
RBAC in UNIX Administration

Glenn Faden

Sun Microsystems

gfaden @ sun.com

Abstract

This paper describes an implementation of RBAC for
UNIX systems in which roles are used as an alternative to
the traditional supermel: Roles are special shared ac-
counts which must be formally assumed by authorized us-
ers. Each role has a full set of credentials so that it can
be authenticated and authorized by existing administra-
tive services. Rather than providing for hierarchical roles,
the permissions associated with roles are expressed hier-
archically using execution profiles. Extensible attributes
for users, roles, and permissions are maintained in dis-
tributed databases which can support multiple security
policies simultaneously.

1 Introduction

In traditional UNIX systems, the root user is known as
the superuser, and is exempt from all policy enforcement.
The problem with this approach is not just that root is so
powerful; it is that everyone else is so weak. Root access
is required to perform almost all aspects of administra-
tion. There is no hierarchy of privileged operations, no
separation of powers, nor the ability to delegate any of the
powers to others. There is a mismatch between what is
necessary and what is sufficient with respect to access
control. For example, setting the system date requires root
access, which turn, provides full access to the system.

Role-Based Access Control (RBAC) can be used to parti-
tion some of the superuser’s powers into a set of discrete
roles. This is not the same as actually restricting the pow-
er of root, it is parcelling out certain capabilities to oth-
ers. With RBAC, permissions are assigned to roles and
roles are assigned to users[l], where users correspond to
real people and roles are associated with functional re-
sponsibilities. This is intended to reduce the cost of ad-
ministration by avoiding repetitive assignments. While

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish. to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

RBAC ‘99 lo/99 Fairfax, VA, USA
0 1999 ACM l-581 13-lBO-1/99/0010...$5.00

assigning permissions to roles works well in many situa-
tions, it presents problems for bootstrapping an operating
system and administering legacy systems.

In this paper we describe a more flexible model for assign-
ing permissions: not only can permissions be assigned to
roles, but also to users. This flexibility allows users of the
system to be able to perform certain privileged operations
without role assumption, while still offering the benefits of
other RBAC systems. The RBAC model described in this
paper has been prototyped in versions of SolarisTM and
Trusted SolarisTM, for release in future versions of those
products. Trusted Solaris, which fully implement the prin-
ciple of least privilege, replaces all of the superuser checks
throughout the kernel and in certain utilities with checks
for fine-grained privileges. RBAC can be used on systems
with either the traditional superuser implementation or a
privileged based implementation.

2 Roles As Subjects

In some FU3AC systems, such as [2] roles are implemented
as UNIX groups, and in other systems they are not tied to
any existing UNIX concept[3]. In the system described in
this paper, roles and users are both types of UNIX ac-
counts. For RBAC to satisfy the requirements for UNIX
administration, roles must be authenticated principals.
This approach is based on a number of factors relating to
authentication, discretionary access, and revocation. Ad-
ministrative data is typically protected using discretionary
access control (DAC), and on Trusted Solaris, mandatory
access control (MAC), as well.

For example, consider the Network Information Service,
NIS+, the primary repository of administrative data on
many UNIX systems. In NIS+, access to columns in a da-
tabase is based on the authenticated network name of the
requesting principal; UNIX groups are not considered in
access control. If roles were not principals, then the cre-
dentials of normal users would be used for database ad-
ministration and users would have to configured as NIS+
administrators. This defeats the purpose of using RBAC
since membership in roles may change as users come and
go. The discretionary access settings for administrative
data should remain constant.

95

There are many other advantages to treating roles as spe-
cial shared accounts. The essential reason is that the exist-
ing mechanisms of UNIX can be used for roles without
changes to the kernel or to UNJX semantics. By extend-
ing the system’s Pluggable Authentication Module (PAM)
to recognize role accounts (see Section 7, “Role Assump-
tion,” on page 4),, attempts to use roles as primary logins
or without authorization can be prevented. One interesting
consideration is that when the superuser is itself identified
as a role, only users who have been assigned the root role
can become the superuser, even if they know the root
password.

Another advantage is that principals can have extended at-
tributes such as clearances. In systems that support MAC
through the use of labels, administrative data can be pro-
tected by assigning labels to files which are only available
to principals acting in a role. For example, in Trusted So-
laris, all administrative data is labeled with one of two ad-
ministrative labels that are reserved for roles. MAC offers
stronger protection than simply relying on permission
bits.

3 Authorizations

The terms permission, privilege, and authorization are fre-
quently used interchangeably because they apply to a va-
riety of operating systems and services. For example, [4]
describes how RBAC is used to configure a Web server,
and [5] describes its application in databases. In this pa-
per, the terms have a UNIX-oriented definition. In this pa-
per we use these terms to mean different things, and it
will help to understand the context of each term.

A permission is a generic term which is used to describe
a transaction that a user is permitted to do through the ex-
ecution of a program.

A privilege is an attribute of a program (a process at-
tribute) run by a user which is used to override a standard
security policy. In traditional UNIX, the term privileged
user is often used to refer to the superuser because its
user ID enables it to override any kernel policy. However,
in systems that implement the principle of least privilege
in the kernel, an arbitrary number of fine grained privileg-
es can be associated with a process, each of which is used
to override a specific policy.

An authorization is a right assigned to a user or a role
that is used to grant access to an otherwise restricted
function. Authorizations are also fineigrained, like privi-
leges, but they are not directly associated with programs.
Instead, they are looked up in a database based on a the
identity of the user or role. Privilege checks are typically
done in the kernel, while authorization checks are done in
applications.

3.1 Authorization Hierarchy

An authorization name is a unique string that identifies
the organization that created the authorization and the
functionality it controls. Following the JavaTM convention,
the hierarchica components of an authorization are sepa-
rated by dots (.). starting with the reverse order Internet
domain of the creating organization, and ending with the
specific function within a class of authorizations.

An asterisk is used as a wild card to indicate all authori-
zations in a class. When a user authorization check is
made, the authorization is compared against the explicitly
assigned authorization and any wild card entries covering
the class (or superclass) of the authorization. For exam-
ple,

solaris.role.*

covers the authorizations:
solaris.role.delegate,
solaris.role.assign, and
solaris.role.write.

3.2 Delegation

When the name of an authorization ends with the reserved
word grant, the authorization is used to support fine-
grained delegation. Users and roles with appropriate grant
authorizations can delegate some of their authorizations
to others. To delegate an authorization, the user needs to
have both the authorization itself and an associated grant
authorization which covers it. In addition, the user or role
must be authorized in the same administrative domain
that the assignment is made.

Authorizations are the key to providing separation of
powers and delegation. The databases that are used to
maintain attributes of users and roles are controlled by
trusted applications that interpret authorizations before
making updates. Neither users nor roles are permitted to
change the databases directly. Trusted applications, which
enforce the system policy, restrict inappropriate updates
from taking place. The principal making the request must
be authenticated and authorized in the bame administra-
tive domain in which the data is maintained.

For practical reasons it is often necessary to have a chief
security officer who has all authorizations. This is ex-
pressed by assigning the two authorizations

solaris.*

and
solaris.grant.

The chief security officer can use these authorizations to
delegate powers to other users or roles.

96

4 Permission Sets

Traditionally in UNIX, trusted applications are assigned a
setuid-to-root attribute in their filesystem which gives
them the effective user ID of root when they are executed.
The power to run these programs is therefore granted to
all users of the system.

In some cases, it is preferable to restrict these permissions
to specific users or roles. To facilitate the management of
these permissions, they are bundled into execution pro-
Jiles. An execution profile is an enumeration of the princi-
pal’s authorizations and any special process attributes,
such as effective user and group IDS, associated with
trusted executable objects. These profiles are uniquely
named and are stored in a database for retrieval by profile
name, username, and executable entity,

4.1 Execution Profiles

Execution profiles are distinct from roles in that they are
not principals and do not have entries in account-oriented
databases. They are simply collections of permissions that
can be assigned as a single entity. Both users and roles
may have execution profiles assigned to them. The pro-
file(s) assigned to a user specify the initial set of permis-
sions that a user is granted (without assuming any role),
while the profiles assigned to a role replace the user’s set
upon role assumption.

Execution profiles can contain lists of authorizations and
lists of executable entities, such as UNIX commands,
CDE actions, or Java codebases. A CDE action is an exe-
cutable object in the Common Desktop Environment for
UNIX systems. A Java codebase is the pathname to a set
of Java class files.

Attributes can be associated with each listed executable,
which are interpreted by an appropriate interpreter for
each executable type. For UNIX commands and CDE ac-
tions, the attributes correspond to the process attributes
that are set when the program is run. These include the
real and effective user and group IDS for UNIX systems.
Trusted Solaris uses additional attributes, such as the in-
heritable privilege set, extended process attribute flags,
sensitivity label, and clearance. Each entry contains a pol-
icy value which indicates the variant of Solaris for which
the process attributes apply.

For UNIX commands, these attributes are interpreted by a
profile execution program, named pfexec, which exe-
cutes the specified command with the process attributes
specified in the profile. The standard UNIX shells, sh,
csh, and ksh have been modified to invoke pf exec for
profile-based execution.

For CDE actions, the Desktop Services Library is modi-
fied to look up the execution attributes associated with
CDE actions in execution profiles.

For Java codebases, the permissions correspond to the
Java Authentication and Authorization Service (JAAS) 161
Permission class and are interpreted by a modified JAAS
Security Manager.

Note that the permissions can only be supplied by pro-
grams that are able to grant them. For this reason, the
pf exec binary is a setuid-to-root program in Solaris, and
has all privileges in Trusted Solaris. However, it does not
need to trust the calling process, and relies on trusted da-
tabase queries to determine the appropriate attributes for a
execution.

For Java, the Java Virtual Machine (JVM) must be run-
ning as root or as a privileged process to interpret permis-
sions .

4.2 Profile Assignment

One or more execution profiles may be assigned to a user
or role. The authorizations in all the profiles are cumula-
tive, so the order of the profiles assigned to a user or role
does not affect authorization checks.

However, for execution attributes, the order of the profile
list is significant since the attributes are determined by the
first matching command or action, and are not combined.
For example, the command /usr/bin/date may be
specified in one profile with an effective user ID of root,

but in another profile the same command is specified to
run as a normal user. Therefore, the most specific and
powerful profiles should be listed first, followed by subor-
dinate profiles and any wild card entries.

To reduce the administrative burden, profiles can be nest-
ed in a hierarchical manner. Since profiles may contain
profiles, the administrator can implicitly assign any num-
ber of profiles to a user or role with a single profile as-
signment. However, this is equivalent to enumerating the
profiles in a single list, so the hierarchy 9s just a conve-
nience.

There are two authorizations that control what profiles
can be assigned to users or roles. The authorization

solaris.profiles.assign

is more powerful, and allows any profile to be assigned.
The authorization

solaris.profiles.delegate

restricts the administrator to assigning profiles that are al-
ready in the current user’s list.

97

4.3 Profile Creation

Only a principal with the authorization
solaris.profiles.create

can create or delete a profile. In addition, there are specif-
ic authorizations for assigning executables to a profile and
for specifying the security attributes of an executable in a
profile. However, administrators with the appropriate
grant authorization suffixes can assign their associated
authorizations to profiles as well as to users and roles.

5 Role Creation

Authorized users or roles can create new roles, modify
their attributes, and delete them. The authorization for
creation and deletion is

solaris.role.write.

Roles are created using similar tools to those that are used
to create users. Some of the attributes that roles share
with users require specific authorizations for administra-
tion. For example, the assignment of the role’s password
requires the authorization

solaris.usemgr.passwd.

In addition, there are some unique attributes of roles.

Roles can only be assigned to users, not to other roles.
Cardinality is an attribute that specifies how many times a
role can be either assigned or assumed. Mutual exclusion
specifies that a separation-of-duty relationship exists be-
tween this role and other roles.

One of the issues that has been discussed in the litera-
ture[7] is the applicability of static vs. dynamic restric-
tions. For example cardinality and mutual exclusion can
be enforced when roles are assigned, when they are as-
sumed, or both. In practice, dynamic restrictions are not
very useful on networked systems, because a role which
is authenticated on one system can extend its credentials
through sjngle-signon, across the network to other sys-
tems. A more effective approach is for the various servic-
es to support file locking and concurrency control.
Therefore, only static attribute restrictions are well sup-
ported.

6 Role Assignment

The rights to create and modify roles does not convey the
right to assign them to others. There are two authoriza-
tions required for role assignment. The authorization

solaris.role.assign

is more powerful, and allows any role to be assigned or
revoked. The authorization

solaris.role.delegate

allows a user to assign a role to another user only if the
first user is already assigned the role.

Note that granting a role to another user does not give the
second user the right to further delegate that role. unless
the second user also has

solaris.role.delegate.

There are no authorizations to override the restrictions of
cardinality and mutual exclusion. However, the authoriza-
tion for creating roles does provide for modifying the car-
dinality and mutual exclusion restrictions.

7 Role Assumption

Role assumption is the discrete action of activating a role
that has been assigned to a user. Since roles are limited to
authorized users, the identity of the user must be authenti-
cated before the role assumption can take place. There-
fore, roles cannot be used as primary login accounts. The
users must first login to the system and then use an appro-
priate interface to assume a role.

The following figure shows that the profile sets for a user
and a rale are distinct.

freduser

I

secadmin
role

I Auths: . . .
I

v
1 All Profile

Cm& *
Auths: None

I I

Figure 1 Assuming a role

The simplest method to assume a role is by using the tra-
ditional su command. Other assumption interfaces are
provided in administrative GUIs, such as the CDE Work-
space Manager front panel. In order to assume a role, au-
thentication and authorization checks are made. Both
checks are implemented using the Pluggable Authentica-

98

tion Module described in the X/Open Single Signon Op-
tion [8]. One or more authentication modules, such as a
password authenticator, are called to authenticate the role.
If successful, an additional module is called to verify that
the role has been assigned to the user who is assuming it,
and that any dynamic restrictions, such as cardinality or
mutual exclusion, are not violated.

If authentication and authorization are successful, the at-
tributes for the role are set up, and further execution takes
place as the role. For purposes of attribution, the audit ID
of the user who assumed the role is preserved, but the au-
dit event mask is set to the value assigned to the role.

In order to take advantage of execution profiles, roles are
assigned a profile enabled version of one of the standard
UNIX shells. These shells restrict execution to the set of
commands enumerated in the role’s profiles and apply the
special attributes identified for each command. Wild card
entries can be specitied in profiIes to indicate all com-
mands in a directory, or simply, all commands.

Role assumption is not a cumulative operation with re-
spect to attributes. An authorization granted to a user is
not conveyed to the role when it is assumed. Furthermore,
roles are not hierarchical, and cannot assume other roles.
Although this may seem at odds with other RBAC sys-
tems [9], it provides a consistent set of rules for Solaris
administration. The concept of separation-of-duty is more
easily understood if roles run in separate environments.
For example, in Trusted Solaris, when a role is assumed
in the CDE environment, it is isolated in its own CDE
workspace, which can only display windows associated
with the role.

The notion of role hierarchy conflicts with the straight-
forward model that is presented by treating roles as ac-
counts. Since all the capabilities of the role are available
when it is assumed, there is no question about whether a
subordinate role is also active. When roles are accounts,
the role ID is passed through normal UNIX inheritance of
process attributes. For example, multiple terminal win-
dows can be brought up by a role, each of which share the
same role attributes.

8 RBAC Databases

8.1 user-attr

The attributes associated with users and roles are stored in
the user-attr database. Roles and Users are distin-
guished by a type attribute. The list of available roles is
determined by scanning the database for entries whose
type is role. The set of attributes for users includes a list
of profiles, and a list of roles. The attributes for roles in-
clude a list of profiles, the cardinality constraints, and a
list of mutually excluded profiles.

8.2 auth-attr

The list of available authorizations and their descriptive
attributes are stored in auth-at tr. The attributes for
authorizations include a more user-friendly name, and a
reference to its help description file.

8.3 prof-attr

The list of available profiles and their attributes are stored
in prof-attr. The profile attributes include any autho-
rizations that are associated with the profile, any subordi-
nate profiles, and a reference to its help description file.

8.4 exec-attr

The list of executables that require special execution at-
tributes is stored in exec-attr. For each entry, there is
a reference to the profile with which it is associated. Oth-
er attributes include the type of executable, e.g. UNIX
command or CDE action, the fully qualified name of the
executable, and the process attributes it will be assigned
when executed.

In the Solar-is and Trusted Solaris prototypes, the at-
tributes required to support RBAC are maintained in four
databases. Each of these databases is implemented using a
name service so that databases may be centrally main-
tained or distributed.

user-attt:
NAME USER AlTRIBUTES

root type=role;auths=solaris.*, solaris.grant;profiles=All

secadmin type=role;mutex=sysadmin;cardinality=l;profiles=Audit Control,All
A

sysadmin ' type=role;mutex=secadmin;cardinality=2;pxofiles=Audl 4
A I

Review,Device Management ,Filesystem Mm,agement ,Al:.

t
fred

P
ser 1

I
type=normal;roles=sec,adm.in,sfrsadmin;profiles=All 1

I I I

I L--------J I I
I

L ___--------- J
I

I
auth-attr:

J AUTHORIZATION NAME I ---- ----------- AUTHORIZATION AmRlBUTES

prof-attr: ; PROFILE Al-WBUTES I-
------- +,solaris.audit.config help=... I

NAME I
I

All I help=All.html I solaris.audit.read help=... 1
I I I

Audit Control +-' auths=sofaris.audit.config,solaris.j solaris.device.allocate help=... 1

Audit Review auths=solaris.audit.read;help=AuditR solaris.login.enable help=... '
I

Device Management

Filesystem Management
A
+

auths=solaris.device.*;help=DevMgmt. solaris.system.date help=... 1
I I

help=Filesys.html solaris.system.shutdown help=... 1

I

exed-attr: I
NAME I POllCY TYPE ID EXECUTION ATTRIBUTES I

AlLI suser cmd * I
I I

Auqit Review suser cmd /usr/sbin/praudit euid=O I

I - I
Fi esystem Mangmnt

+A
suser cmd /usr/sbin/mount euid=O

I

4 l- Fll sy t Mangmnt suser cmd /usr/sbin/tunefs euid=O,egid=3 I
I I I
LII-----------------------------------~

Figure 2 RBAC Database Relationships

9 Conclusion

This RBAC implementation draws on traditional UNIX
security as well as newer models for delegation and sepa-
ration-of-powers. It defines another entity, an execution
profile, which is used to manage permissions because the
maintenance of permission sets, rather than role attributes
is where the biggest administrative difficulties exist. Fine-
grained authorization is built into the design of the RBAC
databases so that various aspects of their management can
be assigned to separate roles.

[91 Inheritance Properties of Role Hierarchies, W. Jansen,
In Proceedings of 21st NET-NCSC National Information
Systems Security Conference, pages 476-485

Treating roles as UNIX principals allows existing applica-
tions and interfaces to work with RBAC without requiring
that they be rewritten to use new interfaces and databases.
Rather than defining a specific server or application that
understands and interprets roles, this approach allows a
phased evolution of UNIX administrative concepts from
the traditional super-user to a model where rights are
granted based on what is necessary and sufficient to per-
form the task at hand.

10 References

[I Role-Based Access Control Protection Profile, Com-
mon Criteria, July 30, 1998

[2] Decentralized Group Hierarchies in UNIX: An Exper-
iment and Lessons Learned, R. Sandhu & G Ahn, In Pro-
ceedings of 21st NET-NCSC National Information
Systems Security Conference, pages 486-502

[3] Role-Based Access Control (RBAC): Features and Mo-
tivations, David Ferraiolo et al., Computer Security Ap-
plications Conference, 1995

[4] A Role Based Access Control Model and Reference
Implementation within a Corporate Internet. David F.
Ferraiolo, John F. Barkley, and D. Richard Kuhn, ACM
Transactions on Information Systems Security, Volume 1,
Number 2, February 1999, National Institute of Standards
and Technology

[5] Role-Based Access Control In Commercial Database
Management Systems, D.F and D.R. Kuhn, In Proceed-
ings of 2Zst NZST-NCSC National Information Systems
Security Conference, pages 503-5 11

[6] Java Authentication and Authorization Service, ht-
tp://java.sun.com/security/jaas, April 13, 1999.

[7] Specifying and Managing Role-Based Access Control
within a Corporate Zntranet, Ferraiolo, Barkley, 1997,
Second ACM Workshop on Role-Based Access Control,
1997

[8] X/Open Single Sign-on Service (XSSO) - Pluggable
Authentication Modules, August 5, 1998

101

