Delegation in the Role Graph Model

He Wang
Dept. of Computer Science
The University of Western Ontario
London, ON, Canada N6A 5B7

hewang@csd.uwo.ca

ABSTRACT

We present a model for delegation that is based on our de-
centralized administrative role graph model. We use a com-
bination of user/group assignment and user-role assignment
to support user to user, permission to user and role to role
delegation. A powerful source-dependent revocation algo-
rithm is described. We separate our delegation model into
static and dynamic models, then discuss the static model
and its operations. We provide detailed partial revocation
algorithms. We also give details concerning changes to the
role hierarchy, user/group structure and RBAC operations
that are affected by delegation.

Categories and Subject Descriptors

D.4.6 [Software]: Security and Protection; H.2.7 [Information

Systems]: Security, integrity, and protection

General Terms

Design, Management, Security

Keywords

role-based access control, delegation

1. INTRODUCTION

Delegation is an important function in many application
areas, such as health care and the business world. One em-
ployee can delegate his or her job to another. The employee
who receives the delegation will act on behalf of the original
employee and finish the task. We call the original employee
the delegator and the receiving employee the delegatee.

Delegation first received interest in the research field of
distributed systems. Gasser and McDermott treat delega-
tion as a user to system function [7]. In the role based access
control (RBAC) field, there has been lots of research on del-
egation [5, 18, 21, 19, 3]. Most of the models use user-role

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

SACMAT 06, June 7-9, 2006, Lake Tahoe, California, USA.

Copyright 2006 ACM 1-59593-354-9/06/0006 ...$5.00.

91

Sylvia L. Osborn
Dept. of Computer Science
The University of Western Ontario
London, ON, Canada N6A 5B7

sylvia@csd.uwo.ca

assignment to perform delegation. Several revocation meth-
ods are also discussed.

We extended our Role Graph Model to support decen-
tralized administration in 2003 [15]. In this paper we put
delegation support into the Role Graph Model by using a
combination of user to group assignment and user-role as-
signment. We divide our model into a static and dynamic
model. In this paper, we focus on the static model. We
also present several revocation methods, including timeout,
source dependent cascading revocation, partial revocation
etc. and give detailed algorithms for their implementation.

The paper is organized as follows: Section 2 reviews dele-
gation models for access control, Section 3 presents the ex-
tended role graph model with decentralized administration,
Section 4 introduces delegation into the role graph model,
and Section 5 contains discussion and conclusions.

2. DELEGATION MODELS

There are several delegation models for RBAC. In 2000,
Barka and Sandhu presented a framework for their first no-
tion of delegation [4]. Their role-based delegation model,
RBDMO, is based on RBAC96, and uses a user to role as-
signment approach supporting user to user delegation [5].
RBDMO is total delegation, i.e. the delegator delegates all
the permissions in a role to a delegatee by user to role as-
signment; then the original user of the role assigns a del-
egatee to the role. Revocation is done by timeout and by
grant-independent revocation. The authors also extend the
model to support partial delegation and two-step delegation
by defining two different types of permissions in a role: del-
egatable permissions and non-delegable permissions. The
delegatee can only have delegable permissions. In their sec-
ond model, RBDM1 [6], Barka and Sandhu added role hi-
erarchies and source dependent cascading revocation, which
is done automatically along the delegation chain.

Zhang, Oh and Sandhu presented a new permission-based
delegation model (PBDM) in 2003 [21]. This model fully
supports partial and multi-step delegation. It consists of
three sub models PBDMO0, PBDM1 and PBDM2. They are
based on the the RBAC96 model and use user to role assign-
ment to do delegation. PBDMO has two shortcomings: the
user can delegate any permission to a delegation role. This
will cause security problems if limited users collect permis-
sions via multiple delegations. The other shortcoming is that
this model only supports user to user delegation. PBDM1
solves the first shortcoming by further separating the roles
into three different sets. PBDM2 is designed to support role
to role and permission delegation. It divides roles to four

different sets. The complex formal definition is given in [21].
The PDBM models can support multi-step delegation, but
they neither support constraints in delegation, nor delega-
tion in distributed environments.

Zhang, Ahn and Chu extended the RDMO to a new model
called RDM2000 in 2001 [18]. They described a prototype
system for a health care environment in [19], and one for
law enforcement agencies in [20]. The RDM2000 model sup-
ports hierarchical roles and multi-step delegation, which are
not supported in RDMO. They also specified a rule-based
language to describe the policies of RDM2000. Revocation
is separated into two categories: revocation by duration-
restriction constraints and user revocation. The first uses
time constraints to enforce revocation. The second is done
by a user. Ahn’s group published three papers recently for
access control in a collaborative environment [2, 1, 13] us-
ing this delegation model. The rule-based approach is very
powerful for constraint enforcement. However it only con-
siders the regular user to user delegation; it does not support
administrative user delegation.

Most delegation models are centralized. Yin et al. have
discussed a decentralized delegation model with manage-
ment domain and trusted scope ideas for distributed systems
[17]. The model divides access control in large, distributed
systems into two levels: the management level and the re-
quest level. At the management level, the system consists of
Multi-centric management which has its own authorization
management domain. At the request level, regular users
make a Cascaded Request which requires more than one ser-
vice to respond to the request. They classified delegation
into two levels corresponding to the levels mentioned above.
At the authorization management level, the delegation is
called delegation of authority. At the request level, the del-
egation is called delegation of capability.

Wainer and Kumar considered different constraints that
can be applied to RBAC delegation and presented their fine-
grained user to user delegation model in 2005 [14]. This
model distinguishes two types of access rights: object rights
and delegation rights with constraints. It uses user to role
assignments to do delegation. The revocation is source de-
pendent cascading revocation similar to System R with an
improved algorithm. This model also has another revoca-
tion method, “revocation with downgrade”, which tests and
updates the depth for cascading revocation. An extension of
this model is time-restricted delegation which uses timeout
to revoke the delegation.

Atluri and Warner studied delegation in workflow man-
agement and introduced a conditional delegation model [3].
This model introduces several constraints (conditions). The
conditions include time intervals, workload limitations and
task attributes. The constraints are also divided into four
different types: authorization constraints, delegation con-
straints, task dependency requirements and role activation
constraints. The constraints are defined as rules of a logic
program. There are three kinds of conditions for delega-
tion. A temporal delegation condition is a condition on the
delegation start time and/or the time interval of the dele-
gation. A workload delegation condition is a condition of
a specific workload level. Value delegation conditions con-
trol a delegation by attributes. Several rules are defined
to support conditional delegation. Some constraints can be
verified before the execution of workflow and some must be
verified and enforced during workflow execution. The au-

92

thors call this verification delegation consistency; the former
is called static consistency and the later is called dynamic
consistency. Checking steps are also discussed.

Most delegation models are based on user to role assign-
ment. In these models, to support partial and role-role dele-
gation, the role hierarchy has to be modified to a very com-
plex structure. Cascading revocation is also very complex.
This approach works better only for total delegation, and
limits the implementation and usefulness of partial and role-
role delegation. We use a combination of user to group as-
signment to do partial and role-role delegation, and user-role
assignment to do total delegation. Our model has minimum
impact on the role hierarchy and overcomes the shortcom-
ings of the user to role assignment approach. Our goal is to
provide a simple and easy-to-use delegation model and the
administration tools to support it.

3. THE ADMINISTRATIVE ROLE GRAPH
MODEL

The role graph model [10, 11] has three components: users,
roles, and privileges. The original model assumes that the
administration of a role graph is centrally controlled by a
system administrator. In [15], we extended this model to
support decentralized administration by introducing the ad-
ministrative domain concept.

3.1 Basic Role Graph Model

As shown in Figure 1, the left plane contains the group
graph, which shows user-group memberships. A group is a
set of users who can be considered as a unit, e.g. a depart-
ment or a committee. Group membership can also be based
on user credentials or attributes. This graph has a hierarchi-
cal structure. The relationship between a lower group and a
higher group is set containment. If there is an edge or path
from group g; to g;, then g; contains all the members of g;.

The role graph or role hierarchy is in the middle. The
nodes represent roles, 7, which consist of a name, rpame
and set of privileges, rpset. The edges r1 — r2 show the is
junior relationship; when ri.rpset C ra.rpset, we say ri is
junior to 72, denoted by 71 < r2. We also say r2 is senior to
r1. The privileges of a role are divided into two sets. The
direct privileges are directly assigned by the administrator.
The effective privileges of a role are the union of its direct
privileges and the privileges inherited from its junior roles.

The role graph has the following properties:

1. It has a MaxRole, which contains in its 7pset the union of
all the privileges of the graph. MaxRole does not need a user
assigned to it. (It is used as a summation of the privileges).
2. It has a MinRole, which contains the minimum set of
privileges available to all roles in the system. It can be the
empty set.

3. The role graph is acyclic.

4. Every role has a path from MinRole.

5. Every role has a path to MaxRole.

6. For any two roles, r; and r;, in the graph, if r;.rpset C
r;.rpset then there must be a path from r; to r;.

On the right side is the privileges plane. Each privilege is
a pair (o, m), where o is an object and m is an access mode
of the object o [9]. The privileges have privilege-privilege
implication relationships. When a privilege is assigned to
a role, we require that the implied privileges must also be
granted. For example, if a user has read privilege on a table

Group Graph Role Graph Privileges
Lisa Joe Sue Bob MaxRole
‘ / VP1 VP2
Engineers_ Book keeper—]

]
Accounting__| \\D

\

Clerk—f— U

ProjLead

Base
\
Engineer Writer

ProjectBase

MinRole
Privilege-Role
Assignments

User-Role
Assignments

Figure 1: The Role Graph Model

in a database, the user also has the privilege to read all the
attributes of this table. Details are given in [9].

There are five authorization relationships in the role graph

which ultimately affect a user’s ability to have a privilege:

. privilege-privilege relationships.

. the assignment of privileges to roles.

. role-role relationships.

. the user-role assignment.

. the edges in the group graph.

It is up to the security administrators/designers to create
appropriate authorizations so that users can carry out their
required tasks.

The user-role assignment is the most important relation-
ship for this paper. When we assign a group to a role, all
privileges of the role are assigned to the group. Since the
group contains subgroups and users, all the subgroups and
users also get the privileges of the role implicitly through
group membership. If we add a new subgroup to the group,
then the subgroup will get the privileges of the role(s) that
the super group is assigned to. From Figure 1, we can see
Lisa and Sue are the members of the engineers group. If the
engineers group is assigned to role engineer, then all mem-
bers of the engineers group, including Lisa and Sue, will have
the privileges of the engineer role. We will use this property
to do our delegation.

In order to administer access using the role graph model,
several algorithms have been developed, implemented, and
tested. Most of them deal with role graph management: role
addition and deletion, edge addition and deletion, permis-
sion addition and deletion [11]. Some involve assignments:
user to role assignment, privilege to role assignment, or priv-
ilege to privilege implications [12, 9].

Uk W N =

3.2 Administrative Domains and
Administrative Roles

An administrative domain is an administrative unit as-
signed to an administrator. It is a role graph which has all
the basic components of a regular role graph model. There
are two types of administrative domains: the default domain
and the regular domains. The default domain represents the
whole organization, and is administered by the system secu-
rity officer (SSO). A regular domain contains all the junior

93

roles of a unique role except MinRole. This unique role is
on the top level of the role hierarchy of the domain. We use
its name to identify the domain, so we call it the domain
identifier or domain ID.

An administrative domain is a subset of the role graph.
Let us denote by D an administrative domain which contains
a set of roles. rp is the domain identifier of D. Let R be
the set of roles of the organization. Then we have rp €
D and D C R. The roles in the domain are given by
{s|]s < rp and s # MinRole} Urp, where “<” is the is
jJunior relationship.

The users and groups assigned to the roles of an admin-
istrative domain form the user/group plane of the domain.
Similarly the privileges assigned to the roles of this domain
also form the privilege plane of the domain. We can see the
administrative domain is a basic role graph except for Min-
Role. The domain identifier is the MaxRole of the domain’s
role hierarchy.

An administrative role is a triple (name, pset, Dyset). It
has role name, set of administrative privileges(pset) and a
set of roles which form the administrative domain (Dyset).
The administrative domain is administrated by the user(s)
assigned to this administrative role.

The relationship between administrative domains and ad-
ministrative roles is a many to many relationship. The ad-
ministrative domain can be managed by one or more admin-
istrative roles. The administrative role also can manage one
or more domains.

Lab Supervisor /' project Leader "

/N

iMember 1 Member 2

Researcher

3
Project
Admin

Research Assistant

Project
Lab Technican -

inRole

—

e

Administrtive
Domains

isjunior T Administrate

Figure 2: A Role Graph Showing Administrative
Domains for the R&D department

Figure 2 shows an example role graph with administrative
domains. The domain whose domain ID is R&D manager is
assigned to R&D admin. All its junior roles except MinRole
are the elements of the D, of the R&D administrator.
The R&D administrative domain contains the project do-
main. The D;se: of the project domain C D,set of R&D do-
main. The domain identifier of the project domain is Project
Leader.

Roles of administrative domains can not overlap arbitrar-
ily. The Users and Groups of administrative domains can
overlap since users or groups can work in different domains.

Privileges of administrative domains can also overlap. An
administrator assigned to an administrative role can only
administer the roles in their administrative domain. If there
is an operation that needs to reach outside of the domain,
the operation has to be performed by the administrator of
a surrounding domain. The administrative roles are part of
the role hierarchy. A detailed discussion of administrative
operations, algorithms of this model and the comparisons
with Crampton’s model can be seen in [15].

4. ROLE GRAPH MODEL FOR
DELEGATION

In our discussion of delegation for the administrative role
graph model, we will distinguish between design time and
run time. The design of the role graph, group graph and
user role assignment, etc. would be performed before the
system is deployed. It might also be that from time to time,
the system is brought down for upgrades. Any time in which
the system under control is not running, we will refer to as
design time. The system administrators should anticipate,
at design time, which parts of the system are important
enough to warrant delegation if certain users are not at work.
It may be that certain privileges or roles should never be
delegated, but that others can be. Any real unanticipated
requirements for delegation not part of the static design,
can be added at run time by dynamic delegation. This is
the basis for our separation of the delegation task into static
and dynamic models.

4.1 Staticvs. Dynamic Model of Delegation

Although delegation happens at run time, many of the re-
quirements can be predicted at design time. A well-defined
delegation design can achieve better results at run time.
Thus we separate our model into static and dynamic models.

The static model consists of the role graph model that is
being developed in the design phase of the system for offline
testing or during the modification of a running system. In
this phase, the administrator can use the model to design
and test the users, roles, privileges and their relationships in
the system. The static model has the following advantages:

e In the static model, the configuration of access con-
trol can be tested and tuned without affecting the real
running production system.

e In the static model, conflict of interest and other con-
straints can be defined and tested to suit the needs of
the run time system.

e The leaking of security due to bad design can be pre-
vented by specially designed algorithms and simulation
of the run time system; thus the designer can catch
these errors without shutting down the system.

The dynamic model controls the role graph model at run
time. Some errors can only be found at run time. The user
activates their assigned and delegated roles to perform their
tasks in a running session. Delegation in the dynamic model
can be ad-hoc without the administrative intervention. The
user to role assignment and privilege assignment also can be
changed dynamically according to the job task. Some ref-
erence monitor controls and enforces access control policies
that are defined in the static model. Error detection, cor-
rection and avoidance are also important in this model. For

94

better control and performance analysis, an auditing sub-
system is also needed in the dynamic model. The dynamic
model is a powerful and flexible model.

The static and dynamic models cannot be used on their
own. The static model is the basis for the dynamic model.
It defines the access control policies of the system, and pre-
dicts and corrects the errors that may happen in the dy-
namic model. The dynamic model is the enforcement of the
static model. It also provides feedback to the administrator
concerning future modifications of the static model.

4.2 A Static Model of Delegation

We will start with an an example, and then give formal
definitions. First, we need to define several new components:

e Delegator role: a delegator role is a special administra-
tive role junior to the domain administrator role. The
privileges of this role are create-subrole, assign priv-
ileges and user-role assignment and revocation. The
create-subrole privilege allows the user to create a spe-
cial sub-role that is junior to a regular role to which
the user is assigned. The special sub-role is called a
delegation role to be defined shortly. The user-role as-
signment /revocation privilege allows the user to assign
other users/groups to the delegation role and revoke
them later on.

e Delegation role: a delegation role is a special role in
the role graph. The delegation role privilege set rpsetq
has relation with the privilege sets of the delegator’s
regular roles rpset,: rpsetq C |Jrpset,. It not only
can be created by the user at run time, but also can be
created by the domain administrator at design time.
Depending on the privileges set, it can be anywhere in
the role graph. (The role graph algorithms will place
any role between its juniors and seniors according to
its pset).

e Delegation edge: a delegation edge is a labeled edge
from a delegatee in the user/group plane to the dele-
gation role and between delegatees. This edge is cre-
ated by the delegator when assigning a delegatee to
a delegation role or to another delegatee group. The
label on the edge has three components (¢,d,C): ¢t =
timestamp is the expiration time of this delegation;
d = depth is the depth of further delegation allowed.
If it is *, then we allow unlimited delegation. C' is a
set of constraints on the delegation.

Figure 3 shows an example of the extended model. User
Alice is a project leader and also assigned to the delegator
role. She wants to delegate all of her job to user Bob who is
a member of the project. Alice can create a delegation edge
and assign Bob to be a member of her own group in the user
plane, and mark the labels on the delegation edge. Since the
junior user is a member of a senior group and inherits the
privileges of the senior user, Bob now has the privileges that
Alice has and can perform the task. We use the nature of
inheritance in the user/group plane to achieve the user-to-
user total delegation. The delegation also can be created by
the project administrator. In this case, the delegation result
can be tested at design time, thus we can prevent conflicts
or security problems. This is a major advantage of the static
delegation model. When Alice wants to do delegation, she

simply just assigns Bob’s group to be a subgroup of her
(Alice’s) group.

The above example will not work for partial delegation,
because the user will inherit all the privileges in the roles
assigned to the senior users or groups. We use user-role
and user-user assignments to do partial delegation. Figure
4 shows an example of partial delegation. Now Alice wants
to delegate part of her job to user Bob who is a member
of the project. Alice can create a delegation role, which
has some privileges needed for the job task. The privilege
set of the delegation role is a subset of the privileges of the
project leader role, so the delegation role is a junior role of
the project leader role. After creating the delegation role,
Alice can create a group DELEGATEE, assign DELEGATEE to
the delegation role, then make Bob’s group a subgroup of
DELEGATEE and mark the labels on the delegation edge. Bob
now has the privileges in the delegation role and can per-
form the task. In this case, Bob is not assigned to Alice’s
group directly; otherwise he will get all the privileges from
Alice by inheritance. That is why we need to create group
DELEGATEE and assign Bob to it. Bob also can further dele-
gate the task to Carol by making Carol’s group a subgroup
of his own group, giving multi-step delegation.

The above is an example of user-to-user delegation. We
can also achieve permission to user delegation without chang-
ing the structure. The domain administrator can put one
or more permissions into the delegation role and assign the
DELEGATEE group to it, giving permission to user delegation.

We also can use the same structure to achieve role-role
delegation. The domain administrator or delegator can cre-
ate a delegatee group and assign it to the regular roles of
the delegator; then make the users or groups that should
be assigned to the delegated role members of the delegatee
group. We get the same result as role to role delegation by
using user/group assignment. Suppose we want to delegate
role r2 to role r1. Then r2 is the delegated role. The users
U2 that are assigned to ry are the delegatee of the dele-
gation. After we make all the users in U,2 members of the
delegatee group which is assigned to role r1, the users of Uy2
can perform the delegated task of r1. Thus the role-to-role
delegation is achieved.

This simple model is very powerful. It can support user-

to-user, permission-to-user, role-to-role delegations in RBAC.

ﬁro‘ject

Member 1 pember 2 Admin

4
Project Delegator
Base

MinRole coe

is junior

delegation edge

~_
Regular role assignment

Administrative
Administrate Domains

Figure 3: An Example of Total Delegation in the
Extended Role Graph Model

95

¥
MaxRole

/" R&D
Manager

o
o e | R&D
7=~ Project Leader | Admin

v t,d,C LN\ N
Delegatee-~--==""""""" vy
Project
Admin

Project
is junior

- Base -

Delegator

delegation edge

~_
Regular role assignment

MinRole .-~ 7 Administrative

Administrate Domains

Figure 4: An Example of Partial Delegation in the
Extended Role Graph Model

As shown in the above example, we need to add some
components into the role graph model:

e The Delegator, ug, € Uqgr, is the issuer of the delega-
tion. The Delegatee, uq: € Ugt, is the receiver of the
delegation. The delegator cannot be their own delega-
tee at the same time: uqr # wuq:. This prevents the
delegator from refreshing the delegation by assigning
herself to the delegatee. The delegatee receives the ac-
cess privileges from the delegator. The delegatee is a
special group which contains at least one user. It also
can have other delegatees as sub groups. We use dele-
gatee uq: for a single user and Uy for a delegatee group
or set of delegatees. The set of delegators Uy, and the
set of delegatees Uy form a delegation users/groups
set Uq, thus Ugr | JUgr = Ug and Ug C U.

e Delegation role: 74 € R and ret C |J Rrgar, where
rqr is a delegation role and R,4qr is a set of regular
roles to which the delegator is assigned. R is the regu-
lar role set and R,4qr C R. As far as privilege sets are
concerned, rq¢.rpset C |J rrgar.rpset; thus the delega-
tion role can be anywhere in the role graph. Since the
delegation role is a regular role and R N Rodgmin = ¢,
the delegation role is not a delegator role.

e Delegator role: (rgr, {csup,ura}) is an administrative
role, where cqyp is the create-subrole privilege which
allows the user to create a delegation role. wura =
{(uq, 0p)|(ua € Uq and op € {assign,revoke})} are
the user-role assignment and revocation privileges which
allow the delegator to assign or revoke the delegation
users/groups Uq to/from the delegation role.

e Delegation edge: eq(t,d,C) is a labeled edge from the
delegatee group to the delegation role and between del-
egatees. The labels on the edge are: t = timestamp is
the expiration time of this delegation; d = depth >
0 or = is the depth of further delegation allowed. If
it is *, then we allow unlimited delegation. C is the
constraint set for fine-grained control of delegation. C'
is of the form ¢1 A ¢ A ... A ¢, where the ¢; are
Boolean expressions; if C' is true then the delegation
is not allowed.

e Delegation path: Uags = wdt1, Udt2, .-y Udti, Udtj, -
is a path in the user/group plane that is formed by
the delegatee groups who have sub-group relationships.
The depth d in the label of the delegation edges is
decremented by one between two directly connected
delegatees: d; d; = 1. This path represents a
delegation chain.

We will discuss the operation and administration of this
model in section 4.2.3.

421 Constraints and Rules

Delegation is very powerful and must be finely controlled.
There are several kinds of constraints possible.

Delegatee constraint is a constraint to specify the groups
as the delegatee. Employees have different backgrounds and
skills, so only small groups of employees may be qualified
to perform the delegated task. In the static model, we use
Uar to specify the delegatees. For every delegation, we can
predefine a set of users in the group Ug:, such that the dele-
gator can only assign the user u € Uy to the delegation role.
In this way, we can control that the delegatee is qualified for
the delegated task.

Delegated role constraint controls the role-to-role delega-
tion. It is similar to the idea of the delegatee constraint.
Only the users or groups that are assigned to the delegated
role can be the delegatee. Suppose we want to delegate role
r2 to role r1, then r2 is the delegated role. As mentioned
in the previous section, we can use user-role assignment to
do the role-role delegation. The users/groups u,2 that are
assigned to 7o are the qualified delegatees. So we can put
ur2 into Ugs for delegation.

Delegation role constraint controls which roles are allowed
to be delegated. In a business, some roles are critical due
to the nature of the responsibility of the role or due to the
skills of the employee who is assigned to that role. There
may be no other qualified employees to do the task. So
these roles cannot be delegated. We can enforce this in the
other direction by defining allowed delegation. If a regular
role r has the user u who is assigned to a delegator role
Tdar € Radmin, then this role can be delegated, because the
user has the privilege to create a delegation role. By default,
all the roles without this property are not delegatable.

Mazximum privilege set constraint, Cpmaa, controls the max-
imum set of privileges allowed by delegation. The delega-
tee has the privileges set P, |J Pat. This constraint controls
the privileges after delegation, and requires that P, |J Pa: C
Cpmaz- For example, if several users delegate their privileges
to one user, then this user would have all the privileges of
those users and would become very powerful. This may
cause a security problems, so we need to control it.

Absence constraint, cqp, controls that the delegation can
only happen when the delegator is not at work. This con-
straint is a simple Boolean variable and ¢, € C.

Workload constraint, c,,, controls that the delegation only
happens when the workload exceeds a certain level. When
the workload of the delegator w is higher than a predefined
level w;, then the delegation can be performed. ¢, € C.

Location constraint, c;, controls that the delegation only
happens at predefined location LC, such as workstations of
the delegator or the computers in the same room as the
delegator. ¢; € LC and ¢; € C.

A separation of duty constraint, csoqa € C, enforces static
separation of duty in the role graph. If two roles are defined

s Udtn

96

to conflict, then the users who are assigned to these roles
can not be delegated to each other.

We can group different constraints into several categories.
The delegatee constraint and delegated role constraint are
membership constraints. They control the membership of
the delegatee. The delegation role constraint and maximum
privileges constraint are RBAC delegation constraints. Ab-
sence, location, workload constraints and separation of duty
constraints are environmental constraints. They control the
delegation based on the related job task.

4.2.2 Constraint Enforcement and Error Prediction

Constraints can be defined and tested at design time.
When a delegation is added to the system, a series of tests
are performed to test whether the delegation meets those
constraints. If a delegation causes the system to be inse-
cure or conflict with the policy, then we say an error has
occurred. We can use several testing functions to test the
delegation at design time and predict the result of the dele-
gation. Thus we eliminate problems as much as possible at
design time.

To test membership constraints, we define a Boolean func-
tion isDelegatee(uqg:). If the delegatee ug: € Uge of a del-
egation role, then this function returns true; otherwise it
returns false.

For a delegation role constraint, we define a Boolean func-
tion isDelegatableRole(ugr,r). If the delegator wug, is as-
signed to 7 and 74r € Radmin, then this function returns
true; otherwise it returns false.

To enforce the maximum privileges constraint, we define
a Boolean function notExceedMax(ugt). If wae.Pr|J Par C
Cpmaz, this function returns true; otherwise it returns false.

The absence constraint is not tested at design time; it is
tested at run time. The administrator or manager can set
this Boolean variable to true at run time to allow the del-
egation. While not tested at design time, this constraint
is defined at design time. If an administrator wants to use
this constraint, she can simply add it to the constraints set
C of the delegation edge. Similarly, the workload constraint
is not tested at design time. The administrator only puts
the predefined workload level w; in the constraint. The con-
straint is checked at run time.

Finally, Figure 5 gives an algorithm which checks the con-
straints and returns true if they are all met. When we create
a delegation, this algorithm is called. If it returns true, the
delegation is allowed and is created in the system; otherwise
the delegation is not created.

4.2.3 Administration of the Static Model

Delegation can be created by a user or by an adminis-
trator. The former is self-directed delegation, but it still
requires the administrator to create the delegator role and
assign the delegator to it. This can have better control than
the traditional discretionary access control. The delegation
also can be administered by the administrator. We will use
partial delegation to describe the operations in this section.

When creating the delegation, the delegator or adminis-
trator creates the delegation role and delegatee group, tests
all the constraints, then assigns the delegatee to the dele-
gation role. The detailed algorithm is given in Figure 6.

From the algorithm createDelegation, we can see that this
operation supports both total and partial delegation, de-

Algorithm canDelegate(RG, r, ugr, udt)
input: a role graph RG, the regular role r, a delegator uq,
and delegatee uq:
output: true if the delegation is allowed, otherwise false.
begin:

result < false

get Csod Of Uar

if 7 is in Cs0q Or w < wy or ¢ & LC or cqp is false

result = false

else
result A = isDelegatee(uqt)
result A = isDelegatable Role(ugy,T)
result A = notExceedMazx(uq)

return result
end

Figure 5: Algorithm canDelegate

Algorithm createDelegation(RG,r, r4., Ugr, Uqgt, C, t, d)
input: a role graph RG, the regular role r, the delegator role r4,.,
a delegator ug,., delegatee ugq, constraints set C,
expiration time ¢ and delegation depth d
output: the role graph with delegation created.
begin:
if ug,- is not assigned to r or not canDelegate(RG, r, ug,, ugs)
abort
otherwise
Plist - [}
P;s¢ = get all effective privileges from r
let user ug, choose Pg;s¢ — Plist
if Parist C Plist
addRole(RG, 74, Payist)
create and assign delegatee ug4; to delegation role rg;
label the edge from ug; to delegation role rg4; with ¢,d, C
if d > 1, then
assign delegatee ugq; to delegator role 74,
else
assign delegatee uq; to delegator ug,-
label the edge from ug; to ug, with t,d,C
return RG
end

Figure 6: Algorithm createDelegation

pending on whether the delegator or administrator chooses
all the privileges of the regular role or a subset.

Algorithm createDelegation implements single step dele-
gation. We can modify it to support multi step delegation
in the following way. The delegation depth is controlled by
the label d, so we need to test that the label d from the del-
egator is greater than 1; if d > 1, then further delegation is
allowed. We can create delegation by calling the createDel-
egation algorithm and pass in the parameter d = d — 1. The
results of this operation are: a delegation edge is created
and labeled with ¢,d — 1,C. In this way, multi step delega-
tion is achieved very efficiently. All the delegations from a
multi step delegation form a chained delegation, which we
call a delegation path. The depth component in the label of
the edges on the path is controlled by d in every step.

Delegation with transfer of authority is another feature of
discretionary access control (DAC) with change of owner-
ship. In DAC, an owner can transfer authority to another
user when she delegates access. After the delegation, the
delegator loses the access rights to the object; the delega-

97

tee gets full power over the object. Our model can support
this operation very easily. Because the delegator has as-
sign /revoke privileges from the delegator role, we can change
the algorithm slightly. After the delegator creates the del-
egation, she can revoke herself from the regular role and
from the delegation role. After this operation, the user role
assignment edges from the delegator to regular role r and
delegation role rq: are deleted. The delegator will not have
access to the role; the delegatee has full control over the role
r and 7g;.

Revocation of delegation is very important. In order to
provide more choices to the user, we support timeout revo-
cation, constraint violation revocation, cascading revocation
and partial revocation in our model. The basic operation of
revocation is deleting the delegation edge, after which the
delegation no longer exists.

Time-out revocation is enforced by the system. The sys-
tem will check the expiration time in the label of the delega-
tion edge. If it is expired, the delegation has to be revoked
and the delegation edge is deleted from the system. Depend-
ing on the system setting, if the system is configured to use
cascading revocation, then all delegations on the delegation
path are revoked at the same time. If the system is not us-
ing cascading revocation, then only the expired delegations
are revoked.

Similar to timeout revocation, constraint violation revo-
cation is also enforced by the system. If a constraint in C'
is violated, then the delegation is revoked. This revocation
also can lead to a cascading revocation depending on the
system setting.

Cascading revocation is more complex. Because a delega-
tion may originate from different delegators, we only want
to revoke the delegation that originates from the revoker.
This is called source dependent revocation. In order to do it
correctly and efficiently, we will use the labeling on the del-
egation edges to do cascading revocation. We start from the
revoker and get the label of the delegation edge. From the
label, we get the depth. We delete this depth d. If there is
no other depth left, we delete the edge. The first revocation
is done. Then we find the delegation edge that starts from
the delegatee and points to the next delegatee. We get the
label again, and delete any edge whose depth is equal to the
first delegation depth minus one. If the delegation originates
from one source, then there is no alternate label with d <1
left. We delete this edge. Otherwise we continue on until
the delegation path is processed. The detailed algorithm
can be seen in Figure 7.

Figure 8 shows an example of cascading revocation with
limited depth. With the exception of the Delegation Role,
all the nodes in this graph represent users or groups in the
group plane. An edge from user node D to user node B
represents a delegation from user B to user D, as this is
accomplished by creating an edge in the group graph making
D’s group a subgroup of B’s group. We can see that the
revocation of B — D causes a cascading revocation D —
E — F. The depth of each step is decremented by one. So
we can use this property in our algorithm. When we perform
cascading delegation, we trace the labels of the delegation
edges to find the decrementing depth that originates from
the delegator; then we can delete this label, the delegation
is revoked. When there is more than one delegator, our
algorithm can only revoke the delegation from the revoker.
In the example, D — FE has two sources which have two

Algorithm cascadingRevocation(RG, rqt, Udr, Udt)
input: a role graph RG, the delegation role 74,
a delegator w4, and delegatee uq:
output: the role graph with delegation revoked.
begin:
get the label [of edge uagr — wat
n=1d
Ulist < {uar}
dr =1 //number of delegators to be processed
whilen > 0
For the beginning dr delegators in Uy;st
FEj;st < edges that start from the delegator w
while Fj;s: is not empty
For every label | of e in Ej;q
//delete all followmg edges that have n=depth

fld ==n
delete [
dr ++
Ulist = Ulise | {delegatee of u}
if | == null
delete edge e

else
remove edge e from Fj;s¢
dr — — //since dr initially 1, adjust it
remove u from Uj;se
if n # %
n=mn-—1
//if revoker is delegatee group, delete delegation role
if ug, is the delegatee and no out edges
delete delegation edge from ug4,- to delegation role 74
delete delegation role 74
return RG
end

Figure 7: Algorithm cascadingRevocation

depth labels. We only delete one label with d = 2, since the
previous label on our revocation chain had d = 3. Another
label d = 1 is untouched, because it is from another source
C. Thus, source dependent revocation is achieved. If there
are two delegators that have the same depth, then there will
be two identical numbers in the labels of the delegation edge.
We can simply just delete one of the identical labels.

~
e

Delegator

t1,C

P g t2C

A \ Delegation

[,l,C
Role

After revoke B to D:

Delegator

A \.. Delegation

/ Role
Figure 8: An example of cascading revocation with
limited depth

When there is unlimited depth delegation, the label of
the depth is *. There is no decrement by one property from
delegator to delegatee. Instead, every step is unlimited del-
egation. In this case, we can just delete the edges that have
their origin at the delegator and depth is *. If there are two
delegators delegating to the same delegatee, then there will

98

be two labels that have *x as the depth but the starting points
are different. We can delete the one from the revoker, then
the result is source dependent cascading revocation. Figure
9 shows an example of this idea.

Delegator
ve B\ \V
F—p
t, 1 Ie A\> Delegation
\ Role
After revoking B to D:
Delegator
E T ™0 \ A\> Delegation
" Role
t2,C

Figure 9: An example of cascading revocation with
unlimited depth

The delegation depth also can be changed from unlimited
to limited. In this case, the depth will change from * to an
integer. The other labels will either have depth with decre-
ment by one property if it is limited delegation, or have *
depth as unlimited depth delegation. If there is one depth
in the labels that has integer depth but does not have decre-
ment by one property from the previous delegator, we can
delete this label to achieve source dependent cascading re-
vocation. This is shown in Figure 10. From B to D is
unlimited delegation; D changes the depth of the delegation
to two and delegates to E; E also has limited delegation
from C — D. We can see C' — D — E has the decrement
by one property, but B — D — E does not. So we can
delete the label with depth 2 from D to E, giving source
dependent cascading revocation.

B\tv*f

Delegator
t*C

T tic ™ \ A\> Delegation
Role
t,2,C /
c t,3,C
After revoking B to D:
Delegator
B\L*f
E——— A Delegation
,1,C \>
Role

2O A

Figure 10: An example of cascading revocation with
changing of depth

Most delegation models do not support partial revocation.
In the business world, partial revocation is necessary. There
are several different kinds of partial revocations: partial
privilege revocation, partial delegatee revocation and par-
tial delegation path revocation. In our model, we put par-
tial revocation into consideration and present several partial
revocation algorithms.

Partial privileges revocation requires some privileges to be
revoked from the delegation role. For example, a delegator
delegates a task to a delegatee. When the delegator finds
the job is behind schedule, the delegator may want to split

the delegated task to other delegatees. This requires that
the delegator partially revoke some privileges from the old
delegatee and delegates them to a new delegatee. We can
delete a subset of privileges from the delegation role. The
remaining privileges are still available to the old delegatee.
Thus Pr‘evoke C Pdt~

Partial delegatee revocation is the case that some of the
users in a delegatee group need to be revoked. This is a user
revocation from a delegatee group, not a delegatee revoca-
tion from a delegation path which will be discussed in the
following paragraph. For example, the manager has dele-
gated the project developer group to a testing job. After the
job is half finished, the manager wants some developers to
do a system developing job. The rest of the developer group
will continue with the testing job. We can simply achieve
this revocation by revoking the users from the group. This
operation is available as the original RBAC user -group as-
signment /revocation operation.

The most useful and interesting partial revocation is the
partial path revocation, where we only want to revoke sev-
eral delegatees along the delegation path instead of complete
cascading revocation. We can divide this kind of revocation
into several kinds based on the location of the revocation.
We can partially revoke the beginning, the end or the middle
of the path. We also can revoke several non-connected dele-
gatees in the path. This makes the revocation very complex.
We need to design a good algorithm for this revocation.

The algorithm is shown in Figure 11. We can see that the
depth is decremented by one along the delegation path. A
delegation edge is a labeled edge, so we can simply update
the label that follows the revoked delegatee by decrementing
the depth by one along the rest of the delegation path. In
this way, partial revocation can be performed no matter
the position of the revocation. The algorithm works in all
situations, such as at the beginning, the end, and in the
middle of the path or for several non-connected delegatees in
the path. Partial revocation also provides a useful operation:
delegation path shrinkage. A delegation path can be very
long if all delegators further delegate to other users. In
most cases, the delegators in the middle of the path are not
willing to perform the delegated task; otherwise they will
not delegate to others. This gives a long delegation path
that is difficult to manage. The effective delegation in the
path is the delegator at the beginning and the delegatee
at the end of the path. So if we can partially revoke the
delegatees in the middle, the result is a shorter delegation
path which contains the users who are willing to perform
the delegated task. The shortest delegation path is called an
effective delegation path. This operation is called delegation
path shrinkage.

All of above are the administration of delegation. We also
need to consider the regular administration of RBAC that is
affected by delegation. Some administrative operations will
not be affected by delegation. Adding privileges and assign-
ing users are this kind of operation. When we add a privilege
to a regular role, the delegation role is not affected, so this
operation is safe under delegation. A similar idea applies to
user assignment and editing a privilege. Since the privilege
is unique in the mode, changing a privilege will affect both
the regular role and the delegation role, so we do not need
to perform an extra operation when editing a privilege. All
other RBAC operations are affected by delegation. These
operations are as follows:

99

Algorithm partialRevocation(RG, rqt, Udr, Udt)
input: a role graph RG, the delegation role 74,
a delegator u4., and a delegatee ug: to be revoked
output: the role graph with delegation revoked.
begin:
find an edge e of ugr — wuat
depth n = [.d of e
delete label [of e
find the subgroup us of ugy with I.d
delete label [of e
create delegation edge between ug,,us with I.d = n
if labels of w4r — w4t and ugr — us are empty
delete ug, — wgr and ugr — us
use depth first search to update labels of following
delegates of us with depth decremented by one from n
return RG
end

n—1

Figure 11: Algorithm partialRevocation

e Delete privilege. If a privilege that gets deleted is also
in a delegation role, then this privilege also needs to
be deleted from the delegation role. The operation
becomes partial revocation.

e Add role. If we add a role which has the same privilege
set as a delegation role, then duplicate roles occur. We
can let the administrator decide either to change the
privileges of the delegation role, or change the delega-
tion role to a regular role.

e Delete role. When we delete a role that has a delega-
tion role, the delegation role also needs to be deleted.
This starts a cascading revocation of delegation. The
delegation role and all the delegates are deleted after
this operation.

e Add edge. When adding an edge in the role graph,
the set of effective privileges is updated, which may
cause duplication with a delegation role. The solution
is similar to adding a role. The administrator can de-
cide either not to add the edge; or add the edge, delete
the duplicated delegation role and assign the delegatee
to the role which is the end point of the edge.

e Delete edge. When deleting an edge, some privileges
in the effective privilege set are deleted. If these priv-
ileges are also in the delegation role, then they have
to be revoked from the delegation role. This starts a
partial revocation.

e Revoke a user. When we revoke a user from a regular
role, we need to test the user assignment. If the user
is a delegator, we need to revoke the delegation path
that starts from the user. Thus, the cascading revo-
cation algorithm is called. If the user is a delegatee,
then all the delegatees who follow her in the delegation
path need to be revoked. So the end of path partial
revocation is performed in this situation.

From the above discussion, we can see delegation affects
most of the regular RBAC operations. The administration
of RBAC also needs to be modified to reflect delegation. All
the changes are simple; we can modify the algorithms easily
according to the above discussion.

5. DISCUSSION AND CONCLUSIONS

We have presented delegation in the administrative role
graph model by using a combination of user/group assign-
ment and user-role assignment. It is interesting to note how
useful the concept of the user/group graph has been in for-
mulating a model for delegation. Together with the idea of
administrative roles, this approach has several advantages.

The separation of user-group assignment and user-role as-
signment solves the shortcomings of the user-role assignment
approach. The user/group assignment provides user to user
delegation; the user-role assignment gives permission to role
and partial delegation. They also provide clean visual aids
for the administrator to configure delegation.

Putting the delegation path in the user/group plane gives
easy understanding and powerful source dependent revoca-
tion. The revocation algorithm can be designed efficiently.
The labeling of the delegation edge can be easily changed to
use a timestamp, in which case the existing algorithms from
System R are relevant [8, 16].

We provided a detailed partial revocation operations and
algorithms which support partial privileges revocation, par-
tial path revocation and delegation chain shrinkage. Partial
revocations algorithms have not been previously discussed.

We discussed the changes to the role hierarchy structure
and user/group plane that are affected by delegation. We
analyzed how delegation changes the normal RBAC opera-
tions and gave solutions.

We also separated our delegation model into static and
dynamic models. This makes administration tasks and im-
plementation easier. We will discuss the dynamic model and
cross domain delegation in the future.

6. ACKNOWLEDGEMENTS

This research is supported of the Natural Sciences and En-
gineering Research Council of Canada. He Wang’s research
has been supported by an OGSST scholarship.

7. REFERENCES

[1] G.-J. Ahn and B. Mohan. Secure information sharing
using role-based delegation. In Proc. ITCC 2004.
International Conference on Information Technology:
Coding and Computing, pages 810 — 15, 2004.

G.-J. Ahn, L. Zhang, D. Shin, and B. Chu.
Authorization management for role-based
collaboration. In IEEE International Conference on
Systems, Man and Cybernetics, pages 4128 — 34, 2003.
[3] V. Atluri and J. Warner. Supporting conditional
delegation in secure workflow management systems. In
Proceedings Tenth ACM SACMAT, pages 49-58, 2005.
E. Barka and R. Sandhu. Framework for role-based
delegation models. In Proceedings 16th Annual
Computer Security Applications Conference
(ACSAC’00), pages 168-176, 2000.

E. Barka and R. Sandhu. A role-based delegation
model and some extensions. In 23rd National
Information Systems Security Conference, pages
168-177, 2000.

2]

[4]

[5]

100

[6] E. Barka and R. Sandhu. Role-based delegation
model/hierarchical roles (rbdml). In Proceedings. 20th
Annual Computer Security Applications Conference,
pages 396 — 404, 2004.
M. Gasser and E. McDermott. An architecture for
practical delegation in a distributed system. In
Proceedings IEEE Computer Society Symposium on
Research in Security and Privacy, pages 20 — 30, 1990.
P. P. Griggiths and B. W. Wade. An authorization
mechanism for a relational database system. ACM
Trans. Database systems, pages 242-55, 1976.
C. Ionita and S. Osborn. Privilege administration for
the role graph model. In Gudes and Shenoi, editors,
Research Directions in Data and Application Security,
pages 15-25. Kluwer, 2002.
M. Nyanchama and S. Osborn. Access rights
administration in role-based security systems. In
J.Biskup, M. Morgenstern, and C. Landwehr, editors,
Database Security, VIII Status and Prospects, pages
37-56. North-Holland, 1994.
M. Nyanchama and S. Osborn. The role graph model
and conflict of interest. ACM Trans. Information and
System Security, 2(1):3-33, 1999.
S. Osborn and Y. Guo. Modeling users in role-based
access control. In Fifth ACM Workshop on Role-Based
Access Control, 2000.
W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong. Access
control in collaborative systems. ACM Comput. Surv.,
37(1):29-41, 2005.
J. Wainer and A. Kumar. A fine-grained, controllable,
user-to-user delegation method in rbac. In Proceedings
tenth ACM SACMAT, pages 59-66, 2005.
H. Wang and S. Osborn. An administrative model for
role graphs. In Data and Applications Security X VII,
pages 39-44. Kluwer, 2003.
C. Wood and E. Fernandez. Decentralized
authorization in a database system. In Proceedings of
the Fifth VLDB Conference, pages 352-9, 1979.
G. Yin, M. Teng, H.-M. Wang, Y. Jia, and D. xi Shi.
An authorization framework based on constrained
delegation. In Proceedings of Parallel and Distributed
Processing and Applications. Lecture Notes in
Computer Science 3358), pages 845 — 57, Hong Kong,
China, 2004.
L. Zhang, G.-J. Ahn, and B.-T. Chu. A rule-based
framework for role based delegation. In Proceedings
sizth ACM SACMAT, pages 153-162, 2001.
L. Zhang, G.-J. Ahn, and B.-T. Chu. A role-based
delegation framework for healthcare information
systems. In Proceedings seventh ACM SACMAT,
pages 125-134, 2002.
L. Zhang, G.-J. Ahn, and B.-T. Chu. A rule-based
framework for role-based delegation and revokation.
ACM Trans. on Information and System Security,
6(3):404 — 441, August 2003.
[21] X. Zhang, S. Oh, and R. Sandhu. PBDM: a flexible
delegation model in RBAC. In Proceedings of eighth
ACM SACMAT, pages 149-157, 2003.

(14]

(15]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

