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ABSTRACT
The use of the graph-based framework to specify the administra-
tion of RBAC systems has several advantages, from the intuition
provided by the visual aspect to the precise semantics and the sys-
tematic verification of constraints. Here the benefits of this frame-
work are illustrated using SARBAC (scoped administration of role
based access control), providing the first steps towards its opera-
tional semantics and a more expressive constraint language.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trol; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection

General Terms
Security, Verification

Keywords
role-based access control, administration, graph transformations

1. INTRODUCTION
While role based access control (RBAC) models have been

widely investigated ([4, 9, 10]), the use of RBAC to specify the ad-
ministration of RBAC systems has received less attention. One of
the models for the administration of RBAC96 is ARBAC97 ([11]).
In the ARBAC97 model, role management, that is, the creation and
deletion of roles as well as the assignment and the revocation of
users and permissions to roles, is the responsibility of administra-
tive roles. The role hierarchy is given by a partial order over roles,
and the administrative role hierarchy is given by a partial order over
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roles based on interval inclusion. The range of an administrative
role is represented by an interval over the first partial order and
the ranges of junior administrators are required to be subranges of
the senior administrators range. The approach proposed in [11] is
not particularly suited to managing dynamic changes in administra-
tor’s ranges, as discussed in [6, 5], where solutions to the revocation
and to other problems are presented in detail using the graph-based
framework.

A different approach is proposed by Crampton and Loizou in
[2], with the concept of administrative scope in role hierarchies.
The authors propose a family of models for role administration and
define a decentralized model for role-based administration, called
SARBAC (scoped administration of role-based access control). It
is shown in [2], that the SARBAC model has several advantages
compared to the ARBAC97 model.

We have presented a graph-based security framework for the
specification of access control policies in [6], where several mod-
els to decentralized role administration are also proposed. In this
article we show how to express the concept of administrative scope
in the graph-based security framework. Beside a visual and (sub-
jectively) a more intuitive presentation, the SARBAC model can
benefit from the graph-based specification in several ways:

1. As stated in [2], a “priority is to complete the SARBAC
model by incorporating administration of separation of duty
constraints into SARBAC”. The graph-based security frame-
work comprises a graphical constraint language for access
control constraints. This language can be used to specify the
administration of constraints, e.g., separation of duty con-
straints.

2. In addition, [2] states that the authors “intend to give an oper-
ational semantics for SARBAC by writing pseudo code func-
tions to implement the SARBAC operations”. The specifi-
cation of the SARBAC operations by graph rules gives an
operational semantics to the SARBAC operations. The spec-
ification based on graph rules can be executed using graph
transformation tools [3].

3. Graph transformations provide theoretical results to verify
the specified access control constraints with respect to the
SARBAC model operations.

4. The specification of role hierarchy operations of the SAR-
BAC model by graph transformations helps in the mainte-
nance of a consistent role hierarchy. The maintenance of the
consistency of the role hierarchy due to side-effects of the
operations on the role hierarchy is more difficult in the pre-
sentation given in [2].
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The remainder of the article is organized as follows: Section 2
gives a brief overview on Graph Transformations. Section 3
reviews the concept of administrative scope and introduces the
RHA4 model and its specification by graph transformations. Sec-
tion 4 considers the SARBAC model and specification of this model
by graph transformations. In Section 5 the benefits of a graph-based
specification for the SARBAC model are discussed. Section 6 con-
cludes the article.

2. BACKGROUND ON GRAPH
TRANSFORMATIONS

We introduce the graph transformation concepts necessary in this
article. A more detailed introduction can be found in [8].
A graph consists of a set of nodes and a set of directed edges. An
edge points from the source node to the target node. Nodes and
edges carry labels from disjoint sets of variables and constants. In
the figures, node labels are written inside the node, edge labels are
attached to the edge. The example graph in Figure 1 consists of
four nodes and three edges. The labels of the nodes are a, R1, R2
and u, where lower case letters are used for variables (u, a) and
upper case letters for constants (R1,R2). The intended meaning of
the example graph is that there are two fixed roles R1 and R2 that
are administrated by a variable administrator. A variable user u is
assigned to role R2. The edges in the example do not have labels.

u

R1

R2

a

Figure 1: Graph

Graphs are related by graph morphisms. A total graph morphism
f : G → H between graphs G and H maps the nodes of G to
nodes of H and the edges of G to edges of H . A graph morphism
must respect the graph structure, i.e., the source (target) node of
an edge e in G is mapped to the source (target) node of the edge
in H to which e is mapped by f . In addition, f relates nodes and
edges with a constant label to nodes and edges of the same label.
Variables can be related to any label. A partial graph morphism
f : G → H is a total graph morphism f̄ : dom(f) → H from
a subgraph dom(f) ⊆ G to H . A graph morphism is injective if
the mappings between nodes and edges are injective. Figure 2 is an
example of an injective partial graph morphism. The presentation
of graph morphisms, i.e., the mappings for nodes and edges, are
represented by the position of nodes in the graphs: if a node n has
the same position in G and H , then there is a mapping for n from
G to H . In the example, R1 in G is mapped to R1 in H , R2 to R2,
a to A1 (possible since variables can be mapped to constants), and
u to u. The edge a → R1 in G is mapped to the edge A1 → R1 in
H (similarly for the edge a → R2). The edge u → R2, however,
is not mapped to H , i.e., the mapping is partial on edges.

H
R1

R2

a

u

R1

R2 u

u2

A1

G

Figure 2: Injective Partial Graph Morphism

Graphs can be manipulated by graph rules consisting of an injec-
tive partial graph morphism r(p1, .., pn) : L → R, where p1....pn

are variables for nodes in L and R. The left-hand side L of a rule
describes the elements a graph must contain for p to be applica-
ble. The partial morphism r is undefined on nodes/edges that are
intended to be deleted, defined on nodes/edges that are intended to
be preserved. Nodes and edges of R, right-hand side, without a
pre-image are newly created. The application of a rule r to a graph
G requires a total graph morphism m : L → G, called match, and
the direct derivation of r at m is done in two steps: first delete from
G all the elements in m(L\dom(r)) , then add to the result all the
elements in R \ r(L).
An example of a graph rule rule(a,p,c) and its application to a graph
is shown in Figure 3. The left-hand side L of the rule consists of

H

a

p

c

R2

R1

R4

R3

R5

R1

R4

R3

R5

p

c

rule(a,p,c)

L R

G

Figure 3: Application of a graph rule.

three nodes carrying the variables a, p and c (variables are lower
cases). The rule is defined for the p and c node and undefined for
the a node (i.e., this node shall be deleted). The right-hand side
R has an edge between nodes p and c. The match for the rule in
graph G maps the a node to node R2, p to node R1 and c to R3.
The application of the rule removes the node R2 (together with all
connected edges) and adds the edge between R1 and R3.

The application of graph rules may be restricted by negative ap-
plication conditions (NAC). A NAC prevents the rule application
in distinguished cases even if the left-hand side can be found in
a graph. A NAC for a rule r(p1, ..., pn) : L → R consists of
a set A(p) of pairs (L, N), where the graph L is a subgraph of
N . The part N \ L represents a structure that must not occur in a
graph G for the rule to be applicable. In the figures, we represent
the pair (L, N) with N , where the subgraph L is drawn with solid
lines and N \ L with dashed lines. Figure 4 shows the graph rule
rule(a,p,c) of Figure 3 with an additional NAC consisting of
one edge from node p to node a. A rule r(p1, ..., pn) : L → R

c

a

p p

c

rule(a,p,c)

L R

Figure 4: Graph rule with NAC.

with a NAC A(p) is applicable to G if L occurs in G via m and it
is not possible to extend m to N for each (L, N) in A(p). The rule
rule(a,p,c) with NAC is not applicable at the match given in

Figure 3, since the forbidden edge between the nodes p and a
can be found between the nodes R1 and R2. The rule is applicable
to G via the match associating a to R3, p to R1 and c to R5.
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Graph rules specify in an operational way how to build the ac-
cepted graphs starting from a given start graph. Graphical con-
straints give the possibility to specify declaratively which graph
structures are required or forbidden in accepted graphs. A simple
graphical constraint, or just constraint, is given by a total mor-
phism x : X → Y and can be either negative or positive. A
graph G satisfies a positive constraint xpos if for all morphisms
p : X → G there is a morphism q : Y → G with q ◦ xpos = p.
A graph G satisfies a negative constraint xneg if for all morphisms
p : X → G there does not exist a morphism q : Y → G with
q ◦ xneg = p. Figure 5 shows a negative constraint which forbids
an edge between a node labeled with the constant T and a node
r. The graph G1 does not satisfy the constraint, since there is an
edge between node T and R1. The graph G2, however, satisfies
the negative constraint.

x

T

R1 R2

G1
T

R1 R2

G2

r

T T

r

X Y

neg

Figure 5: Simple negative graphical constraint.

A conditional constraint c = (n, x) consists of an injective total
morphism n : X → N and a simple positive constraint x : X →
Y . The morphism n gives the condition under which the constraint
x must be satisfied. A graph G satisfies c if for all total morphisms
p : X → G for which there is not total morphism a : N →
X with a ◦ n = p, there is a total morphism q : Y → G with
q ◦ x = p. Figure 6 shows an example. The lower part of the
figure depicts the presentation of conditional constraints used in
the rest of the article: we show the graph N in which the parts
N \ n(X) are drawn by dashed lines, the elements of n(X) by
solid lines. The conditional constraint specifies that there must be
an edge between node T and r whenever T is not connected to
another node rz . Graph G1 of Figure 5 satisfies the constraint. If
we consider T and R1, the condition of the constraint is satisfied
and we have to check the positive constraint that requires an edge
between T and R1. This edge exists. If we consider T and R2, the
condition of the constraint is not satisfied, since we can find another
node r connected to T . Therefore, we do not have to check the
positive constraint. On the other hand, graph G2 does not satisfy
the conditional constraint, since there is no edge from T at all.

To express a more complex behavior than that describable with
simple rules, it is necessary to have ways to combine them. Rules
can be combined in rule expressions, with which it is possible
to specify the application of rules in a prescribed order. A rule
expression ruleExpr is a term generated by the following syntax,
where ruleNames is a set of ruleNames and r ∈ ruleNames.
The guardi are conditional or simple constraints.

ruleExpr::= [not]guard1 and ....and [not] guardn: expr
expr::= r | expr1 ; expr2 | as long as possible r

The rules in expr can be applied to a graph G if G satisfies all

X

zr

T

r

T T

r

X Y

posx

zr r

T T

r

N

r

n

Y

posx

Figure 6: Conditional constraint.

guards. A guard may be negated by the keyword not which requires
that the guard is not satisfied. The term expr1 ; expr2 specifies a
sequential application of two expressions and the intended meaning
of as long as possible r is the application of rule r to G as long as
r can be applied. Examples of rule expressions will be shown in
the next sections.

3. ADMINISTRATIVE SCOPE
Crampton and Loizou present in [2] the concept of administra-

tive scope in a role hierarchy and a role-based administrative model
based on administrative scope (SARBAC). They show the advan-
tages of their model compared to ARBAC97 [11]. This section
shows that the SARBAC model can be expressed in the graph-
based framework used to specify RBAC models in [6, 5]. In the
process, we extend the concepts in [6] to include rule expressions.
In [2] a family of role hierarchy administration (RHA) models is
presented. The most complex of them, called RHA4, is the basis
for the SARBAC model. We introduce next the RHA4 model and
give a specification by graph transformations.

3.1 The RHA4 model
The RHA4 model assumes a role hierarchy, that is, a partial or-

dered set of roles (R,≤). We define ↑ x = {r ∈ R|x ≤ r} and
↓ x = {r ∈ R|r ≤ x}. In addition, there is a binary relation
admin-authority ⊆ R × R that specifies the roles that a role con-
trols: a role a controls a role r if (a, r) ∈ admin-authority and
C(a) = {r ∈ R|(a, r) ∈ admin − authority} denotes the set
of roles controlled by a. In [2] is required, that, if (a, r) ∈ admin-
authority then a �≤ r, admin-authority is antisymmetric, and each
role r ∈ R is controlled by at most one administrative role.

The administrative scope of a role r is given by

S(a) = {r ∈ R| ↑ r\ ↑ C(a) ⊆↓ C(a)}.
Informally, a role r is in the administrative scope of the role a, if
each path upwards from r goes through a role controlled by a. We
define S+(a) = S(a) \ C(a).

Figure 7 shows an example of a role hierarchy (taken from
[2]). The administrative role PS01 controls role PL1, DSO
controls PS01 and DIR. Then, the administrative scope of
DSO contains all roles in the hierarchy including PS02, the
administrative scope of PS01 contains the roles S(PSO1) =
{ENG1, PE1, QE1, PL1}.

In [2], there are the following role hierarchy operations:
AddRole(a,r,∆r, ∇r), DeleteRole(a,r), AddEdge(a,c,p) and Dele-
teEdge(a,c,p), where a is the administrative role which initiates the
operation, ∆r is the set of immediate children of the new role r, ∇r
is the set of immediate parents of r, c is the child role, and p the
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c

PE1 QE1 PE2 QE2

PL2PL1

DIR

ENG2ENG1

ED

E

DS0

PS01
c

c

Figure 7: Role Hierarchy.

parent role. The transitivity of the partial order must be preserved
by these operations: If an edge is deleted from the role hierarchy,
edges that had previously been implied by transitivity may need
to be added. If an edge is added, transitive edges may need to
be deleted. Role deletion has the side effect of inserting transitive
edges that would be lost and role insertion deletes any transitive
edge that arises.

The admin-authority relation in the RHA4 model is dynamic.
It can be changed indirectly (as side effect of role hierarchy op-
erations) or directly by the operations AddAdminAuthority(a,a’,r)
and DeleteAdminAuthority(a,a’,r) which add and remove the tuple
(a′, r) respectively to and from the admin-authority relation.

3.2 RHA4 by graph transformations
We present next the specification of the RHA4 model by graph

transformations. We specify the role hierarchy by a graph in which
an edge r → r′ specifies r′ ≤ r. An edge r

∗→ r′ specifies a
(possibly empty) path through the

role hierarchy from r to r′. An edge r
+→ r′ specifies a non-

empty path through the role hierarchy from r to r′. The admin-
authority relation is modeled by an edge a

c→ r for each pair
(a, r) ∈ admin-authority. Figure 8 shows the role hierarchy of
Figure 7 as a graph.

c

PE1 QE1 PE2 QE2

PL2PL1

DIR

ENG2ENG1

ED

E

DS0

PS01
c

c

Figure 8: Role Hierarchy Graph.

The property of administrative scope can be expressed by the
conditional constraint adScope(a, r) = (n, x) in Figure 9. It re-
quires that each maximal path starting from r up the hierarchy in-
cludes a role rc controlled by role a. The positive constraint x
of adScope(a, r) = (n, x) requires that there must be a node in
the path from rx to r which is controlled by a. This is specified
by the required c-labeled edge from a to node rc. To ensure that
only paths of maximal length are considered, the negative part n of
adScope(a, r) (the dotted role rz) forbids a predecessor role for
the role rx. Then, a role r is in the administrative scope of a if and

x

rr

a a

rz

∗

∗

rx

r

∗

∗
r

rx

c c
c

Figure 9: Conditional Constraint for administrative scope with
admin-authority.

only if the role hierarchy graph satisfies the conditional constraint
adScope(a, r) for r and a. Consider as an example the adminis-
trative role PS01 and the roles PE1 and PE2 for which we check
adScope(PS01, PE1) and adScope(PS01, PE2), respectively.
Each path upwards from PE1 includes the role PL1, which is con-
trolled by PS01. Therefore, the conditional constraint is satisfied
and PE1 is in the administrative scope of PS01. By contrast, the
paths upwards from PE2 include the roles PL2 and DIR, neither
one controlled by PS01. Therefore, the conditional constraint is
not satisfied for PS01 and PL2.

If the roles r and rc in the conditional constraint adScope in
Figure 9 were required to be distinct, we label the edge rc → r
by + instead of ∗ to require a non-empty path from rc to r. This
conditional constraint is denoted by adScope+.

Next, we present the rule expressions for the role hierarchy op-
erations AddRole(a,r,∆r,∇r), DeleteRole(a,r), AddEdge(a,c,p) and
DeleteEdge(a,c,p). The following two rule expressions specify the
insertion and the deletion of a role to and from the role hierarchy.

• addRole(a,r,∆r,∇r):
adScope(a,∇r) and adScope+(a, ∆r) :
addRole; as long as possible clean

• deleteRole(a,r):
adScope+(a, r) :
complete(r); deleteRole

deleteRole

ra

p1 np

c1 cm c1 cm

p1 np

a

ra a

caddRole

Figure 10: Graph rules for administrative operations for roles.

The guard adScope(a,∇r) and adScope+(a, ∆r) of the rule
expression addRole(a,r,∆r,∇r) requires that the conditional con-
straint adScope be satisfied for the node a and each node pi ∈ ∇r,
and that the graphical constraint adScope+ be satisfied for the node
a and each node ci ∈ ∆r. Then, the graph rule addRole in Fig-
ure 10 is applied once. The graph rule inserts a new role r be-
tween the parent roles ∇r = {p1, ..., pn} and the children roles
∆r = {c1, ..., cm} and connects them by edges. In the figure, we
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use the dots between nodes p1 and pn as well as c1 and cm as an
abbreviation for the sequence of nodes. The graph rule connects
the new role r and the administrative role a with a c-labeled edge,
that is, the pair (a, r) is added to admin-authority. After the new
role r is inserted by the rule addRole, the graph rule

clean in Figure 11 is applied as long as possible to the role hier-
archy. The rule clean removes an edge between two roles r1 and
r2 if there is a path between them through another role r. The rules
are applied also to c-labeled edges.

+
2r

r
1r

2r

r

1r

2r

r

2r

r

1rcomplete(r)

+clean+ 1r

+

Figure 11: Rules to ensure a non-redundant and transitive role
hierarchy.

The guard adScope+(a, r) of the rule expression delete-
Role(a,r) ensures that r is in the administrative scope of a. Then,
the graph rule complete(r) in Figure 11 is applied once. This graph
rule ensures that all transitive relations are preserved between the
parent and children nodes of r (again, also c-labeled edges are con-
sidered by this rule). The graph rule complete(r) adds an edge
between each parent node and each child node of the role r. The
double circle around r1 and r2 specifies the complete set of parents
of r (i.r.,∇r) and children of r (i.e., ∆r), respectively. The edges to
and from r are not deleted by this rule. After the rule complete(r),
the graph rule deleteRole in Figure 10 is applied to delete the role
r (all the edges incident to the node r are automatically deleted).

The following two rule expressions specify the insertion and the
deletion of an edge between two roles in the role hierarchy.

• addEdge(a,c,p):
adScope(a, c) and adScope(a, p) :
addEdge; as long as possible clean

• deleteEdge(a,c,p):
adScope(a, c) and adScope(a, p) :
complete(c); complete(p); deleteEdge;
as long as possible clean

The guard adScope(a, c) and adScope(a, p) checks if the par-
ent and children role of the edge are in the administrative scope
of the administrator role a. If this is true, the graph rule addEdge
in Figure 12 adds the edge between node p and c. Then, the rule
clean in Figure 11 is applied as long as possible to remove edges
not necessary due to transitivity.

The rule expression deleteEdge(a,c,p) has the same guard as the
expression addEdge(a,c,p) to ensure that p and c are in the admin-
istrative scope of a. The successive applications of the rules com-
plete(c) and complete(p) ensure that all the edges implied by the
transitivity of the deleted edge are added. After these edges are
added, the edge between p and c is deleted by the graph rule dele-
teEdge in Figure 12.

deleteEdge
a

p

c

a

p

c

a

p

c

a

p

c

addEdge

Figure 12: Graph rules for administrative operations for edges.

We consider now the modification of the relation admin-
authority, which we introduced by c-labeled edges in the role hi-
erarchy graph. First we consider direct updates by the operations
AddAdminAuthority and DeleteAdminAuthority.

• addAdminAuthority(a,a’,r):
adScope(a, r) and adScope(a, a′) and
not adScope(a′, r):
addAdminEdge; as long as possible clean

• deleteAdminAuthority(a,a’,r):
adScope(a, r) and adScope(a, a′) :
complete(a’); deleteAdminEdge

The guard of the rule expression addAdminAuthority(a,a’,r) checks
that the roles r and a′ are in the administrative scope of a. Since
it is redundant to assign the role a′ to a role that is already con-
trolled by a′, the guard not adScope(a′, r) requires that r not be
in the administrative scope of a′. If all the constraints of the guard
are satisfied, the graph rule addAdminEdge in Figure 13 adds a c-
labeled edge between the roles a′ and r. The rule expression ends
with the graph rule clean which removes all the edges not explicitly
necessary due to transitivity.

The rule expression deleteAdminAuthority(a,a’,r) specifies the
deletion of a c-labeled edge between an administrative role a′ and
a role r. The guard ensures that both a′ and r are in the administra-
tive scope of a. The graph rule complete(a’) adds the edges which
concern a′ but are not drawn explicitely because of transitivity. Af-
terwards, the graph rule deleteAdminEdge in Figure 13 deletes the
c-labeled edge between a′ and r.

deleteAdminEdge

a

a

a’

r

c

a

a’

r

c

a

a’

r

a’

r

addAdminEdge

Figure 13: Graph rules for changing admin − authority.

The role hierarchy operations may require an indirect update of
the admin-authority relation. The specification of the rule expres-
sions maintain the administrative scope and eliminate redundancy
with the rules clean and complete. Therefore, no special treatment
is necessary for this case. This is different from [2], where a list
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of indirect updates is given, that is not investigated in terms of ex-
haustiveness, i.e., whether other indirect updates may be necessary.
These investigations are not necessary when graph transformation
expressions are considered.

4. SARBAC
This section concerns the specification of the SARBAC (scoped

administration of role-based access control) model by graph trans-
formations. SARBAC extends the RHA4 model to include con-
straints and relations between users (or permissions) and con-
straints. The user-role assignment is specified by a binary relation
UA ⊆ U × R, where U is the set of users. The permission-role
assignment is specified by a binary relation PA ⊆ P × R, where
P is the set of permissions.

4.1 SARBAC Constraints
A constraint in SARBAC is just a set of roles. A user satisfies a

constraint if she is (possibly indirectly) assigned to all those roles,
while a permission satisfies a constraint if it belongs (maybe in-
directly via role inheritance) to all those roles. More formally, a
constraint in SARBAC is a subset C of the roles

R in the role hierarchy and is denoted by
∧

C. A SARBAC
constraint

∧
C is satisfied by a user u if C ⊆↓ {r ∈ R|(u, r) ∈

UA}. The constraint
∧

C is satisfied by a permission p if C ⊆↑
{r ∈ R|(p, r) ∈ PA}.

The corresponding graphical constraints are given in Figure 14.
These two constraints are simple positive graphical constraints, i.e.,
they do not have a condition and must be satisfied always. A user

user

p c

u c ru c
*

rp c*
satisfaction(p,c)

permission

satisfaction(u,c)

Figure 14: Positive graphical constraints for SARBAC con-
straints.

u satisfies a SARBAC constraint
∧

C for C ⊆ R if the constraint
user satisfaction(u,c) is satisfied by the role hierarchy graph for
each c ∈ C. A permission p satisfies

∧
C if the constraint per-

mission satisfaction(p,c) is satisfied by the role hierarchy graph for
each c ∈ C.

4.2 SARBAC Relations
To model user and permission assignment to and removal

from roles, the SARBAC model defines the relations ua −
constraints ⊆ R × A(R) and pa − constraints ⊆ R × A(R),
where A(R) is the set of antichains in R. A set A ⊆ R is
an antichain of R, if it contains only unrelated roles, i.e., for all
x, y ∈ A, x = y or x �≤ y and y �≤ x. The roles in the an-
tichain A are a prerequisite for a user to activate a role. An ad-
ministrative role a can assign a user u (permission p) to a role r if
(r, A) ∈ ua − constraints (resp. (r, A) ∈ pa − constraints)
so that u (p) satisfies the constraint

∧
A and r is in administrative

scope of A. In the sequel, we focus on the relation ua-constraints.
The permission-role assignment can be modeled in a similar way.

The following rule expressions specify the assign and revoke op-
erations for users. We model the ua-constraints relation for each
pair (r, A) by edges r → a labeled preua for each role a ∈ A.

• assignUser(a,u,r):
adScope(a, r) and

userSatisfaction(u,{c ∈ R|r preua→ c}):
assign user

• revokeUser(a,u,r):
adScope(a, r) :
revoke user

a r

u

r

u

r

u

a r

u

auser

revoke

user

assign

a

Figure 15: Graph rules for administrative operations for users.

The graph rule assign user inserts an edge between the user and
the role. This edge specifies the user-role assignment. The guards
of the rule expression assignUser ensure that the role is in the ad-
ministrative scope of the user and that u has all the roles required
for getting role r. The graph rule revoke user removes the edge
between the user and the role. The guard ensures that only an ad-
ministrative role a revokes a user from a role that is in the admin-
istrative scope of the administrative role a.

The relation ua-constraints can be updated by an administrative
role by adding or removing a tuple (r, A) to or from the relation.
The following rule expressions specify these operations.

• addUARelation(a,r,c):
adScopec(a, r) and adScopec(a, c):
add(r,c)

• deleteUARelation(a,r,c):
adScopec(a, r) and adScopec(a, c):
delete(r,c)

add(r,c)

r c
pre au r c

r c
pre aur c

delete(r,c)

Figure 16: Graph rules for direct updates to ua − constraints.

Thr role hierarchy operations addRole, deleteRole, addEdge and
deleteEdge may influence the ua-constraints relation. For example,
the insertion of an edge between two roles in an antichain relates
the roles and one role must be deleted from the antichain. In [2]
the effects of the role hierarchy operations on the ua-constraints
relation are given. The effects can be modeled by rule expressions
as well similar to the other operations of the SARBAC model.

5. BENEFITS OF THE GRAPH-BASED
FRAMEWORK

In previous sections we have shown that the concept of adminis-
trative scope can be specified in a graph-based security framework.
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Besides a visual specification, whose advantages or disadvantages
may be a question of taste, we present in the sections the bene-
fits of the graph-based specification of the administrative scope by
explaining the points beyond the approach given in [2].

5.1 Operational Semantics
No operational semantics for the SARBAC operations is de-

scribed in [2]. Crampton and Loizou write that they “intend to give
operational semantics for RBAC96/SARBAC by writing pseudo
code functions to implement the SARBAC operations”. The spec-
ification of the SRBAC operations by graph transformation rules
and rule expressions as shown in the previous sections gives the
SRBAC operations a formal operational semantics. Such a graph-
based specification can be executed by means of graph transforma-
tion tools (e.g., AGG [12]).

Besides the sequential operational semantics presented in this
article, graph transformations provide concepts of parallelism for
a parallel execution of operations [8]. To ensure that any parallel
application can be achieved by a sequential application of the rules
independent of the application order, the rules applied in parallel
must be parallel independent. Two applications of rules to a graph
are parallel independent if the first rule does not delete anything
needed by the second rule and it does not create anything that the
NAC of the second rule forbids. The same must be satisfied for the
second rule w.r.t. to the first rule. In the case of parallel indepen-
dence, the application of rule p1 at match m1 and the subsequent
application of rule p2 at match m2 (now in the result graph of the
first application) results in the same graph as the application of rule
p2 at match m2 and the subsequent application of rule p1 at m1 in
the resulting graph.

By exploiting the parallelism results in our SARBC graph trans-
formation model, we can, for example, apply all the clean rules
(see Figure 11) in parallel and obtain a consistent hierarchy in one
parallel step. Also the complete rules can be applied in parallel. On
the other hand, the rule complete and the rule delete edge cannot
be applied in parallel to the same roles, since the application order
in this case is crucial. After deleting an edge between two roles
by delete edge, the complete rules can no longer be applied to the
deleted edge.

5.2 Constraints and their Verification
Crampton and Loizou write in [2] that “it is not possible in SAR-

BAC to define arbitrary constraints on user-role and permission-
role assignments”. For example, the requirement that a user cannot
be assigned to a role R if the user is currently assigned to some
specified role R′ is not expressible in SARBAC constraints. In-
stead of extending the concept of SARBAC constraints, the authors
propose to use an access constraint language such as RCL2000 [1]
to specify these kinds of constraints.

neg
u uR R R’

Figure 17: A negative constraint not expressible in SARBAC.

We propose the use of graphical constraints for the specifica-
tion of constraints. Like RCL2000, graphical constraints can ex-
press arbitrary access control constraints. Besides their expressive
power, graphical constraints have the advantage of theoretical con-
cepts suitable to verify the constraints with respect to the specified
SARBAC model. A verification becomes possible since both the
SARBAC operations and the SARBAC constraints are based on a

common formal semantics based on graph transformations. The
negative graphical constraint in Figure 17 models the requirement
mentioned above. It is a negative graphical constraint which forbids
the assignment of a user to role R if the user is currently assigned to
role R′. Furthermore, graphical constraints can be used to formally
specify informal requirements assumed in [2]. For example, [2] as-
sumes in the RHA3 model, that a) the relation admin-authority is
antisymmetric, b) a �≤ r for each pair (a, r) in admin-authority, or
c) that each role r ∈ R is controlled by at most one administrative
role. Figure 18 shows the corresponding negative graphical con-
straints. Constraint a) is a negative graphical constraint expressing
the antisymmetry of the relation admin-authority, constraint b) is
a negative graphical constraint for the requirement that a �≤ r for
each pair (a, r) in admin-authority, and constraint c) is negative
and specifies that each role r ∈ R is controlled by at most one
administrative role.

neg

a c
c + a c

a ra r

a r a r

a’

a)
c +

c+

c

+

b)

c)

c

c c

c

neg

neg

Figure 18: Negative graphical constraints for RHA3 require-
ments.

Formal results in the graph-based security framework enable the
verification of requirements expressed in graphical constraints with
respect to the graph rules used to specify the SARBAC model op-
erations. As an example, consider the constraints in Figures 17 and
18 as well as the graph rule assign user in Figure 15 (which is part
of the rule expression assigUser(a,u,r). The graph rule can assign a
user u to a role r provided that the requirements for administrative
scope are satisfied. This rule may create a system state that violates
the constraint in Figure 17 by assigning a user to role R that is cur-
rently assigned to role R′.
An automatic construction in [6] modifies graph rules in such a
way, that they do not create any state in which they may violate a
graphical constraint. Instead of a detailed introduction in this for-
mal construction (which can be looked up in [6]), we give only the
result of its application to the graph rule assign user and the graphi-
cal constraint in Figure 17. The modified rule (shown in Figure 19)
has an additional application condition (drawn as dashed elements).
This application condition specifies that the graph rule can be ap-
plied to a user u and role R only if the user is not already assigned
to role R′.

a

u uR’

user

assign

a R R

Figure 19: The consistent graph rule.

103



5.3 Administration of SOD-constraints
Crampton and Loizou write in [2] a “priority is to complete the

SARBAC model by incorporating administration of separation of
duty constraints into SARBAC”. We present a solution in the con-
text of graph-based framework by graphical constraints using the
example of static separation of duty, i.e., a set of particular roles
are never assigned to the same user. We model the conflicting rules
by a node cr which connects all the conflicting nodes. The graph-
ical constraint to express separation of duty is given in Figure 20.
It is a negative graphical constraint which forbids a user assigned
to two (or more) roles which are in separation of duty conflict (we
have shown only the graph X of the constraint c : X → X).

cr

r1 r2

u

Figure 20: Negative graph constraint for separation of duty.

The administration of the separation of duty constraints, i.e., the
creation or deletion of conflicting role sets and the assignment and
removal of single roles respectively to or from these sets is done by
the following rule expressions:

• addConflictRole(a,r,cr):
adScope(a, r) and adScope(a, cr):
addConflictRole

• deleteConflictRole(a,r,cr):
adScope(a, r) and adScope(a, cr):
delConflictRole

• newConflictSet(a,cr):
newConflictRole

• removeConflictSet(a,cr):
adScope(a, cr):
removeConflictRole

The graph rules used in the rule expressions are shown in Figure 21.

removeConflictSet

cr r

cr rcr r

cr r

cr

cr

delConflictRole

newConflictSet

addConflictRole

Figure 21: Graph rules for the administration of separation of
duty conflicts.

6. CONCLUSION
In this paper we have shown how the SARBAC model can bene-

fit from a specification by graph transformations. Formally defined
transformation rules provide an operational semantics for the dif-
ferent operations in SARBAC and an expressive access constraint
language together with verification concepts.

Elsewhere ([6]) we have shown how to specify other role ad-
ministration models ([11, 7]) with our graph transformation frame-
work. A common specification formalism for these different ad-
ministration models will facilitate a more detailed comparison of
their properties.

A distinction between weak and strong revocation for users and
permissions becomes necessary in SARBAC if the set of roles as-
signed to a user is not an anti-chain. We have already investigated
weak and strong revocation in the context of a graph-based frame-
work in [6] and plan to check the applicability of those results also
in the SARBAC model.
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