocs/cwb013.pdf.

99

[GON98] Gong L., “JavarM Security Architecture (JDK [MEH98] Mehta N., “Expanding and Extending the
1.2)“, draft document (revision 0.8), Sun Microsystems Security Features of Java”, 7th USENIX Security
Inc., March 9, 1998. Symposium Proceedings, San Antonio (Texas), Jan 1998.

[JAE95] Jaeger T., Prakash A., “Requirements of Role-
based Access Control for Collaborative Systems”, in
Proceedings of First ACM Workshop on Role-Based
Access Control, ACM Press, 1996

[MAR971 Martin D. M., Rajagopalan S., Rubin A. D.,
“Blocking Java Applets at the Firewall”, in Proceedings of
IEEE Symposium on Network and Distributed System
Security, IEEE Computer Society Press, 1997.

[MCG97] McGraw G., Felten W. F., Java Security:
Hostile Applets, Holes and Antidotes, Jon Wiley & Sons,
1997.

[RIP1 The RBAC Implementation
http://www.fub.it/compsec/rip/

Project,

[SAN961 Sandhu R. S., Coyne E. J., Feinstein H.,
Youman C. E., “Role-Based Access Control Models”, ACM
Computer, Vol. 29, No. 2, February 1996.

[WAL97] Wallach D. S., Balfanz D., Dean D., Felten E.
W., “Extensible Security Architectures for Java”, in
Proceedings of 16’ Symposium on Operating System
Principles, Saint-Malo, France, October 1997.

[WAL98] Wallach D. S., Felten E. W., “Understanding
Java Stack Inspection”, in Proceedings of 1998 IEEE
Symposium on Security and Privacy, Oakland, CA, May
1998.

100

