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The day-to-day operations of corporations and government agencies rely on
inter-operating software artifacts (e.g., legacy, commercial-off-the shelf (COTS),
government-off-the-shelf (GOTS), databases, servers, etc.) and client applica-
tions, which are brought together into a distributed environment running mid-
dleware (e.g., CORBA, JINI, DCOM, etc.). In such a distributed environment,
the interactions occur via the application programmer interfaces, APIs, of the
software artifacts, which are available for use by any and all client applications,
without restriction. However, security administrators are interested in control-
ling access by client applications to the methods of these artifact APIs as defined
within a security policy. Specifically, they are interested in controlling: who
(which client) can invoke which methods of artifact APIs at what times and how
(data values). The “who” refers to whether the role and/or the security clearance
allows the method to be invoked. The “which” refers to an exact definition, for
each API, of the methods that can be invoked by each client (based on role or
clearance level). The “what” refers to the time period that the method can be
invoked, allowing invocation constrained based on time. Finally, the “how” refers
to the actual parameters of the invocation, constraining based on value(s). This
dissertation will present the findings of our research effort on the unification of
role-based access control (RBAC) and mandatory access control (MAC) into a
security model and associated security enforcement framework that provides a
level of security assurance. Specifically, we provide the means for security officers
to concretely and precisely specify a security policy for a distributed application
using a resource-based unified RBAC/MAC security model which will allow fine
grained control to the API’s of software artifacts (operating in a environment
running middleware, e.g., CORBA, JINI, etc.). The RBAC/MAC security model
features and accompanying security assurance assertions can be utilized to con-
trol access to artifact APIs (methods) based on role, clearance/classification, time
limits, and data value constraints. In this dissertation, we report on the research
results of this work, focusing on: a detailed discussion of our current unified
RBAC/MAC security model - core definitions and role delegation; a review of
our accompanying security enforcement framework that utilizes our custom se-
curity resource that supports the RBAC/MAC model; an in-depth examination
and proof of current security assurance guarantees, checked at design time and
run time, which provides for both safety (nothing bad can happen) and liveness
(all good things can happen)in attainment of the security policy; and a review of
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our prototyping efforts. In addition, we report on related research and highlight
the contributions of the research.
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Chapter 1

Introduction

Research and development for access control of data and databases has evolved
into three approaches: mandatory access control (MAC), discretionary access
control (DAC), and role-based access control (RBAC). The MAC approach is
based on security classification of objects and clearance of subjects [30, 65, 70,
107, 122] using the Bell and La Padula security model [13]. A classification
(CLS) or clearance (CLR) refers to a security level (e.g., typically unclassified
(U), confidential (C), secret (S), and top secret (T) forming a linear order U <
C < S < T) that are assigned to the data (each object has a CLS) and users
(each subject has a CLR) which represents a degree of sensitivity. For subjects,
the sensitivity represents the level of access; for objects, it represents the level
of protection. A subject (user) can access an object (data item) if the subject’s
CLR dominates an object’s CLS, which denotes that CLR ≥ CLS. The multi-level
secure MAC support is at the core of the requirements for trusted computing [32].

The DAC approach allow security emphasis to place the security privilege def-
inition process in the hands of both security administrators and authorized users,
adding discretion to the process. The RBAC approach [69, 111, 118, 130, 131], a
refinement of DAC, aligns the security definition and management process to the
end-user, providing alternative roles to capture responsibilities. DAC and RBAC
together support the concept of delegation, which allows one user to transfer the
responsibility of a role to another authorized user. In administratively-directed
delegation, an infrastructure outside the direct control of a user mediates dele-
gation [68]. In user-directed delegation, a user (playing a role) determines if and
when to delegate responsibilities to another user to perform the role’s permis-
sions [79], with administrators continuing to establish the security policy and
maintain delegation authority. Administration of DAC, RBAC, and MAC with
delegation must be controlled to ensure that policy does not drift away from its
original objective [114].

As security approaches, MAC, DAC, and RBAC must provide capabilities for
the definition of security privileges (design time) and the enforcement of those

1



2

security privileges in a dynamic environment (runtime), and these capabilities are
embodied in a number of key concepts. First, a security policy represents for an
application its set of security requirements, including: access control approach,
identification of what needs to be protected, anticipated users, user privileges,
and so on. Second, authorization, a design time action, is critical to a security
policy since it is concerned with the actions taken by a security officer/engineer (or
other security administrative/management personnel) to establish (grant/revoke)
privileges for each user (or user role) based on various criteria. These security
privileges must adequately support a user’s activities, i.e., least-privilege, access
to only that information necessary to accomplish one’s tasks and no more [42].
Third, authentication, a runtime action, is the enforcement of the security policy,
focuses on who the users are, and when authenticated, limiting their actions
to their precise authorized privileges. Finally, and most importantly, security
assurance is required to insure that the security-policy-definition process yields a
consistent result that is constantly attainable when the policy is realized within
the enforcement framework for an active and working application.

1.1 Security Assurance

MAC is governed by strict rules for subjects (users) to access stored informa-
tion or objects. These rules lack flexibility because, for assurance reasons, there
can be no comprise of classified information. Government classified information
rules are detailed in the JOS Orange Book Security Requirements [35]. Specif-
ically, in MAC, assurance-related properties represent the association between
subjects and objects in terms of their read and write capabilities with respect to
security levels (T, S, C, U). In the Simple Security Property, a subject can read
information that has a classification that is at the same or lower clearance level
of the subject [13], which is referred to as read down - no read up, i.e., can read
at the same or lower level. By using Simple Security, the chance of comprise is
eliminated. There is a basic assumption that subjects will only share informa-
tion at the appropriate levels. In the Strict *-Property, a subject can only write
information at exactly the level for which it is cleared [91], which is referred to
as write-equal. For example, if one is sending an email on a SECRET machine,
the only machine that can receive that email is another SECRET machine, re-
gardless of the information contained in the message. There is no flexibility; this
is a closed, single-level system.

In the Liberal *-Property, a subject with a low clearance level can write to
an object with the same or higher clearance level [13, 91], which is referred to
as write up - no write down. Such a capability is known as a blind write since
the subject can modify an object without seeing it. This protects the flow of
classified information since low-level information can be sent to a higher level,
but higher classifications can never be sent to a lower. For example, it would not
be a security violation to update unclassified information from an unclassified



3

machine to a database on a SECRET machine (write up). However, it would be
a security violation to update unclassified information from a SECRET machine
because the information flow is from high to low (no write down), regardless of
the information itself. Finally, in the Simple Integrity Property, a subject can
write information at its own level and lower [18], which is referred to as write
down - no write up. Such a capability can lead to information leakage which
is the transfer of information from a higher to a lower security level. From a
security administrative perspective, a subset of the MAC properties are chosen
to define the security behavior for each application. Specifically, an application
could choose to support the Simple Security Property for read and the Liberal-*
Property for writes. Alternatively, an application might decide on a read-equal
policy (only see objects that have CLSs that exactly matches the subject’s CLR)
in conjunction with Strict-* to have a write-equal policy. The choice that is made
depends on the security requirements for an application.

In addition, assurance must focus on application behavior with respect to its
defined and realized security policy, to attain safety (nothing bad will happen
to a subject or object during execution) [62] and liveness (all good things can
happen to a subject or object during execution) [5]. Safety and liveness are
what all security systems and security mechanisms try to achieve. We approach
maximum safety when we isolate systems. In a network or distributed system
if we isolate or disconnect all computers from the network we no longer have a
network. This maximizes safety as nothing can bad can happen over a network
connection, but there is no liveness, we cannot do what we need to do, which
is unacceptable. A common real-world example of a balance between safety
and liveness is the firewall. A firewall allows a protected system to operate in a
network or as part of a distributed system with protections from those who would
do bad things. A firewall provides safety and allows for some liveness. However, a
firewall can also be very strict and prevent a system user from using some utilities
or preventing access to some necessary data, which can be frustrating. A firewall
tries to maximize both safety and liveness, but sometimes liveness gives way to
safety. Security assurance in terms of specific MAC properties, and safety and
liveness is be one of the foci of this dissertation, and has been widely cited as one
of the paramount security concerns [4, 45, 71, 72].

1.2 Security Solutions

There are many different realizations and solutions of security as presented
in Section 1.1 in support of MAC, DAC, and RBAC. Historically, security has
been data focused, concentrating on protecting information in databases. Com-
mercially, MAC has been supported in database management systems such as
Oracle [83], and as part of the SQL-2 ANSI/ISO standard. In SQL-2, DAC is
supported with the ability to grant privileges (i.e., INSERT, DELETE, UPDATE,
and SELECT) to users against an entire schema or individual tables. Moreover,



4

delegation is support, giving the ability to pass on granted privileges to other
users. In addition, MAC has been supported in Sybase [107], and has been the
subject of concentrated research [30, 65, 70, 122]. While these solutions are all
relevant, the reality is that all of these solutions have an impedance mismatch
between the secure data repository and the end-user application. Specifically, the
majority of graphical-user interfaces (GUIs) for application-users have adopted an
object-oriented or component-based solution via an object-oriented programming
language (e.g., Java, C++, Ada95, etc.). As such, the GUI uses and manipulates
object-oriented data via operations (methods), which is in a dramatically differ-
ent format than the tabular data found in database systems such as Oracle and
Sybase. This is the impedance mismatch, between the security of the information
in the repository vs. the requirement to access this information via operations
(methods) that focus on usage. To address this impedance mismatch, there has
been a significant number of efforts that consider the inclusion of security (MAC,
DAC, and RBAC) into object-oriented database systems [20, 69, 99, 128] and
programming languages [9, 25, 48, 93, 102, 121].

In the object-oriented database area, there has been work by [99] that pro-
poses a model of authorization for next-generation database systems. In this
model, an authorization is defined as a 3-tuple (s, o, a) of subject, authorization
object, and authorization type. Roles, organized into a lattice, are defined to
reduce the number of authorization subjects. Authorization types and objects
are also organized into lattices, with authorization as either implicit/explicit,
strong/weak, or positive/negative. The work has also been extended by adding
the class-superclass structure and by introducing an integer-based priority sys-
tem as an overriding mechanism [20], and includes the concept of a permission
tag that indicates the allowable and prohibited actions for a subject. In another
effort, an object-oriented data model with multi-level security (Secure ORION)
is proposed [128]. In this model, a set of security properties are held for ob-
jects, classes, methods, aggregate classes and objects, and relationship objects,
so that each entity is assigned a security level. The ability of a subject to exe-
cute a method also depends on the security levels defined on the subject and the
method. A role-based security scheme is proposed in [69], with roles organized
into a network, to provide a finer-grained classification of the users of a DBMS
via an object-oriented approach. To define authorization, one specifies, for each
access right and for each data level, the roles included (permitted the access right)
and the roles excluded (denied the access right).

In the object-oriented programming and design areas, there has been work on
aspects as a mechanism for object-oriented models to extend a given class with
new capabilities, including, roles [102]. In this work, new operations and data are
possible for new roles. Another effort allows different classes in an application
to have different subjective views [48], similar in concepts to views in a database
system, but applying the concept to public interfaces of classes. Other work has



5

focused on composing these subjective views with only scant mention of imple-
mentation support in C++ [93]. An effort on role-based access control for object
technology [9] works at a class level; when different roles require specific access
to a class, subclasses for the roles are created to turn-on/turn-off the appropriate
access. Shilling and Sweeney [121] have extended the object-oriented paradigm
in three steps: defining multiple interfaces in object classes to allow an object
to realize different and independent sets of behaviors; controlling the visibility of
instance variables to provide information hiding; and, allowing multiple copies
of an instance variable to occur within an object instance. The extensions are
used to create view classes and view instances which can then provide the view
facility. Finally, work in [25] defines a role-hierarchy and focuses on assigning
and prohibiting methods of classes on a role-by-role basis, effectively allowing
different roles to have customized access to the public interfaces of classes.

As we enter the 21st century, the emphasis on strictly an object-oriented
design and development approach has been forced to evolve to react to the
reality of the structure and organization of modern applications. Specifically,
the focus on developing new applications from scratch has been replaced with
an approach that assembles the software artifacts (i.e., legacy, commercial-off-
the-shelf (COTs), government-off-the-shelf (GOTS), databases, new/old clients,
new/old servers, etc.) that exist in a distributed environment into large-scale in-
teroperating applications. These applications require stakeholders (i.e., software
architects, system designers, security officers, etc.) to architect and prototype
solutions that facilitate the interoperation of new and existing applications in a
network centric environment. The software artifacts all interact with one another
via middleware, which is available in a wide range of platforms (DCE [92, 106],
CORBA [87, 133, 137], DCOM/OLE [74], J2EE/EJB [105, 132], JINI [6, 134],
and .NET [103, 115]). All of these approaches are focused on the application pro-
grammer interfaces (APIs) of the software artifacts that are available for use by
client applications. These APIs of the software artifacts represent the functional-
ity that is provided, and these interfaces may be written in different programming
languages (e.g., C, C++, Java, etc.), or be defined using a common interface def-
inition langauge (e.g., IDL in CORBA). In a middleware approach, the software
artifacts are referred to as resources that provide services (i.e., APIs) available for
use by clients and other resources in the inter-operating environment. Regardless
of the approach, the incorporation of security has often been an afterthought,
dependent on programmatic effort rather than a cohesive mechanism seamlessly
incorporated into the underlying technology.

Specifically, modern middleware platforms like CORBA, .NET, and J2EE,
do offer a set of limited security capabilities. For example, CORBA, has se-
curity features for confidentiality, integrity, accountability, and availability [87].
However, these capabilities in CORBA are really a meta-model, intended to rep-
resent a breadth of security capabilities representing different security models,
paradigms, and techniques, rather than actual security like MAC, DAC, and
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RBAC. Platforms such as .NET and J2EE provide actual security capabilities
via their respective runtime environments via their APIs, and include capabili-
ties for code-based access control for security embedded in actual program code,
secure code verification and execution which focuses on runtime security support,
secure communication of the exchange of messages and information, and secure
code and data protection to detail cryptographic capabilities [29]. But direct sup-
port for MAC, DAC, and RBAC is not provided in a direct fashion, rather they
must be programmatically developed on an application-by-application basis. A
second foci of this dissertation is to provide a unified security model that is built
on middleware concepts (resources and the services that they provide to clients)
that includes select RBAC, MAC, and DAC capabilities, to yield an enforcement
framework that guarantees a degree of security assurance.

1.3 A Unified RBAC/DAC/MAC Model/Enforcement Framework
for Assurance

The foci of this dissertation is two-fold. First, we seek to provide security mod-
eling and enforcement techniques that integrate features of RBAC, DAC, MAC,
temporal access, and value-based access to allow selective access to the APIs
(methods) of software artifacts by users (executing client applications) and other
artifacts through a security infrastructure and framework. Second, we strive to
attain security assurance as embodied by the Simple Security and Simple Integrity
Properties, and through safety and liveness. To balance our security modeling
and assurance research, we detail our prototyping experiences that clearly illus-
trate the utility and feasibility of our efforts. In the remainder of this section, we
discuss our approach to providing a security model and enforcement framework,
the relevance of our security work with the proliferation of the Internet and the
reliance on distributed operation, and we conclude this section by revealing the
expected contributions of this work.

1.3.1 Problem Approach

Our intent is to provide a security model and framework in support of inter-
acting software artifacts and client applications, that is focused about the APIs of
the software artifacts. We assume that the interactions occur using a middleware
platform (e.g., CORBA, .NET, etc.) where software artifacts (resources) register
their APIs (services) of methods with a look up service that is available for dis-
covery by client applications. In terms of security capabilities, we seek to provide
an integrated, unified security model that incorporates features of RBAC (roles
for client applications), DAC (delegation of authority among users), and MAC
(clearance for users and classifications for roles and methods). The authorization
(granting/revoking) of methods to roles establishes the security privileges, and
can be constrained by security levels (e.g., U, C, S, TS), the time period when the
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method can be invoked, and the values under which the method can be invoked.
Once established, roles can be authorized to users, when then limit the actions
of the users within the client applications.

The authorized privileges (of methods to roles and of roles to users) must sat-
isfy specific security assurance requirements at design-time (during the security
policy definition) and at runtime (by the enforcement framework). Thus, the uni-
fied RBAC/DAC/MAC security model must provide assurance, and will include
capabilities for: domination of MAC security levels (e.g., role dominates method,
user dominates role, etc.), simple security and integrity properties for MAC, con-
sistency checks in terms of valid time interval for delegation, and overall, the
attainment of a degree of safety and liveness. The RBAC/DAC/MAC security
model provides the primitives for security officers to define a security policy, and
provides design-time security assurance checks. These checks insure consistency
and correctness in security policy definition. The RBAC/DAC/MAC security
model is supported by an associated runtime enforcement framework, which pro-
vides the mechanisms and infrastructure for software artifacts to securely interact
with clients and one another. The enforcement framework also offers runtime se-
curity assurance checks (also formally defined) which insure consistency of the
realized security policy. To realize the security model and enforcement frame-
work, we employ a middleware-based abstract model to allow the security to be
integrated into the distributed application environment in a manner that is con-
sistent with the interacting software artifacts and clients. To demonstrate the
feasibility and utility of our approach, we have prototyped the model and asso-
ciated enforcement framework with accompanying security policy administrative
and management tools.

Specifically, as shown in the right hand side of Figure 1, we assume a dis-
tributed environment comprised of software artifacts (e.g., legacy, COTs, GOTs,
databases, servers, etc.) that interact with each other and client applications via
middleware (e.g., in our case, Visibroker (CORBA) and JINI). All of the inter-
actions between artifacts and clients occur in a controllable fashion via APIs of
the software artifacts; which are typically available for use by any and all client
applications, without restriction. Our RBAC/DAC/MAC security model and en-
forcement framework supports secure access to APIs, allowing a security officer
to define a security policy that precisely grants and revokes the methods of the
artifact APIs to users executing client applications, which is then enforced across
the distributed application. In particular, as indicated in Figure 1, we provide the
means to control access to artifact APIs, namely, to the invocation of methods by
users (via client applications), based on: the role of the user, the delegation
status of the role, the security clearance level of the user, the domination
of the classification level of the role over the level of the method, the time period
when a user playing a role can invoke the method, and the method signature
values for which a user playing a role is constrained to invoke the method. While
there has been noteworthy research in each of these individual areas (role-based,
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delegation, clearance/classification, time limited and value constrained access)
the combination of all areas and support within a distributed setting has not
been considered to the extent which we have been pursuing, particularly from
the context of security policy definition and assurance.
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COTS
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Database
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– Data (what)
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Figure 1: Security Assurance Problem

In the introduction to this chapter, and in Sections 1.1 and 1.2, we have mo-
tivated and discussed MAC, DAC, and RBAC in detail. Briefly, we do the same
for time-based and value-based access in the context of our approach. Controlling
access based on time requires temporal constraints for RBAC that limit a role by
duration or have a time triggered activation [3] and temporal authorizations on
objects [14]. Both of these works acknowledge the need to control when a user
can access an application or parts of an application. For our research, tempo-
ral enforcement (at runtime) can insure, for example, that a user playing a role
can only invoke a method if the user’s temporal constraint is consistent with the
temporal constraint on the method, insuring that only authenticated users au-
thorized to a role can invoke a method at a specific time. The ability to provide
access control based on data can be utilized to dictate what a user can and can-
not do with respect to actual values. Research in this area includes value-based
constraints for mutual exclusion and four-eyes only are critical to prevent error
or misconduct [37], and separation of duty efforts for workflow systems using
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consistency constraints [16]. For our research, value-based constraints limit the
authorization of a method to a role by particular values for a methods parameters,
to define the values under which an invocation is allowed. For example, Clerk
and Supervisor roles are both authorized to the “cash checks” method, with the
clerk limited to $100 and the supervisor $200, which is enforced at runtime on
the basis of an authenticated user’s role.

1.3.2 Relevance and Impact of Research

Security engineering is most often an after thought in the design and im-
plementation of software systems. With the proliferation of the Internet and the
reliance on distributed operation, organizations can no longer ignore security fail-
ures or shortcomings, and security needs to be elevated to a first-class citizen in
the overall requirements, design, development, and maintenance process. We be-
lieve that the relevance and impact of the research in this dissertation is focused
on the following six points:

• Security assurance is critical to the success of information sharing and our
unified RBAC/DAC/MAC security model and enforcement framework with
its security assurance capabilities addresses critical aspects of information
sharing.

• We provide security assurance and management to access control in dis-
tributed environments. Our security framework and infrastructure for a
distributed setting is based on an abstract middlware model, and as such,
provides flexibility, portability, and platform independence.

• Current government systems achieve mandatory access controls and multi-
level security by separating systems rather than providing a true MAC
capability. Our formal RBAC/DAC/MAC security model unifies a user-
focused approach (roles) with delegation with more stringent security levels
(MAC) to address government requirements, and be available for other
suitable organizations and domains.

• The incorporation of multi-level security is especially relevant, particularly
in military and governmental (e.g., homeland security) applications.

• Our usage of RBAC, delegation (DAC), the inclusion of constraints based
on time and data values, and security clearance/classifications, offers a
flexibility of usage that spans a wide breadth of capabilities and domains.

• Our approach can be utilized ot federate users and resources in a distributed
environment which is normally security prohibitive, and incorporate multi-
ple security policies (RBAC, DAC, MAC) and assurance capabilities with
targeted changes to artifacts and clients at the source code level.
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The relevance of this work can be applied directly to the U.S. Military. In re-
cent years, with shrinking budgets and force structure, the U.S. Military has
become more reliant on the civilian sector for operational support and use of
the Internet to execute necessary tasks. This requires interaction between legacy
software systems, COTS, GOTS, and shared databases. There has only been
limited success in this area due to the restrictive security requirements imposed
on government systems. To demonstrate the utility and relevance with respect
to this domain, the majority of the examples given throughout this dissertation
involve the Global Command and Control System, GCCS [46].

Another relevant potential domain for our security research is the dynamic
coalition problem, DCP, (NEED REFS) where there is the need to dynamically
federate users and resources while simultaneously maintaining information as-
surance. For our purposes, DCP has inherent security risks incurred as a result
of federating participants in a crisis quickly, yet still needing to share informa-
tion. Crises will be concurrent and involve a different set of players and resources
depending on the type of crisis and the political situation. Coalitions will be com-
prised of military, civilian, government and non-government agencies that need
to share information. As each crisis evolves, so will the information sharing needs
and security requirements. For these reasons, a security solution also needs to
be rapidly deployable, easy to use, platform independent, and allow for dynamic
policy configuration.

1.3.3 Expected Contributions

One most significant expected contribution of this dissertation is the uni-
fied RBAC/DAC/MAC security model based on an abstract middlware-based
paradigm. This model embodies the significant aspects of security assurance (see
Section 1.1) and has several unique features. First, this security model unifies
RBAC, DAC and MAC. MAC is considered too inflexible to use in most situ-
ations because of the rigid requirements of MAC according to the Bell and La
Padula Model [13]. Second, is our usage of time-based constraints for temporally
controlled access. By defining time-periods of access, or lifetimes on objects and
subjects, we are able to establish a window of access of when objects are available
to subjects. Other approaches have used temporal constraints in various ways to
control processing, but requiring a lifetime and the possibility of an additional
time constraint allows for very fine-grained access control in a time sensitive and
dynamic environment not realized before. A third feature of this security model
is the use of value-based constraints to govern access to methods based on param-
eter values. The public methods that are part of the APIs are normally available
to all in an unconstrained manner. Our approach provides fine-grained access to
methods, allowing multiple roles which utilize the same public method to have
different constraints under which an invocation can occur. This runtime check,
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an aspect of assurance, is enforced on every method invocation. Finally, by sup-
porting the delegation of authority from user to user (on a role-by-role basis), we
provide a level of DAC in our approach, yielding a unified model that includes
features from three of the major security approaches.

Another significant expected contribution is a proof of safety and liveness for
our unified RBAC/DAC/MAC model under a certain set of assumptions. Using
our model, we will prove that an authorized user can execute any authorized
task, and only those authorized tasks, without violating the established security
policy, which is safety (nothing bad will happen to a subject or object during
execution) [62] and liveness (all good things can happen to a subject or object
during execution) [5]. This is done thought a series of eight safety and liveness
proofs which are based on eight formally defined security assurance rules. The
security assurance rules, SARs, are derived from the security model by a com-
bination of proven lemmas and security model definitions. These SARs dictate
what is required for a user to become a user and for a user to execute (invoke
a method) a portion of a user role. These SARs also cover the additional se-
curity assurance requirements necessary for role delegation. Simply put, these
rules govern what is acceptable and unacceptable for both runtime and design
time activities, and as such embody one aspect of the security assurance of our
approach. The second assurance aspect embodied in these rules, and part of our
unified model, focus on the MAC Simple Security and Simple Integrity Proper-
ties. Simple Security dictates that a subject can read information at the same
or lower clearance level (read-down/no-read-up) and Simple Integrity Property
dictates that a subject can write information at its own level and lower (write-
down/no-write-up). This is very important when dealing with objects that can
be manipulated by a combination of read or write methods.

The final expected contribution of this dissertation is the proof of concept pro-
totype. We have realized our unified RBAC/DAC/MAC security model, based
on an abstract middlware model, in support of interacting software artifacts and
client applications. In order to accomplish this, we leveraged middleware capa-
bilities, to easily and seamlessly incorporate our security model and associated
enforcement mechanism. RBAC/DAC/MAC security model. We have demon-
strated a degree of flexibility, portability, and platform independence in our solu-
tion approach, through a prototype that utilizes multiple middleware platforms
(i.e., JINI, CORBA), databases (Oracle, Access), and operating systems (Linux,
NT, Win), in support of applications in health care, a university setting, and
military acquisition/logistics.

1.4 Credits

There have been a number of articles that have been published related to the
research presented in this dissertation, and I was primary author on all but three
of the articles. These first three articles represent the initial ideas (first article
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on RBAC for distributed, middleware based applications) and the security model
(second article) with MAC and delegation (DAC) capabilities (third article):

• Phillips, C., Demurjian, S., and Ting, T.C., “Security Engineering for Roles
and Resources in a Distributed Environment,” Proc. of 3rd Annual Intl.
Systems Security Engineering Association Conf., Orlando, FL, March 2002.

• Liebrand, M., Ellis, H., Phillips, C., Demurjian, S., Ting, T.C., and Ellis, J.,
“Role Delegation for a Resource-Based Security Model,” in Data and Appli-
cations Security: Developments and Directions II, E. Gudes and S. Shenoi
(eds.), Kluwer, 2003. This is a revised version of the paper: Liebrand, M.,
Ellis, H., Phillips, C., Demurjian, S., and Ting, T.C., “Role Delegation for
a Distributed, Unified RBAC/MAC,” Proc. of 16th IFIP WG 11.3 Working
Conf. on Database Security, Cambridge, England, July 2002.

• Demurjian, S., Ting, T.C., Balthazar, J., Ren, H., Phillips, C., and Barr,
P., “A User Role-Based Security Model for a Distributed Environment,” in
Data and Applications Security: Developments and Directions, B. Thurais-
ingham, R. van de Riet, K. Dittrich and Z. Tari (eds.), Kluwer, 2001. This
is a revised version of the paper: Demurjian, S., Ting, T.C., Balthazar, J.,
Ren, H., Phillips, C., and Barr, P., “Role-Based Security in a Distributed
Resource Environment,” Proc. of 14th IFIP WG 11.3 Working Conf. on
Database Security, Scoorl, The Netherlands, Aug. 2000.

The second three publications involve the security assurance aspects of the re-
search.

• Phillips, C., Demurjian, S., and Ting, T.C., “Towards Information Assur-
ance in Dynamic Coalitions,” Proc. of 2002 IEEE Info. Assurance Work-
shop, West Point, NY, June 2002.

• Phillips, C., Demurjian, S., and Ting, T.C., “Security Assurance for an
RBAC/MAC Security Model,” Proc. of 2003 IEEE Info. Assurance Work-
shop, West Point, NY, June 2003.

• Phillips, C., Demurjian, S., and Ting, T.C., “Safety and Liveness for an
RBAC/MAC Security Model,” in Data and Applications Security: Devel-
opments and Directions III, E. Gudes and S. Shenoi (eds.), Kluwer, 2004.
This is a revised version of the paper: C. Phillips, S. Demurjian, T.C. Ting,
“Assurance Guarantees for an RBAC/MAC Security Model,” Proc. of the
17th IFIP 2002 11.3 WG Conf., Estes Park, CO, August 2003.

The final three publications involve the enforcement framework (first two) and the
applicability of our research to complex applications such as dynamic coalitions
(third article):
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• Phillips, C., Demurjian, S., and Bessette, K., “A Service-Based Approach
for RBAC and MAC Security,” to appear in Service-Oriented Software
System Engineering: Challenges And Practices, Z. Stojanovic and A. Da-
hanayake (eds.), Idea Group, 2004.

• Demurjian, S., Bessette, K., Doan, T., and Phillips, C., “Concepts and
Capabilities of Middleware Security,” to appear in Middleware for Commu-
nications, Q. Mohammed (ed.), John-Wiley, 2004.

• Phillips, C., Ting, T.C., and Demurjian, S., “Information Sharing and Se-
curity in Dynamic Coalitions,” Proc. of 7th ACM Sym. on Access Control
Models And Technologies, SACMAT, 2002, Monterey, CA, June 2002.

The material in this dissertation builds on the ideas included in the following
research:

• Osborn, S., “Mandatory Access Control And Role-Based Access Control
Revisited,” Proc. of the 2nd ACM Workshop on RBAC, Nov. 1997.

• Sandhu, R., “Role-Based Access Control,” in Advancements in Computer
Science, Academic Press, 1998.

• Ferrailo, D.and R. Kuhn, “Role-Based Access Controls,” Proc. of 15th
NIST-NCSC National Computer Security Conference, Oct. 1992

• Demurjian, S., and Ting, T.C., “Towards a Definitive Paradigm for Security
in Object-Oriented Systems and Applications,” J. of Computer Security,
Vol. 5, No. 4, 1997.

Note that these are the key articles; throughout the dissertation other relevant
articles will be cited as necessary.

1.5 Organization of the Dissertation

The remainder of this dissertation contains six chapters. Chapter 2 details our
research interest and defines the problem by providing background information,
specifically, an introduction to the Global Command and Control System (GCCS)
and the Dynamic Coalition Problem (DCP). Both DCP and GCCS are the major
motivation behind the research presented herein. In addition, Chapter 2 contains
a conceptual examination of different access controls approaches, and a discussion
of related work in all relevant areas.

Chapter 3 contains a formal definition of our unified RBAC/DAC/MAC se-
curity model, which is one of the main contributions of this dissertation. The
core model definitions as given in Chapter 3 focus on the RBAC and MAC ca-
pabilities of the model, and comprise the majority of the chapter. We introduce
and formalize concepts of lifetimes, sensitivity levels, and the assumptions of an



14

abstract middle model. These constructs are used to build security assurance
rules and authorizations which will be presented in Chapter 5 and provide the
basis for our security enforcement framework and prototype (see Chapter 6). The
chapter details the design assumptions required to clearly establish the security
model environment and security assurance requirements. This chapter concludes
with a discussion of other security models and related work.

Chapter 4 extends the security model to support DAC with the support for
role delegation. Role delegation adds a discretionary aspect to our security model
which improves flexibility when defining a security policy. This chapter provides
a comprehensive analysis of role delegation capabilities and the accompanying
security challenges. The chapter includes formal model definitions for role dele-
gation that extends and supplements the RBAC/DAC/MAC model. The chapter
also details role delegation revocation rules, and concludes with related delegation
work.

Chapter 5 contains formal definitions of our security assurance guarantees
in terms of time, and the simple security and integrity properties of MAC, and
provides proofs of safety and liveness. The main objective of this chapter is to
explore assurance for the RBAC/DAC/MAC security model and build security
assurance rules. The chapter focuses on which methods of APIs can be invoked
based on user/user role relationships, sensitivity levels, data values, and temporal
considerations. Assurance rules are used at both design time (security policy
definition via the RBAC/MAC model) and at runtime (enforcement framework)
to provide a confidence level to security officers regarding the attainment of their
security policy during definition and execution. The chapter presents a series of
theorems that corresponds to each assurance rule, proving that each rule attains
a degree of safety and liveness under our assumptions.

Chapter 6 reviews our security enforcement framework and prototype, fo-
cusing on the conceptual underpinnings of processing and its realization in a
working system. The chapter details the security resource that embodies the
RBAC/DAC/MAC model, and its associated services that required to meet the
security model, which results in an enforcement framework software architecture.
The remainder of the chapter concentrates on the security research prototype
that has been constructed, and includes a detailed discussion of the available
administrative security tools for a security officer to define and manage a policy.
Flow diagrams and bit-maps clearly illustrate the processing capabilities of the
working system.

Finally, Chapter 7 summarizes the research contributions and future research.
The chapter begins with a review of the distributed application security prob-
lem and our approach. We then highlight the contributions of our research with
potential real-world applications and the goals achieved. We conclude by ref-
erencing a number of future research areas where finer-grained security can be
achieved and different techniques can be implemented.



Chapter 2

Background Concepts

In this chapter we provide background information that is relevant for all of
the chapters in the remainder of this dissertation. Our emphasis is on setting the
context for the work presented herein; as necessary, background information will
be introduced in subsequent chapters in support of the material presented in the
chapter. This chapter focuses on relevant application domains that embody the
interacting software artifacts and clients (see Chapter 1). Specifically, our focus in
Section 2.1 is to delineate the critical challenges of the dynamic coalition problem,
DCP, with an emphasis on information assurance, which will be illustrated by
utilizing real-world scenarios and examples derived from a military version of
DCP, in particular the Global Command and Control System, GCCS, as presented
in Section 2.2. Using the material in Sections 2.1 and 2.2 as a basis, we re-
examine RBAC, DAC, and MAC, for their relevance in support of DCP and
GCCS in section 2.3. To conclude this chapter, in in Section 2.4 we briefly review
middleware security capabilities for CORBA, .NET, and Java, and in Section 2.5
we detailed other related research.

2.1 The Dynamic Coalition Problem

Today, information sharing is critical to almost every institution. There is
no more critical need for information sharing than during an international crisis,
when international coalitions dynamically form. In the event of a crisis, whether it
is humanitarian relief, natural disaster, combat operations, or terrorist incidents,
international coalitions have an immediate need for information. These coalitions
are formed with international cooperation, where each participating country offers
whatever resources it can muster to support the given crisis. These situations can
occur suddenly, simultaneously, and without warning. Often times, participants
are coalition partners in one crisis and adversaries in another, raising difficult
security issues with respect to information sharing. Our specific interest is in
the Dynamic Coalition Problem (DCP) [8, 97, 119], with an emphasis on the

15
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information sharing and security risks when coalitions are formed in response to
a crisis. As motivation for our security model, we define the DCP and explore
its intricate, challenging, and complex information and resource sharing, and
security issues, utilizing real-world situations, which are drawn from a military
domain.

Information security was recognized with the advent of the first multi-user
computer system for sharing information resources, and as we begin the 21st
century, this need has become more significant as countries join together to se-
curely share information at the global level [112]. Information sharing in a secure
fashion is a daunting challenge, since we must deal with information content that
ranges from the simple to the complex (e.g., intelligence reports, financial infor-
mation, travel records, citizenship records, military positions and logistical data,
map data, etc.) in an interoperable environment that is constantly changing.
Recently, numerous mandates have emerged to address information sharing. For
example, a vital part of U.S. National Security Strategy states, “whenever pos-
sible we must seek to operate alongside alliance or coalition forces, integrating
their capabilities and capitalizing on their strengths” [82]. This concept is refined
further in our Department of Defense Directives [77] and NATO’s interoperability
and security concerns [80].

The same information sharing and distributed security concerns have driven
many of the U.S. Military’s automation plans and initiatives. However, “cur-
rently, there is no automated capability for passing command and
control information and situational awareness information between
nations except by liaison officer, fax, telephone, or loaning equip-
ment” [80]. As motivation, our interest is in security assurance for informa-
tion sharing that is required in response to a crisis, e.g., natural disaster (earth-
quake), humanitarian relief (refugee camps), international incidents (terrorism or
spy plane), war (Gulf War), or combat operations other than war (Bosnia). Fig-
ure 2 depicts five near simultaneous crises in the European Theater. While these
crises each have a different set of counties involved, there must be information
sharing between both the countries acting on a crisis and the crises themselves,
to effectively manage resources throughout the theater of operations. With every
crisis solution, there is an accompanying information sharing risk. To handle a
crisis, a coalition – an alliance of governmental, military, civilian, and interna-
tional organizations – is formed with the primary concern being the most effective
way to solve the crisis.

The Dynamic Coalition Problem(DCP) can be defined as the inherent
security, resource, and or information sharing risks that occur as a result of the
coalition being formed quickly, yet still finding information and resource sharing
a necessity for crisis resolution [119]. The events of September 11 have clearly
illustrated the DCP and the difficult issues facing coalitions in information shar-
ing. In the three months following that event, the death toll went from 6,000 to
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3,040, and most of the reduction has been traced to names being listed in mul-
tiple databases in the direct aftermath (within days and hours of the event), as
reported on CNN.com, which for our purposes, corresponds to multiple databases
and inconsistencies in reporting and updating information. The lack of manage-
ment and sharing of information in this regard clearly illustrates one of the main
problems facing a coalition in a crisis. In addition, information must be securely
shared in an easy, efficient, scalable, and reliable way, to facilitate the tasks of the
dynamic coalition without compromise and loss of confidentiality or violations of
security policy; this is security assurance.
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Figure 2: Near Simultaneous Crises.

2.2 Military: Global Command and Control System (GCCS)

Military forces are often used in crisis situations. In the U. S. Military, infor-
mation or capabilities sharing is difficult even within our own military services
(Army, Navy, Air Force, Marines, and Coast Guard). The problems are exac-
erbated in a situation where a coalition (possibly disparate national interests)
is quickly formed [23]. As coalitions become more complex, the risk of security
violations increases, which includes risk to classified intelligence information. In
some cases, classified information may have to be downgraded temporarily or
sanitized for the coalition, but such an act must be done within established secu-
rity guidelines. The needs of information sharing and security must be balanced
in time of crisis. Security mechanisms need to work in joint and combined en-
vironments. Joint refers to two or more branches of the Armed Forces (Army,
Navy, Air Force, Marines, or Coast Guard) and combined is the participation of
military from more than one country. Lines of communication include logistic
and informational for all aspects of the crisis. Figure 3 depicts the information
requirements between multiple countries to support combined operations [66].
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Figure 3: General Coalition Architecture (5 countries).

The information sharing problem is bigger than just classifying information,
encrypting data paths, or interoperability; the problem also includes controlling
multinational access to resources and adapting to different generations of technol-
ogy. The current inability to effectively bring international users and their assets
(resources) together in a crisis in both an efficient and secure way is very unfor-
tunate, since the actual infrastructure (e.g. localized networks and information
resources) can be easily and quickly linked to form an intranet.

Logistics

Air Defense/Air Operations

Fire Support

Network and Resource
Management

Intelligence

GCCS  - Joint/Coalition -Maneuver

Combined Database

Figure 4: Combined Operations Information Sharing.

Since the U.S. and its military are often called upon in a crisis to supply
necessary goods and services, or a unique capability quickly, there must be a
system to coordinate this action. The U.S. Military uses the Global Command
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and Control System (GCCS) to manage such activities. Unfortunately, GCCS
does not satisfy all of the needs of a coalition. In a crisis, the flow of critical
information and the access to necessary resources (Figure 4) is as depicted in
Figure 5 [19]. At the present time, GCCS is not designed for the international
environment. To be useful internationally, GCCS would need to include a security
system that could make it a coalition asset while respecting both coalition and
U.S. security policies.
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Figure 5: Coalition Artifacts and Information Flow.

GCCS is the automation tool that provides a local U.S. commander opera-
tional awareness of the situation (crisis) in near real-time through integrated sets
of services as given in Figure 6. GCCS provides information-processing support to
planning, mobility, sustainment, and messaging by bringing together 20 separate
automated systems in over 625 locations worldwide [58] in a private (physically
separate) network. In Figure 6, we present Joint and Component services used to
query and change databases or deliver information. The Joint services are used
by service members and contain various methods to query the databases of Joint
Headquarters and NATO. The Component services allow service members access
to individual component (Army, Navy, Air Force, and Marines) command and
control systems as depicted in Figure 5. Because GCCS is a U.S. only system
on its own private network, security and information sharing issues are different
than in a coalition. In order to make the GCCS and other command and con-
trol systems acceptable for coalition use, from our analysis, several information
sharing and security issues need to be addressed.

First, we believe that user roles can be a valuable technique to support mul-
tiple crisis situations like GCCS. Currently, there are no established roles in
GCCS, yet individual service members do play specific roles in a crisis. GCCS
users have one user profile that includes all of the permissions that allows ac-
cess to resources within GCCS as determined by their position, supervisor, and
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Figure 6: GCCS Services.

clearance level. In an international coalition, inconsistencies in organizational
structure and security clearances will have to be mapped. Currently, users have
far more access to resources and information than is required for their positions.
Also, a host administrator builds and maintains the user profiles and only receives
clearance verification from the security officer. If coalition partners are to share
information and resources, there must be a mechanism to restrict access to only
necessary information based on a user’s role in a crisis. Using static profiles in
a crisis, where user requirements are changed or added quickly, is very inappro-
priate since security is under the control of the host administrator and not the
security officer. Using roles can eliminate these profile manipulations by allowing
the security officer to change the characteristics of a role or add roles to users
dynamically. Then, the host administrator will not need to be involved, since
the security officer will have the authority (role permission) to enforce security
policy and authorizations. Further, roles can be established dynamically by the
security officer to constrain coalition partners to only that information necessary
to execute their role. This meets the information security needs of the coalition
by using the principle of least privilege.

Second, in analyzing DCP in general and GCCS in particular, it appears that
time controllable access for information security is required. Typically, when an
individual is assigned an organization, the user profile is provided for an indef-
inite period of time (much longer than a single crisis). For example, users are
often assigned to a crisis for a fixed period of time and allowing access before or
after that fixed period of time is a security violation. Recall that as the crisis
evolves over time, the participants and hence their roles, must also change. Time
constraints by role can be used on resources to fix time windows that facilitate
database updates or resource allocation. This is the case with GCCS’ Joint Op-
erations Planning and Execution System (JOPES). According to policy, Junior
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Planners must schedule air movements of equipment by air weeks in advance. If
an airlift is required inside this window, only Senior Planners can make adjust-
ments, and that is a different role. Currently, these constraints are not automated
in JOPES since roles are not clearly established to assign constraints. However,
it is clear that the need to constrain access based on time is an important and
needed capability. Third, it seems apparent that in addition to controlling access
to information by time, control of actual values is crucial.

For example, the common operational picture (COP) is a capability of the
GCCS. COP provides a near real-time mapping of all deployed units worldwide.
Figure 7 displays a simulated COP screen capture from a command and control
system, where military units are placed onto a digital map, by doctrinal unit
symbols [24]. The COP itself takes advantage of inputs from different intelligence
sources to map both friendly and enemy positions. Certainly, if one does not
have the need to know enemy positions, then there should be constraints on that
information. In addition, constraints using map coordinates as parameters, can
limit the map view to just the crisis area for a specific user, playing a particular
user role. This would limit a non-U.S. coalition partner to viewing force positions
only in the area of concern, allowing the user to do his/her job without access
to potentially damaging information. Clearly, constraints on resources that focus
on allowable values can protect sensitive information while still allowing coalition
partners to effectively participate in the crisis.

Common PictureCommon Picture

Figure 7: Common Operational Picture.

Finally, in order to manage the GCCS in a joint environment with U.S. forces
and multinational partners, the organization and interoperability of coalition as-
sets to yield a distributed environment are a paramount concern. Currently, in
multinational crisis situations, there is no dynamic way to effectively bring users
and their automation assets (resources) together in an efficient way, as depicted
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in Figures 2, 3, 4, and 5. Security systems need to allow for quick administra-
tion, but still constrain U.S. and non-U.S. users from committing security policy
violations. Clearly, users and resources must be federated in a crisis. By using
middleware services like JINI or CORBA, resources from coalition partners can
be federated with GCCS to make it a more robust and flexible coalition system.
In addition, any security solution for DCP must also include an enforcement
framework that allows for the management of federated resources and constrain
users to security policy limits, limits that also need to be flexible. Our interest in
GCCS is to investigate techniques to secure this system in a manner that would
make it a coalition asset and respect both coalition and U.S. security policies.

2.3 Access Control: RBAC, DAC, and MAC

Successful information security in DCP will require a detailed and intricate
security policy that defines what is considered acceptable and unacceptable with
respect to access control (what operations are performed on what resource, by
who) and information flow (system behavior with information objects) [35]. Au-
thorization, authentication, and, in particular, enforcement mechanisms, will all
be an integral part of any coalition. Discretionary and mandatory access control
offer many of the capabilities that are needed by coalitions. In the upcoming
discussion, we raise the critical issues related to the access control and their
relevance to the DCP.

Discretionary access control (DAC) is a means of restricting access to objects
based on the identity of the subject and/or groups to which they belong. The
controls are discretionary in that a subject with a certain access permission is
capable of passing that permission to any other subject [32]. When information
is not sensitive, this type of control is adequate, in that it gives the individual
control over distribution and manipulation. In a dynamic coalition, DAC must be
carefully administrated to insure that the integrity of information is maintained,
and to limit the ability to pass on access restrictions by changing ownership,
which is easy to do [110]. For example, when using DAC for DCP, it would be
inappropriate for an information owner to give unrestricted access to another
user without oversight, since that user could then potentially pass unrestricted
access on to another user, without the permission of the original owner. In a
coalition, local commanders are not allowed to release information controlled by
other owners without the permission of the Defense Intelligence Agency or a
Foreign Disclosure officer [119]. Consequently, DAC security policies must be
stringently managed and controlled for DCP. Role-based access control (RBAC),
a realization of DAC, regulates a user’s access to certain resources based on a user
role. A user role is a collection of permissions the user needs to accomplish that
role. A user may have multiple roles, with each role having a set of permissions.
By controlling access using roles and permissions, a security policy can be realized
that limits access to the need-to-know information/resources.
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RBAC has been consistently touted for its ability and utility in support of
non-traditional security applications, where flexibility of usage is crucial [113, 130,
131]. Not only does RBAC provide the best flexibility, it is the best for supporting
the concept of least privilege, which is a key concern to the military and coalitions.
Least privilege allows for access to only that information which is necessary to
accomplish one’s tasks [42]. In a dynamic coalition, countries are forced to share
information and the least privilege is one way to limit access, and consequently,
limit potential compromise or misuse. Using RBAC raises some difficult issues
when dealing with coalitions such as: who creates the roles? who determines
permissions (access)? who assigns users to roles? are there constraints placed on
users within those roles? Currently, the U.S. Military has clearly defined crisis
roles for U.S. participants; establishing coalition roles are as much a technical
issue as a policy/political issue. There are different RBAC approaches that allow
for fine-grained role definition, including our own work [25, 28, 96, 97]. A temporal
approach defined in [17] is relevant to DCP due to its changing environment and
the shifting of responsibilities. Likewise in [16, 41, 53], the importance of using
constraints for identity and authorizations leads to improved granularity on access
controls.

Mandatory access control (MAC) is a means of restricting access to objects
based on the sensitivity level (classification) of the information object and the
formal authorization level (clearance) of the subject [32]. MAC is required when
classified information is involved. Classified information is national security in-
formation that needs special protection against unauthorized exposure [38]. This
is not just sensitive information that an organization might want to protect for
personnel privacy reasons, this is information that is considered damaging to na-
tional interests. There are three classification levels for information: “Top Secret”
- expected to cause exceptionally grave damage to national security; “Secret” -
expected to cause serious damage; and “Confidential” - expected to cause some
damage [38]. When classified information is used, there are very strict access rules
based on the Bell-LaPadula Model of enforcement, which establishes a relation-
ship between classifications of objects and clearances of users and the authorized
flow of information [13]. The details of these information flow and security re-
quirements are detailed in [33]. These security requirements apply only to U.S.
information. Different countries not only have different security requirements,
but also apply different security labels to security objects making translation be-
tween sensitivity levels a problem for dynamic coalitions. Furthermore, it will be
a tedious and difficult task to carefully define the classification levels for coalition
partners, particularly since coalitions will likely include past adversaries. There is
a strong likelihood that for coalitions, access control will be accomplished jointly
using MAC and DAC. DAC provides discretionality within the boundaries of
MAC, and access is only allowed when both DAC and MAC rules are satisfied.
Incorporating MAC into RBAC models would allow for the flexibility of RBAC,
while observing the strict rules of MAC, providing the best of both approaches
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in support of DCP. Strict control and flexibility are very different concepts, but
can be brought together and prove useful [91, 109]. Data association and aggre-
gation is a problem with any access control mechanism, particularly MAC. A set
of data values seen together may have a higher classification value than taken
separately (name, unit, and location), a situation likely to occur in coalitions,
and there must be security mechanisms sophisticated enough to handle this type
of scenario [108].

2.4 Middlware Security Solutions

To complement our own approach to middleware security, it is relevant to
examine the emerging trends for support of security in a middleware setting.
Modern middleware platforms like CORBA [87], .NET [75], and J2EE [123]
have begun to offer security capabilities. In assessing these three approaches [29],
the major difference between the support for security in CORBA (as opposed to
its realization in an actual CORBA product, e.g., Visibroker) and security in
.NET/J2EE is that the CORBA security specification is a meta-model. As a
meta-model, the CORBA security specification generalizes many security mod-
els and associated security principles (wide variety of security capabilities at the
model level - RBAC, MAC, encryption, etc.) with language independence (not
tied to Java, C++, .NET, etc.). .NET and J2EE provide actual security capabil-
ities via their respective runtime environments, and APIs which provide security
functionality. The remainder of this section explores the security capabilities of
CORBA, .NET, and J2EE.

The CORBA Security Service Specification [87] focuses: confidentiality (lim-
iting access to authorized individuals/programs), integrity (limiting modifications
to authorized users), accountability (requiring users to be responsible for their
actions) and availability. These aspects are part of the CORBA security reference
model, given in Figure 8. In this model, the access control process verifies a sub-
ject’s permissions (via privilege attributes) against the target objects which are
managed via control attributes (grouped as domains) and operations (grouped
as rights). Privilege attributes are associated with the user (principal), and the
permissions tracked for each principal are: identity (user id), role(s), group(s)
that the principal belongs to, security clearance (e.g., secret, classified, etc.), and
target objects and operations to which has been granted access. From a com-
plementary perspective, control attributes track the security privileges for each
target, e.g., an access control list entry for a target object would track the se-
curity characteristics of the object (e.g., security classification), the rights of a
target object (i.e., the set of operations that are available for assignment to each
principal), and the principals who have been authorized.

In order to define privileges for principals and target objects, a security policy
domain is used to represent the scope over which each security policy is enforced,
assuming that an organization may have multiple policies. A security policy
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Figure 8: The CORBA Security Model.

domain permits the definition of security requirements for a group of target ob-
jects, allowing this group to be managed as a whole, thereby reducing the needed
administrative effort. A policy domain hierarchy allows a security administra-
tor to design a hierarchy of policy domains, and then delegate subsets of the
hierarchy (sub-domain) to different individuals. As a meta-model, the CORBA
security specification is robust enough to realize RBAC, MAC, or any other secu-
rity model by customizing the concepts of principal, privilege attributes, target
objects, control attributes, and policy domains to suit the desired security model
nomenclature.

The structural model of security of .NET [75], as represented in Figure 9,
consists of the Common Language Runtime (CLR), the Hosting Environment,
and the Security Settings. For the Hosting Environment to execute an applica-
tion, it must provide the code (via assembly - compiler generated code) and its
identity (via evidence - proof that is supplied regarding identity) in its interac-
tions with CLR. CLR contains the Security System, which realizes the security
policy at enterprise, machine, user, and application domain levels. For an actual
application, the different parameters related to security must be set within the
Security System, as shown by the input from the Security Settings box in Fig-
ure 9, to establish the security at one or more policy levels. For execution to
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occur within CLR, the assembly is used to identify the required permission set
(e.g., allowances given to a piece of code to execute a certain method) and be
provided with evidence from the Host to the Security System.

Figure 9: The .NET Security Structural Model from MSDN 2003.

Code-based access control, a part of CLR’s security, dictates the situations
where access by a code segment to a resource is permitted (prevented). The
determination of what a piece of code is allowed to do is decided by evidence
based security, permissions, and a security policy. During execution, the CLR
reviews evidence of an assembly, determines an identity for the assembly, and
looks up and grants permissions based on the security policy for that assembly
identity (Open Web 2002). Evidence based security determines the origin(s) of
an assembly. At runtime the CLR examines the meta-data of an assembly for
the origin of the code, the creator of the assembly, and the URL and zone (e.g.,
Internet, LAN, local machine, etc.) of the assembly.

The successful verification of evidence, leads to the permissions of code and
code segments, which is the ability to execute a certain method or access a certain
resource. An assembly will request permissions to execute, and these requests are
answered at runtime by the CLR, assuming that the assembly has provided apro-
pos evidence. If not, CLR throws a security exception and an assemblys request
is denied. Since numerous different permissions can be requested, permissions
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are grouped into sets. Permissions and permission sets in .NET are similar to
respectively, privilege/control attributes and domains in CORBA. As such, it
is possible to establish permissions for MAC classification levels for code and
resources, with the access permitted or denied based on the domination of the
code’s classification over the resource’s classification.

Lastly, the grouping of assemblies based on different criteria establishes differ-
ent security policies for different code groupings [75, 88]. In .NET there are the
three different security policies that are supported: enterprise level for a cohesive
and comprehensive policy for the entire enterprise; machine level for different
policies for different machines; and user level to capture individual responsibili-
ties. The .NET framework provides the means to organize security policy groups
of assemblies into hierarchical categories based on the identity that the CLR
determines from the evidence. Once related assemblies have been grouped and
categorized, the actual security policy can be specified as permissions for all as-
semblies in a group. RBAC in .NET extends the policies and permissions concepts
of code-based access control to apply to a user or role. .NET uses role-based secu-
rity to authenticate an identity and to pass on that identity to resources, thereby
authorizing the users playing roles, access to resources according to policies and
permissions.

Security in the Java 2 Enterprise Edition (J2EE) [123] focuses on its ability
to keep code, data, and systems safe from inadvertent or malicious errors. In
Figure 10, the compilation of Java code creates bytecode, whose execution in-
volves the class loader (with bytecode verifier), the Java class libraries (APIs),
and the Java virtual machine (JVM). The JVM manages memory by dynami-
cally allocating different areas for use by different programs, isolating executing
code, and performing runtime checks. The block labelled Runtime System as
shown in Figure 10, contains the Security Manager, Access Controller, and other
features that all interact to maintain security of executing code. Security con-
siderations in J2EE are important for both applications and applets, but applets
are of particular concern for security, since they represent remote code that is
brought in and executed on a local machine. To control applet behavior, Java
uses a sandbox, which forces downloaded applets to run in a confined portion of
the system, and allows the software engineer to customize a security policy. The
Security Manager enforces the boundaries around the sandbox by implementing
and imposing the security policy for applications. All classes in Java must ask
the security manager for permission to perform certain operations. Java only has
two security policy levels, one for the executing machine, and one for the user.
Each level can expand or restrict on all of the permissions of another level, and
there can be multiple policy files at each level.

Permissions in Java are determined by the security policy at runtime, and are
granted by the security policy based on evidence. The evidence that Java looks
for is a publisher signature and a location origin. Permissions are also grouped
into protection domains (similar to security policy domains in CORBA and to
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Figure 10: The Java 2 Platform - Compile and Execute.

security policy files in .NET) and associated with groups of classes in Java in much
the way they are grouped into permission sets and associated with code groups in
.NET. However, in Java, MAC is not automatic; it requires programmatic effort
by the software engineer.

In support of RBAC, J2EE uses the Java Authentication and Authorization
Service (JAAS), which implements a Java version of the Pluggable Authentica-
tion Module framework. Using JAAS, software engineers are allowed to modify
and then plug-in domain/application specific authentication modules [31]. JAAS
currently supports authentication methods including Unix, JNDI, and Kerberos,
akin to OS level security. JAAS can only provide limited impersonation authen-
tication because the user identity is different for the application and OS levels.
User access checking can be done both declaratively and imperatively within
different components of J2EE.

2.5 Related Work

The work presented herein aligns with many ongoing initiatives to solve in-
formation security and interoperability issues. One Department of Defense and
NATO effort is the Command Control Systems Interoperability Program (C2SIP)
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to bring NATO forces together using a database engine that accepts any NATO
country formats [80]. The Air Force Research Laboratory in conjunction with
Verdian is working on a comprehensive information tagging and release policy
called Secure Information Releasability Environment [119]. There are products
like e-Portal and Multi-domain Dissemination System, which concentrate on sen-
sitive information access using secure transmission [119]. In addition, there are
systems that use firewall technology to create secure network connections be-
tween hosts on any unclassified network [60]. All of this work is relevant for
different aspects of DCP, but none address the critical issues of federation of re-
sources/users, and the availability and access of resources/information in a secure
fashion to support dynamic coalitions.

CORBA contains individual security services for confidentiality, integrity, ac-
countability, and availability, but there is no cohesive CORBA service that ties
these and other concepts (authorization, authentication, and privacy) together
into a cohesive security solution. There has been significant progress in dis-
tributed authentication in Kerberos [81] and Cheron [43], security metric analysis
and design [101], Internet security via firewalls [89], role-based access control on
Web-based intranets [112], and security for mobile agents [124, 135]. All of these
have interesting features that are part of an overall middleware security assurance
solution.



Chapter 3

The RBAC/DAC/MAC Security Model

Our main objective in this chapter is to define our unified role-based, dis-
cretionary, and mandatory access control (RBAC/DAC/MAC) security model
using an enforcement framework for software artifacts interacting via middle-
ware [67, 96, 97]. Our approach focuses on which methods of APIs can be invoked
based on the responsibilities and security classification level of a role, the security
clearance level of the user, and the values (parameters), time, and classification
level of the method; all of which must be satisfied in order for the invocation to
successfully proceed. In order to achieve this capability, we provide assurance
that validates the method invocation by a user playing a role in a number of dif-
ferent ways. First, we must guarantee the timeframe of the invocation, to insure
that a user (with one lifetime) playing a role (with another lifetime) can invoke
a method (yet another lifetime) at the current time. In fact, this assurance guar-
antee is partially checked when the security policy is being defined, and must be
rechecked at execution time (i.e., actual method invocation at a specific time).
Second, we must guarantee that the method invocation does not violate MAC
domination. Specifically, we demonstrate that our approach satisfies the Simple
Security Property [13] for invocations of read-only and read-write methods, and
the Simple Integrity Property for invocations of read-write methods. Third, we
must insure that roles that are delegated from user to user satisfy both domina-
tion and lifetime in order for the delegation to occur, which will be considered
in Chapter 4. Finally, for a security policy defined using our RBAC/DAC/MAC
model, we will provide in Chapter 5, a series of theorems that insure a degree
of safety (nothing bad will happen when a user playing a role invokes a method)
and liveness (all good things can happen when a user playing a role invokes a
method). When combining RBAC, DAC, and MAC, MAC requirements take
priority and the enforcement mechanisms must support this requirement.

In the remainder of this chapter, we concentrate on the RBAC and MAC ca-
pabilities, deferring DAC until Chapter 4. Our initial emphasis is on establishing
the assumptions for an abstract middleware model in Section 3.1. Next, the main
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portion of this chapter is presented, namely, the RBAC and MAC capabilities of
the unified RBAC/DAC/MAC security model in Section 3.2. Section 3.2 explores
the entire privilege definition process for roles authorized to invoke methods at
certain times and under specific values, and for users authorized to roles. In addi-
tion, we motivate security assurance guarantees at a conceptual level. Once all of
the concepts and modeling constructs of the security model have been presented,
we examine a detailed set of its assumptions in Section 3.3. Finally, Section 3.4
discusses related research as compared to our own efforts.

3.1 An Abstract Middleware Model

In this section, we present our assumptions for an abstract middleware model
that underlies our approach. Recall that we are assuming that distributed com-
puting applications are constructed from software artifacts (legacy, commercial-
off-the-shelf (COTS), government-off-the-shelf (GOTS), database, and new client/
server applications), which require stakeholders (i.e., software architects, system
designers, security officers, etc.) to architect and prototype solutions that facili-
tate the interoperation of new and existing applications in innovative ways. The
interaction of software artifacts with clients occurs via middleware (e.g., DCE
[92, 106], CORBA [86, 133, 137], DCOM [74], JINI [6] .NET [75, 31], etc.).
Our specific interest is in distributed applications that plug-and-play, allowing us
to plug in (and subtract) new “components” as needs, requirements, and even
network topologies change over time. We refer to these plug-and-play software
artifacts as resources which are comprised of services, which each service con-
tains a set of methods that are published. The resources, their services, and
their methods, interact with clients across the network, and as such, comprise
the distributed resource environment for the distributed application.

To support the interaction of software artifacts with clients and other arti-
facts, we assume the presence of a lookup service as supported in middleware
such as CORBA, JINI, DCOM, etc., which is a clearinghouse for resources to
register services (of methods) and for clients to find services (and their methods).
A lookup service allows stakeholders to construct distributed applications by fed-
erating groups of users (clients) and the resources that they require [6, 28]. With
any lookup service, it is a key assumption that the services are registered or they
will not be readily available and when registered, are only available through the
lookup service. Resources register services provided for use by a person, program
(client), or another resource, including a computation, a persistent store, a com-
munication channel, a software filter, a printer, and so on. Figure 11 illustrates
the interactions of a lookup service, client, and resource in a distributed resource
environment (DRE). In Figure 11, the CourseDB resource joins the lookup ser-
vice, by registering its services (methods). Each service consists of methods (e.g.,
AddCourse) that are provided for use by clients (and other resources). One
limitation of this process is that once registered, all of the resource’s services
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are available to all clients, i.e., there is no security. Figure 11 also illustrates the
steps that are taken when a client requests a service (AddCourse) from a resource
(CourseDB).

Step1. Join. Services are registered

Step2. Client makes request

Step3. Lookup Service returns Service

Step4. Client Invokes AddCourse(CSE230) on Resource

Step5. Resource Returns Results of Invocation to Client
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Service Attributes
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Service
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Figure 11: Join, Lookup, and Invocation of Service.

There are several other relevant assumptions we make about lookup services to
maintain consistency in our security model, which have been captured in detail,
Tables 1 to 4 of Section 3.3, and which we highlight. First, we assume that
the lookup service has adequate protection against intrusion that would cause
failure or subversion of the security model and enforcement framework; once
registered with the lookup service, there is no other way to access resources,
services and methods other than using the lookup service; and all services and
methods can be registered and provide concrete APIs for use by client applictions
and other artifacts (resources). Second, for our purposes, we assume that the
resource dictates the availability of registered resources in terms of time. For
example, in JINI, it is possible to register services for a given time period (milli-
seconds) and for them to continue to be available the resource must re-register
the services before expiration. There may be situations where a client application
may have access to a method (of a service of a resource) obtained at time X, and
tries to invoke the method at time Y (Y later than X) when the method is no
longer available. We assume that the invocation fails since the method is no
longer registered with the lookup service. Thus, it is not an issue from a security
perspective.

Our goal is to leverage the infrastructure of a distributed resource environ-
ment, to support and realize RBAC, DAC, and MAC. In such a setting, we
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propose a software architecture with specialized security resources that interact
with non-security resources and clients, to authorize, authenticate, and enforce
security for a distributed application in a dynamic fashion. We propose a soft-
ware architecture and security specific resources to support authorization (grant
and revoke privileges to clients based on role), authentication (verify the identity
of clients), and enforcement (insure that a client only uses those services of a re-
source to which it has been authorized). Our fundamental objective is to propose
a security solution for distributed applications built around the concepts of clients
and resources, operating within a distributed resource environment. Within this
context we provide RBAC, DAC, and MAC services that limit the programmatic
changes to a resource (software artifact), allowing the resource to dynamically
discover security privileges from security resources when a client attempts access.
This enforcement framework will be discussed in Chapter 6. Our objective for
these assumptions is to set the context for the RBAC/DAC/MAC security model,
since a discussion on the modeling features (design time) inevitably involves the
underlying enforcement mechanisms (runtime).

3.2 RBAC and MAC Modeling Capabilities

This section reviews the RBAC and MAC modeling capabiliaties of our uni-
fied RBAC/DAC/MAC security model, which was initially formalized in [96, 97],
and has been extended with delegation in [67] (see Chapter 4). To set the con-
text for Chapter 5 on security assurnace, where relevant, we discuss conceptual
assurance guarantees for the various modeling constructs. We divide the discus-
sion of the non-DAC features of the security model into four parts: Section 3.2.1
reviews core concepts of a lifetime which is an interval of access and of a MAC
sensitivity level which is a tag of the security concern of the data; Section 3.2.2
formalizes the abstract middleware model as discussed in Section 3.1, defining a
distributed application of artifacts, a resource (artifact), its services, and their
methods; Section 3.2.3 explores authorization issues involving methods to roles,
with associated model constructs to capture all facets of the authorization; and,
Section 3.2.4 mirrors Section 3.2.3, but focuses on authorization of users to roles.

3.2.1 Lifetimes and MAC Security Levels

A lifetime resprents a discrete time interval of access within the security model,
and is an important property since both the lifetime itself, and the intersection of
multiple lifetimes establishes the availability of access of roles to methods, users
to roles, etc. Throughout Section 3.2, and in Chapter 4, every major modeling
construct (e.g., user role, user, resource, service, method, etc.) will have lifetimes,
and the security processes (e.g., authorization of role to method, authentication of
user, delegation of authority, etc.) must all respect the lifetimes of the constructs
in order to succeeed. Formally, we can define:



34

Definition 1: A lifetime, LT, is a time interval with start time (st) and end time
(et), [st, et], et > st, and st/et is of the form (mo., day, year, hr., min., sec.).
Concepts of LTs X and Y are: X . Y means Y.st ≥ X.st and Y.et ≤ X.et;
X /Y ≡ Y .X; If ST = max{X.st, Y.st} and ET = min{X.et, Y.et}, then
Y ∩ X is ∅ if ET ≤ ST or [ST, ET] if ET > ST ; and LT = [ct,∞] is
current time (ct) onward.

From an assurance perspective, LTs can guarantee that definition and access to
privileges will always satisfy time limits.

Figure 12 illustrates the lifetime of a subject X (X.LT) could be compared
to the lifetime of object Y (Y.LT). As given, the maximum amount of time Y is
available to X is the intersection of the lifetimes, X∩Y . Lifetimes in combination
establish availability and provide assurance that an expired subject or object will
not be accessed. Addition, the associations of lifetimes is not absolute, but must
also be considered against the actual time. For example, in Figure 12 we include
the current time (ct), which can be a factor to determine the limitations of the
overlaps. When the current time is before the overlap starts, the entire overlap
is valid. When the current time is after the overlap ends, then the overlap is
irrelevant. When the current time occurs within the overlap interval, then the
current time represents the lower limit of available access time. Using lifetimes
helps establish a “least privilege” policy which means a user only has access to
what is necessary to do their job at a particular time, and nothing more.

X.LT

ct = current time

st = start time

et = end time

X.etX.st

ct

Y.LT

Y.etY.st

X Y

Y.st > X.st Y.et < X.et

Figure 12: LT of X compared to LT of Y.

There are several relevant assumptions we make about lifetimes to maintain
consistency in our security model, as captured in Tables 1 through 4 (see Section
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3.3). In particular, we assume there is no delay time between the time that a
current time is requested by a global clock and the time that a requestor receives
the current time. In reality, there is always a delay (e.g., processing delay, network
transmission delay, etc.) that is involved with asking for a current time; for
analysis purposes of our security model, we assume this delay is zero (i.e., the
current time is returned instantaneously). We also assume that a lifetime cannot
be assigned if the end time (et) is less then or equal to the current time (ct) or
if the only overlap in assignment is when et = st.

In support of MAC, we define concepts that allow the different modeling
constructs (e.g., roles, users, resources, services, methods, etc.) to be tagged
with a level that indicates the degree of security. Formally, we define:

Definition 2: MAC concepts are: Sensitivity levels, SLEV EL = {U,C, S, T}
with unclassified (U), Confidential (C), Secret (S), and Top Secret (T) form-
ing a linear order: U < C < S < T ; clearance (CLR), the SLEVEL given
to users; and, classification (CLS), the SLEVEL given to roles, methods,
etc.

From an assurance perspective, MAC will be used to guarantee the Simple Security
and Integrity Properties [13, 18]. Note that we use the terms sensitivity level
and security level interchangeably. Note also that the term SLEVEL is used
generically, and can be applied to any organization; we use U, C, S, and T to
conform to MAC requirements. If MAC is not required, the default level is U,
which effectively turns off the sensitivity levels. Organizations can define their
own sensitivity levels, as well.

There are several relevant assumptions we make concerning MAC to maintain
consistency in our security model, as captured in Tables 1 through 4 in Section
3.3. In particular, we assume MAC is necessary for all government or government
interfacing information systems, so that MAC constraints are checked with the
invocation of every action (of a subject to objects in classic MAC, and as we will
see shortly, of roles to methods in our approach) to increase assurance. We also
assume only four security levels, but any number can work with a linear ordering.
We do not support a security level hierarchy at this time.

3.2.2 Resources, Services, and Methods

Definitions 3 to 6 are for a distributed application of resources, services, and
methods, with LTs (availability of resource/service/method) and CLSs (SLEVEL
of a resource/service/method). These definitions are key to understanding how
we secure a distributed application. Users should be limited to only what is
necessary to do their job and nothing more. This concept is commonly referred
to as “least privilege.” In a distributed application, a user may have access to
a resource, but access to services and methods will be limited to only what is
necessary.
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Definition 3: A distributed application, DAPPL, is composed of a set of soft-
ware resources (e.g., a legacy, COTS, DB, etc.), R = {Ri|i = 1..m}, each
composed of services, Si = {Sij|j = 1..ni}, each composed of methods,
Mij = {Mijk|k = 1..qij}.

Definition 4: Each method Mijk = [MName
ijk ,MLT

ijk ,M
CLS
ijk ,MParams

ijk ] for i =
1..m, j = 1..ni, k = 1..qij, of Sij of Ri has name MName

ijk , LT MLT
ijk (default

[ct, ∞]), MCLS
ijk ∈ SLEV EL (default U), and MParams

ijk parameters.

Definition 5: Each service Sij = [SNameij , SLTij , S
CLS
ij ] for i = 1..m, j = 1..ni, of

Ri has name SNameij , LT SLTij = [min{MLT.st
ijk },max{MLT.et

ijk }] ∀k = 1..qij,
and SCLSij = min{MCLS

ijk |k = 1..qij}.
Definition 6: Each resource Ri = [RName

i , RLT
i , RCLS

i ] for i = 1..m, has name
RName
i , LT RLT

i = [min{SLT.stij },max{SLT.etij }] ∀j = 1..ni, and RCLS
i =

min{SCLSij |j = 1..ni}.

Note that names, LTs, CLSs, etc., are set when the resource, services, and meth-
ods are registered by a software artifact with the security enforcement framework
middleware (please see Chapter 6). For our purposes, our model captures these
characteristics, and in Definitions 4, 5, and 6, the associations between LTs and
CLSs are an integral part of the security model. From an assurance perspec-
tive, when a resource registers itself, we want to guarantee the dependencies that
exist among the LTs (resource LT spans its services’ LTs; service LT spans its re-
sources’ LT), and the minimality of CLS - least secure (resource CLS is minimum
of its services’ CLS; service CLS is the minimum of its methods’ CLS).

To illustrate the concepts in Definitions 3 to 6, we utilize two services (Joint
and Component) of a Global Command and Control System (GCCS) Resource
(see Section 2.2) as depicted in Figure 13. The GCCS is a military command and
control systems which provides military commanders with near real-time opera-
tional awareness during a crisis. Using this example, we can illustrate both the
LTs (Figure 14) and MAC levels (Figure 15). Figure 14 depicts an example use
of lifetimes for the GCCS. Notice that the lifetime of the resource (Resource.LT)
establishes limits on the lifetimes for the services (Service.LTs), which in turn lim-
its the lifetimes for each method (Methods.LT). Lifetimes provide the assurance
that a method will be neither authorized nor invoked outside of a very strictly
enforced time interval.

In current military information systems, it is the maximum classification of
any element of the system (i.e., object, file, hardware, cryptographic key, etc.)
that determines the overall classification of the system. This approach is good
for security assurance in that it maximizes safety (no bad things can happen).
Unfortunately, a consequence is reduced liveness (all good things can happen), in
that only users with the system-highest clearance can utilize the system. Users
with a lower than system-highest clearance would not have system access. In
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GCCS Resource with Two Services

Joint Service with Methods: a.k.a

Weather (Token); METOC

VideoTeleconference (Token, fromOrg, toOrg); TLCF

JointOperationsPlannning (Token, CrisisNum); JOPES

CrisisPicture (Token, CrisisNum, Grid1, Grid2); COP

TransportationFlow (Token); JFAST

LogisitcsPlanningTool (Token,  CrisisNum); LOGSAFE

DefenseMessageSystem (Token); DMS

NATOMessageSystem (Token); CRONOS

Component Service with Methods:

ArmyBattleCommandSys (Token, CrisisNum); ABCS

AirForceBattleManagementSys (Token, CrisisNum); TBMCS

MarineCombatOpnsSys (Token, CrisisNum); TCO

NavyCommandSystem (Token, CrisisNum); JMCIS

Figure 13: Resource with Services/Methods.

the real world, this means redundant systems and/or a larger number of users
with system-high clearances are needed to satisfy processing needs. Both re-
dundant systems and increased numbers of high-level users are added security
risks. Referring to our example in Figure 15, the GCCS would carry a TOP SE-
CRET classification based on one method, the NATO Message System. Again,
this means that all users would require a TOP SECRET clearance in order to
use GCCS. On the other hand, limiting access to functionality based on MAC
principles would preserve safety and maximize liveness, along with eliminating
the need for redundant systems or increased numbers of folks with system-high
clearance levels. These are a few of the benefits of our approach which emphasize
our security assurance contribution.

There are several relevant assumptions we make about distributed applica-
tions, resources, services, and methods to maintain consistency in our security
model, as captured in Tables 1 through 4 (see Section 3.3). In particular, we
assume distributed applications are constructed from publicly available artifacts
and users can execute the permissions of their role using Application Programmer
Interfaces (API) or public methods. Once registered with our security service,
there is no other way to execute the API or public method for the distributed
application.
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LT.st LT.et 

GCCS Resource 1 Jan 02 31 Dec 02

Joint Service with Methods: 1 Jan 02 1 Dec 02
Weather (); 1 Jan 02 1 Jul 02

VideoTeleconference (); 2 Jan 02 5 Feb 02

JointOperationsPlannning (); 7 Feb 02 1 Nov 02

CrisisPicture (); 5 July 02 1 Dec 02

Component Service with Methods: 1 Jan 02 5 Jul 02
ArmyBattleCommandSys (); 1 Feb 02 4 Jul 02

AirForceBattleManagementSys (); 5 Mar 02 5 Apr 02

MarineCombatOpnsSys (); 1 Jun 02 4 Jul 02

Resource.LT Service.LT Methods.LT
LT

ijk

LT

ij

LT

i MSR

Figure 14: Lifetimes for Resource/Services/Methods.

3.2.3 Authorization: Roles to Methods and Users to Roles

In this section, we focus on the concepts that are necessary to support the
authorization of user roles to methods as part of the security definition process.
Specifically, Definitions 7 to 18 involve the privilege specification process for users
and user roles, and the granting of methods to roles, and roles to users. At this
time, our model does not include role hierarchies; prior research had user-role
definition hierarchies [25], and the inclusion of hierarchies is on our agenda for
future work.

The role is the building block of RBAC, and represents the set of necessary
responsibilities to execute a specific job or function. The roles for a distributed
application are collected into a list to represent the available roles a user can
assume. This makes for a natural constraint to what a user can do and provides
the basis for security assurance. The key to maintaining a RBAC system is
controlling what goes into the role (i.e., must only allow what is necessary to do
the job) and controlling who can have what role (i.e., maintain the least privilege
principle). Formally, we define:

Definition 7: A user role UR = [URName, URLT , URCLS], represents a set of
responsibilities, and has name URName, LT URLT (default [ct, ∞]), and
URCLS ∈ SLEV EL (default U).

Definition 8: A user-role list, URL = {URi|i = 1..r}, contains the r roles
(Definition 7) for DAPPL.
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(C) GCCS Resource C= min {Service CLSs}

(S) Joint Service with Methods S = min{Method CLSs} a.k.a

(S)Weather (Token); METOC

(S)VideoTeleconference (Token, fromOrg, toOrg); TLCF

(S)JointOperationsPlannning (Token, CrisisNum); JOPES

(S)CrisisPicture (Token, CrisisNum, Grid1, Grid2); COP

(S)TransportationFlow (Token); JFAST

(S)LogisitcsPlanningTool (Token,  CrisisNum); LOGSAFE

(S)DefenseMessageSystem (Token); DMS

(T)NATOMessageSystem (Token); CRONOS

(C) Component Service with Methods: C = min{Method CLSs}

(S)ArmyBattleCommandSys (Token, CrisisNum); ABCS

(S)AirForceBattleManagementSys (Token, CrisisNum); TBMCS

(S)MarineCombatOpnsSys (Token, CrisisNum); TCO

(C)NavyCommandSystem (Token, CrisisNum); JMCIS

Note:  Access Classification Precedes Each Entry. 

Figure 15: Resource/Services/Methods with SLEVELs.

From an assurance perspective, URs have specific LTs that will be utilized for
checking the “when” of access (i.e., can a user invoke a method at current time)
and CLSs that will be instrumental in checking the “if” of access (i.e., does a
UR’s CLS dominate a method’s CLS). Representative URs for GCCS are shown
in Figure 16, with the name, LT, and CLS given for each role. CDR CR1 means
commander of crisis 1, JPlanCR2 means joint planner of crisis 2, and so on. From
a privilege perspective, URs can be granted access to methods which have CLSs
at or below the role’s CLS. Figure 16 has sample URs for CDR CR1, JPlanCR1,
etc., with LTs (using date) and CLS (T/S/C/U).

There are several relevant assumptions for roles to maintain consistency in
our security model, as captured in Tables 1 through 4 (see Section 3.3). First, we
assume consistency within roles with respect to mutual exclusion and lifetimes.
Roles should not be created with permissions that violate lifetimes (we check this
at design time) and that allow for conflict. A classic example of conflict is one
role having both purchase authority and approval authority, which is not good
practice in any organization. Second, we assume that within federated groups,
all users have roles, all roles are clearly defined, and most importantly, a user can
play only one role at a time. All other assumptions will be discussed in detail in
Section 3.3.

Roles as presented are intended to characterize common responsibilities that
may be appropriate for different users. Ultimately, the authorization and authen-
tication of users are needed to define who can use the application. Like roles,
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Roles: [CDR_CR1, [01dec02,01dec03], T]
[JPlanCR1, [01dec02,01jun03], S]
[JPlanCR2, [01jul01,01sep03], C]
[ArmyLogCR1, [10dec02,01mar03], S]
[ArmyLogCR2, [01jul03,01aug03], C]

Users: General DoBest: [DoBest, [ct, infinity], T]
Colonel DoGood: [DoGood, [01dec02,01jun03], T]
Major DoRight: [DoRight, [01dec02,01jan03], S]
Major CanDoRight: [CanDoRight, [01jan03,01feb03, T]

URAs: [JPlanCR1, CrisisPicture, [ct, infinity],true]
[JPlanCR1, ArmyBattleCmdSys, [10dec02,16feb03], true]
[ArmyLogCR1, CrisisPicture, [10dec02,16feb03],

Grid1 > NA20 AND Grid2 < NC40]
[ArmyLogCR2, LogPlanningTool, [10dec02,16feb03], CrisisNum=CR1]

Figure 16: Sample Users, User-Roles, and User-Role Authorizations.

users will be limited by a lifetime of the authorization, but unlike roles, users will
have clearances to determine their MAC privileges. Formally, we define:

Definition 9: A user, U = [UUserId, ULT , UCLR] is an entity accessing a client,
and has a unique UUserId, LT LLT (default [ct,∞]), and UCLR ∈ SLEV EL
(default U).

Definition 10: A user list, UL = {Ui|i = 1..u}, contains the u users (Definition
9) for DAPPL.

From an assurance perspective, users have specific LTs for checking the “when”
of access (i.e., can a user play a role at current time) and CLRs for checking the
“if” of access (i.e., does a user’s CLR dominate a UR’s CLS). Representative
users, General DoGood, Colonel DoBest, etc., for GCCS are shown in Figure 16,
with the name, LT, and CLR given for each user.

There are relevant assumptions we make about users to maintain consistency
in our security model, these are captured in Tables 1 through 4. Specifically, we
assume a user can play only one role at a time during a session, but can change
roles during a session. Upon login, authorization and authentication are made
for all authorized roles.

The next three definitions involve different ways that authorizations can be
constrained. Specifically, we constrain: the values under which a method can be
invoked; the allowable time values for various authorizations; and the conditions
under which a MAC subject dominates a MAC object, where subject and object
vary in our model. The first type of constraint involves the signature of a method,
which is defined as the method name, return type, and parameter names and
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their types. In any method invocation, ideally from a security perspective, we
would like to control two facets: 1. the actual parameter values under which the
method is invoked, and 2., the valid values that can be returned at the end of
the invocation. In this research, we concentrate on the first facet; the second will
be the subject of future research. One critical assumption we make regarding
the methods of the services is that all of the method’s parameters are value
parameters, i.e., we assume that the method does not return any value back to
the caller via the parameters, only through the return of the method. Thus, our
security control of the method invocation will be on/off, and not involve data
being sent back through the parameters. Future work will consider controlling
access to return values; for now, that is outside the scope of this dissertation.
Formally, we define:

Definition 11: A signature constraint, SC, is a boolean expression on MParams
ijk ,

for i = 1..m, j = 1..n, k = 1..gij, to limit allowable values.

SCs limit the conditions under which a method may be invoked. For example
Figure 17, an ArmyLogCR1 UR can use method CrisisPicture from the Joint
Service, but needs an SC (Grid1 < NA20 AND Grid2 < NC40) to limit the picture
view. Thus, methods are off/on based on a specialization of the parameter/return
values.

GCCS Methods Used:

CrisisPicture (Token, CrisisNum, Grid1, Grid2);

ArmyBattleCommandSys (Token, CrisisNum);

Example: Signature Constraint, SC

Method:  CrisisPicture

Grid1 < NA20 and Grid2 < NC40

Example Time Constraint ,TC

Method:  ArmyBattleCommandSys

10dec02 < date < 16feb03

Figure 17: Signature and Time Constraint for GCCS.

The second type of constraint limits a variety of authorization actions based
on type, and also limits the runtime (invocation or delegation). Lifetimes limit
actions of individual constructs, e.g., a lifetime of a method or a lifetime of a
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role. Time constraints limit the association between constructs, i.e., a role may
exist for 60 days, a method may exist for 90 days, and have a 30 day overlap with
a role, but within that overlap, a time constraint can further limit access to 15
days. Formally, we define:

Definition 12: A time constraint, TC, is a LT (default [ct,∞]), and is utilized
as follows: LTs of UR and method constrain the method assignment; LTs
of UR, method, and user, constrain the method invocation; LTs of UR and
user constrain the user authorization to the role; LTs constrain the time
span of a delegation.

The JPlannerCR1 has a TC on ArmyBattleCommandSys Figure 17 (10dec02 <
date < 16feb03). In ArmyLogCR1 UR, we combine SC and TC to limit access to
the LogPlanningTool method to a specified timeframe, for a specific crisis leading
to SC: (CrisisNum = CR1), TC: (10dec02 < date < 16feb03).

The third type of constraint is for MAC to support CLR and CLS. As dis-
cussed in Definition 2, the CLS level is assigned to individual methods that
comprise each service of a resource. By enforcing the relationship among CLR
and CLS at design and run times, it is possible to realize MAC and the Bell and
LaPadula model [13].

Definition 13: A mandatory access control constraint, MACC, is the domina-
tion of the SLEVEL of one entity over another, e.g., U’s CLR ≥ UR’s CLS
or UR’s CLS ≥ M’s CLS.

Since all resources, services, methods, and roles have CLSs, MACC can be utilized
to properly compare subject (user) CLR to CLS and deny or accept based on
MAC rules. Since a UR is assigned a CLS, the authorized user must possess a
CLR greater than or equal to the role CLS. At run time, MACC verifies if the
client (user with a CLR level) playing a role (with a CLS level) is allowed to
invoke a specific method (with a CLS level) at a particular time. Since the CLS
level of a role or a method may have changed between the time that a client was
authorized and attempts a method invocation, this run-time check is required.

From an assurance perspective, we seek to provide guarantees that a user play-
ing a role can invoke a method limited by parameter values (SC - Definition 11),
method availability (TC - Definition 12), and the Simple Security and Integrity
Properties applied by a user against a role invoking a method (Definition 13). For
example, an ArmyLogCR1 UR can invoke method CrisisPicture (see Figure 16)
limited by the SC (Grid1 > NA20 AND Grid2 < NC40), while a JPlanCR1 UR
can have a TC of [10dec02, 16feb03] on the ArmyBattleCmdSys method of the
Component service. MACC verifies if the user (with a CLR level) playing a role
(with a CLS level) can invoke a method (with a CLS level) at ct.

In addition to the method’s parameters being value parameters, mentioned
earlier in this section, there are several other relevant assumptions we make about
TCs, SCs, and MACCs to maintain consistency in our security model. These are
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captured in Tables 1 through 4 (see Section 3.3). First, we assume all method
interactions among resources satisfy all MAC, e.g., the method’s CLS includes
the method return value and the role’s CLS must dominate the method in order
to invoke it and obtain the return value. Second, there is a Signature Constraint
Oracle that correctly compares invocation parameter values against the Signa-
ture Constraints and returns true or false for every invocation. Third, the same
method may have different TC’s and SC’s for different roles.

The final set of definitions is for authorizations of method(s) to user role(s)
and of user role(s) to user(s), to bring together all of the concepts. Recall that the
pillars of security as has been discussed earlier are: authorization, authentication,
and enforcement. In order to have any enforcement, there must be clearly defined
authorizations both for a role to a set of one or more methods, and for a user to a
role. We begin by defining a user-role authorization, collect all authorizations for
every user role into a matrix, and organize all of the valid user role authorizations
into a list. Formally, we define:

Definition 14: A user-role authorization, URA = [UR,M, TC, SC], means
UR (Definition 7) authorized to invoke M (Definition 4) within time TC
(Definition 12 - default [ct,∞]), limited by values SC (Definition 11 - default
true). Note that Figure 16 has URAs for JPlanCR1, ArmyLogCR1, and
ArmyLogCR2, and illustrate the combinations of all earlier constructs.

Definition 15a: A r × q UR authorization matrix, URAM, where
q =

∑
i=1..m,j=1..ni

qij, is:

URAM(URi,Mj) =

{
1 URi is authorized to invoke Mj

0 otherwise

Initially URAM contains all 0 entries. An entry with value 1 is a valid
URA, VURA. At design time, a URA must have a UR’s CLS ≥ a M’s CLS
and the overlap of TC and LTs to become a VURA; at runtime, a VURA
must be activatable after the current time.

Definition 15b: A valid user-role authorization list, V URAL = {V URAi ∀
i = 1..v}, v ≤ r × q, contains all valid URAs, VURAs (URAM(-,-) = 1).

In Figure 16, for the role Joint Planner Crisis 1 (JPlanCR1), there is the tu-
ple: [JPlanCR1, [01dec02, 01jun03], S]. The tuples [JPlanCR1, CrisisPicture, [ct,
infinity], true] and [JPlanCR1, ArmyBattleCmdSys, [10dec02, 16feb03], true] de-
fine two user-role authorizations (URA) for JPlanCR1. Note that each URA is
constructed with different methods’, TC’s and SC’s, to fully represent the desired
privileges of the role. This also allows each URA to have different constraints
based on the method being used. In the same vein, the same method can be used
with different UR’s, with the same or different constraint applied. For example,
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in Figure 16, URA’s [JPlanCR1, CrisisPicture, [ct, infinity], true] and [Army-
LogCR1, CrisisPicture, [10dec02, 16feb03], Grid1 > NA20 AND Grid2 < NC40]
both refer to the same method, CrisisPicture, with different SC’s and TC’s. The
TC for JPlanCR1 is [ct, infinity] and the TC for ArmyLogCR1 is “[10dec02,
16feb03]”. JPlanCR1 basically has no TC and ArmyLogCR1 is constrained to
“[10dec02, 16feb03]”. The SC for ArmyLogCR1 is “Grid1 > NA20 AND Grid2
< NC40” and the SC for JPlanCR1 is “true.” The Boolean “true” means there
is no Grid constraint so that the entire crisis picture is available to JPlanCR1.
On the other hand, the ArmyLogCR1 crisis picture is limited to grid coordinates
from NA20 to NC40.

The user-role authorization matrix (URAM), Figure 18, is the repository for
which methods are authorized for each user-role. A “1” means the method is
authorized and a “0” indicates no authorization. The authorization also means
that at design time, when the roles were created, all TC’s, SC’s, and MACC’s
were met. During runtime, this matrix is validated again to insure there is no
constraint violations. These checks are key to our enforcement framework. By
examining Figure 18, one can determine the valid user-role authorizations by
simply choosing the matrix entries under each UR; this list is known as the valid
user-role authorization list (VURAL), as given in Definition 15b.

User\User-Role ArmyLogCR1 ArmyLogCR2 JPlannerCR1 JPlannerCR2 CDR_CR1
DoBest 0          0          0     0          1
DoGood 0          0          1     1          0
DoRight 1          0          0           0          0
CanDoRight 0          1          0     0          0

Method\User-Role ArmyLogCR1 ArmyLogCR2 JPlannerCR1 JPlannerCR2 CDR_CR1

ArmyBattleCommamdSys 1          1         1      1          1
CrisisPicture 1          1         1     1          1
MarineCombatOpnsSys 0          0         1      1          1
LogPlanningTool 1          1         0     0          1

User Authorization Matrix (UAM)

1 = authorized, 0 = not

User-Role Authorization Matrix (URAM): 

1 = UR authorized to invoke Method, 0 = otherwise

Figure 18: UR Authorization (URAM) and User Authorization (UAM) Matrices.

Users, of course, need to be assigned a role in order to execute any function
or privilege. A user authorization is simply assigning a user to a role for a given
time. In order for a user to be authorized to the role, the user’s CLR must
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dominate the role’s CLS, and the role must be available during the lifetime of
the user. Formally, to mirror Definitions 14, 15a, and 15b, we define:

Definition 16: A user authorization, UA = [U,UR, TC], means U (Definition
9) is authorized to play UR (Definition 7) for time TC (Definition 12 -
default [ct,∞]) for when the role is available to U.

Definition 17a: An r × u user authorization matrix, UAM, is:

UAM(URi, Uj) =

{
1 Uj is authorized to URi

0 otherwise

Initially UAM contains all 0 entries. An entry with value 1 is a valid UA,
VUA. At design time, a UA must have a user’s CLR ≥ a role’s CLS and
the overlap of TC and LTs to become a VUA; at runtime, a VUA must be
activatable after the current time.

Definition 17b: A valid user authorization list, V UAL = {V UAi|i = 1..w},
w ≤ r × u, contains all valid UAs, VUAs (UAM(-,-) = 1).

Definition 18: A client, C, is an authorized user U, identified by client token
C = [U, UR, IP-Address, Client-Creation-Time].

Like the UR has a URAM, there is a user authorization matrix (UAM) to use
for security assurance enforcement for user authorizations. The UAM, Figure 18,
is annotated with a “1” only if all TC, LT, and MACC requirements are met.
These requirements are checked during user to user-role assignment (design time)
and before a user can execute a role (runtime). We check by checking the UAM
matrix at runtime, for assurance reasons. In a dynamic environment when user
and user-role attributes can change, it is prudent to check authorizations during
runtime. Of course, once the UAM is populated, Figure 18, one can generate a
valid user authorization list (VUAL), Definition 17b.

Figure 19 shows the relationship between a user (U in Definition 9) and a
client (C in Definition 18). The client (C) is used to track user activity and al-
lows for a user (U) play more than one role during a session. The client or client
token is always unique because it is based on a tuple that includes a Client-
Creation-Time, which is the current time at client initiation. It is not possible
for one user to initiate two clients from the same IP-Address at the same time,
assuring uniqueness. Since every client is unique, it is useful for logging activity
during a given session. Since a unique token is required throughout the enforce-
ment framework, the uniqueness and randomness of the token adds extra security
assurance.

From a security assurance perspective, a valid URA (Definitions 14, 15a and
15b) can only be created if all required checks of a UR’s capabilities against a
M’s characteristics are satisfied (i.e., TC and MACC checks), and the VURA
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],,[ CLRLTUserId
UUUU

Users:
General DoBest: [DoBest, [ct, infinity], T]

Colonel DoGood: [DoGood, [01dec02, 01jun03], T]

Major DoRight:  [DoRight, [01dec02, 01jan03], S]

Major CanDoRight: [CanDoRight, [01jan02, 01feb03], T]

C = [U, UR, IP-Address, Client-Creation-Time]

[DoRight, ArmyLogCR1, 100.150.200.250, 16nov02-14:50:04]

[U,            UR,                   IP-Address,         Client-Creation-Time]

Client Token:

Figure 19: Example Users and Client Token.

then sets the criteria (UR, M, TC, SC) under which the invocation can occur. A
corresponding set of guarantees also holds for a valid UA (Definitions 16, 17a,
and 17b) to set the criteria (U, UR, TC) for which a U is authorized a UR.

3.3 Security Model Assumptions

The research objective of this dissertation is to address issues related to se-
curity policy definition, authorization, authentication, enforcement, and security
assurance. For completeness, we collect all of the critical assumptions into four
separate tables.
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Table 1: Assumptions I - X.

Assumption # Description
I RBAC is considered an appropriate approach to

flexible security policy realization.
II MAC is necessary for all government or government

interfacing information systems, so therefore needs
to be considered with every distributed application.
This means that every invocation is checked with
respect to MAC constraints to increase assurance that
a classified method is not accidentally invoked

III Assume four Sensitivity Levels (SLEVEL), any number
will work with any hierarchy in our approach to
make it viable for non-government use.

IV A distributed application is constructed from
publicly available software artifacts and federated groups of
users that have access to public artifacts.

V Compiler, Operating Systems, and Network protocols are
stable and not prone to intrusions that would allow
unauthorized access to application methods in contradiction
to our model.

VI Within federated groups, users have roles and roles
have clearly identified permissions. Permissions are realized
through Application Programmer Interfaces (APIs)
or public methods.

VII We call the software artifact a resource, which
represents a legacy, GOTS, COTS, database, etc.,
accessible through its Application Programmer Interfaces (APIs).

VII Software artifacts can register and publish their
APIs, so that the APIs are available to clients and users.

IX A resource is comprised of services, where
a service is a logical grouping of methods. All
services belong to a resource and all methods belong
to a service. There are no registered rouge methods
that can be accessed bypassing the enforcement framework.

X All services and methods can be registered with
middleware lookup services and provide concrete interfaces with
components.
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Table 2: Assumptions XI - XX.

Assumption # Description
XI Once registered with the Lookup/Security Service,

there is no way to access Resources, Services or Methods
other than using the Lookup/Security Service.

XII Methods perform specific functions and have a
signature consisting of method name, return type, and
parameters with types.

XIII The method classification dominates the method
return value. Method return values are at the same or lesser
classification then the method from which they were generated.

XIV The delay time between requesting a current time
and the global clock is not significant. This means the
global clock time is the current time (ct).

XV The delay time between a clearance or
classification change and the effect on the enforcement
framework is not significant. This means it is acceptable
to enforce the policy or authorization change at the next
invocation.

XVI The application resource dictates security policy.
The security model and enforcement framework realizes that
policy.

XVII A User can play only one role at a time during a
session, but can change roles in that secession. During
secession login, authorization and authentication, the
lookup service issues a proxy that is valid for that
secession for the authorized roles.

XVIII The lookup service middleware has adequate
protection against intrusion that would cause failure or
subversion of the security model and enforcement framework.
Middleware services provide the bridge between distributed
software artifacts, so artifacts can publish and register
APIs, making APIs available to other clients, users, and
resources.

XIX Security Model and Enforcement Framework have
sufficient: backup, concurrently updating, dual homed and
redundant database support to provide consistency and
survivability to application security enforcement.

XX Privacy by means of encryption or channel
tunneling is an implementation detail that does not
effect access control.
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Table 3: Assumptions XXI - XXX.

Assumption # Description
XXI Locations of resources, services, and methods

are transparent to the application user. Resource location
is part of the registration process. It does not matter
where artifacts reside.

XXII No assignment can take place before current
time (Role to User, Method to Role). This means, for
example, that a method with a lifetime that ends before the
current time (Method.LT.et is ¡ current time), cannot be
assigned. However, if the Method.LT.et is ¿ current time, the
method can be assigned.

XXIII During assignments (X to Y), if the only overlap
(intersection) of lifetimes occurs when X.LT.et = Y.LT.st,
there will be no assignment.

XXIV Must assume there is internal role consistency
with lifetimes, according to resource policy.

XXV When assigning a role to a user, there will be a
Design Time Assurance Check (lifetime)User.LT vs. Role.LT.
It is assumed that the role is internally consistent.
Individual Method assurance checks for lifetime will be
executed at Run Time.

XXVI Method Name, LT, CLS, and Parameters are set for
each method during resource registration with security
middlewear.

XXVII Overall classification of resource is calculated
using minimum classification of methods.

XXVIII The start time of a service is the start time
of the earliest method start time.

XXIX The Name, LT, and CLS of each role is set by the
security officer when designing security policy for the DAPPL.

XXX User identifiers cannot be duplicated with
different LTs or CLRs.



50

Table 4: Assumptions XXXI - XXXV.

Assumption # Description
XXXI Signature Constraint does not yet include

return values.
XXXII Same Method may have different TC’s and SC’s

for different roles, but not within the same role.
XXXIII Authorization Matrices are initialized with

all zero (0) values to reflect no authorizations.
XXXIV There is a Signature Constraint Oracle that

is a constraint checker that takes in the parameter values
of the methods invocation and compares these values against
the Signature Constraints, SC, and correctly returns true
or false.

XXXV Assume that all method interactions among
resources satisfy all required MAC (satisfies the
Simple Security Property [13] for invocations
of read-only and read-write methods, and the
Simple Integrity Property for invocations of
read-write methods) and also a degree of safety
(nothing bad will happen when a user playing a role invokes
a method) and liveness (all good things can happen
when a user playing a role invokes a method).
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3.4 Related Work

There have been many efforts on RBAC [15, 24, 39, 84, 111, 129], including
he RBAC 96 model [2, 85, 90, 111]; the NIST Model [10, 40, 45, 52]; and the
University of Connecticut model [24, 25, 28, 49, 129]. A temporal approach
defined in [17] is relevant due to its changing environment and the shifting of
responsibilities. Likewise in [16, 41, 53], the importance of using constraints
for identity and authorizations leads to improved granularity on access controls.
The major difference between our approach and these models is our use of a
method signature constraint to enforce a more fine-grained access policy. The
NIST and RBAC approaches seek to protect data objects [40, 110, 111, 128].
These approaches almost always require a change to the object structure itself,
which is not very flexible. They view protection of the object as the means
to protect the computer system [110]. Our approach is directed towards the
method, which is used to manipulate objects [28, 96, 97]. In this way, we can not
only develop mutual exclusion constraints, but also achieve a fine-grained access
control, which can use time, signature, mandatory access control, and lifetime
constraints without changing the method code or object structure. Also, we feel
using a role hierarchy, as depicted in these models is problematic. The NIST
and RBAC96 models use role hierarchy to simplify creation and administration
of roles. In a large organization, this may be true, but the use of these hierarchies
actually causes problems with respect to role deconfliction and mutual exclusion
[54]. Our model does not dictate a specific role hierarchy or inheritance policy, but
both can be modeled with proper role and user administration. The authorization
responsibilities are constrained by policy.

For MAC, we have reviewed many of the classic approaches [13, 32, 33,
38]. Our interest in this section is on work that has attempted, like our own,
to unify RBAC and MAC policies. Strict MAC control and RBAC flexibility
are very different concepts, but can be brought together and prove useful [91,
109]. Data association and aggregation is a problem with any access control
mechanism, particularly MAC. There has not been a lot of interest in this area
since MAC is considered to be too rigid for most applications, but [2, 23, 85, 90,
91, 109, 111, 112, 119, 128] have provided a basis for our research. Most efforts
with respect to MAC have been concentrated on the object [111, 128]. The
majority of the research has used an object-level approach, but our specific focus
is at the method level, to customize these “published” APIs on a role-by-role
basis. This customization will constrain the invocation of a method by a user
playing a role by: Mandatory access control (user’s clearance dominates method’s
classification), time limits (user’s lifetime subsumes method’s time limit for the
role), and data values (user’s invocation of the method with actual parameter
values is within value constraint of the method for that role). Our approach
greatly improves the granularity of access control from the on/off method level
of our prior research [25, 49]. By controlling access of users playing roles to
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methods based on parameter values, time limits, and classifications, we have
effectively established value-based security without having to explicitly control
access to individual objects.

In another effort, the Air Force Research Laboratory in conjunction with
Verdian, is working on a comprehensive information tagging and release policy
called Secure Information Releasability Environment [119]. There are products
like e-Portal and Multi-domain Dissemination System, which concentrates on
sensitive information access using secure transmission [119]. In addition, there
are systems that use firewall technology to create secure network connections
between hosts on any unclassified network [60]. All of this work is relevant
for different aspects of MAC, but none address the critical issues of federation
of resources/users and the availability and access of resources/information in a
secure fashion based on classification and clearances. Our approach considers
MAC at design and runtime to ensure the user/client possess the prerequisite
clearance before method invocation. This is in contrast to object security controls
that require inspection of the object before access is considered. By using a
method approach, an object is not accessed unless the user is authorized and has
the clearance to access the method.

Finally, in the constraints area, both the NIST and RBAC96 models [111, 112]
support them, but not in the same way as our approach. In RBAC96 and NIST,
constraints are discussed for both permissions and users with mutual exclusion as
the major consideration. User Constraints prevent users from holding conflicting
roles and permission constraints prevent certain permissions from being applied
to the same role. These constraints are important and will be incorporated into
our model. However, these constraints are not fine-grained. We feel constraints
should be more than just “on or off”. Other models discuss the use of temporal
constraints to control access [3, 14, 17]. These constraints are used for access
control, but in a workflow context, where one process is required before another
can be executed. However, assigning time restrictions is a valuable concept, which
we will modify for our role-based approach. There should be ranges of acceptable
values and times that can dictate access. Our model will take a unique approach
to these constraints by allowing a time window (time constraint) when the method
can be used. This time window can be set differently depending on the role
to which the method is assigned, effectively allowing the same method to have
different time constraints depending on the role. In addition, our model allows for
constraints to be attached to the method parameters (method signature). Again,
the parameters can be levied differently depending on the role the method belongs
to. The use of LTs is another form of time constraint, which is different from
the time constraint leveraged on a method. LTs are assigned to users, roles,
resources, services, and methods to bound access to only users that meet all of
the lifetime restrictions. The combination of these constraints is innovative.



Chapter 4

Delegation in the RBAC/DAC/MAC Model

The security capabilities for a security model must be able to both represent
the privileges of individual users and the interactions among users. In the latter
case, there has been increased attention on the delegation of authority, where
an authorized individual (not the security officer) may be allowed to delegate all
or part of his/her authority to another individual, increasing security risk, and
raising interesting security assurance implications [11, 68, 79, 138]. Large organi-
zations often require delegation to meet demands on individuals in specific roles
for certain periods of time. The main objective of this chapter is to examine role
delegation, extending the RBAC/MAC features of the unified security model as
given in Chapter 3 to include DAC. Specifically, we propose a means to allow in-
dividuals to delegate roles within security policy guidelines (during the definition
of a policy), while simultaneously maintaining security assurance at runtime.

The major focus of this chapter is to extend the RBAC/DAC/MAC security
model and enforcement framework from Chapter 3 with role delegation, allowing
a security officer to assign delegation authority at design time, which can then
be enforced, at runtime. Role delegation will need to adhere to the same rules
already in place for RBAC and MAC, but the security model must be expanded
to support delegation concepts at design time (this chapter), and to incorporate
delegation and its enforcement into the run-time environment (to be covered
in Chapter 6). The delegation modeling extensions presented in this chapter
are based on work conducted by M. Liebrand, a M.S. graduate at Renssalear at
Hartford, as part of his seminar paper for his degree. M. Liebrand worked with C.
Phillips and S. Demurjian, and focused on conceptual extensions to the security
model as presented in Chapter 3. C. Phillips formalized those extensions for role
delegation, as they appear hear in, and as published in [67].

The remainder of this chapter investigates and analyzes the extensions to the
unified RBAC/DAC/MAC security model [28, 96, 97], presented in Chapter 3,
to support all aspects of role delegation. In Section 4.1, the focus is on secu-
rity model extensions to support delegation. In Section 4.2, the emphasis is on
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the enforcement framework modifications, exploring the inclusion of role delega-
tion and revocation rules [138]. Next, in Section 4.3, the model extensions and
framework modifications are analyzed against a set of delegation characteristics:
monotonicity, permanence, totality, administration, levels of delegation, multiple
delegation, agreements, and cascading revocation and grant-dependency revo-
cation [11]. Finally, Section 4.4 compares our work to other related research
efforts.

4.1 Delegation Model Extensions

Role delegation is a user-to-user relationship that allows one user to transfer
responsibility for a particular role to another authorized individual, and can be
classified as: administratively-directed delegation, where an administrative in-
frastructure outside the direct control of a user mediates delegation [68]; and,
user-directed delegation where an individual (playing a role) determines if and
when to delegate responsibilities to another individual to perform the role’s per-
missions [79]. User-directed delegation is situation specific. For example, suppose
that a delegation is defined to allow a supervisor to delegate a role to a subordi-
nate. In practice, one supervisor may want to delegate the role to a subordinate
while another supervisor may not. While subordinates may have the same offi-
cial job function and permission, the authority is granted at the discretion of the
supervisor; it is user directed. We have concentrated on user-directed delegation
due to its interesting characteristics and challenges. User-directed delegation does
not eliminate security administrators, who must continue to establish the secu-
rity policy and maintain delegation authority, including who can do delegation
at what times. User-directed delegation is not intended to take over complete
control of the administration of the user-role relationship. When a user’s func-
tion changes, whether it is to add privileges or revoke privileges, this belongs
in an administrative infrastructure governed by policy, which will be set by an
administrator. Administration of RBAC, MAC, and delegation must be carefully
controlled to ensure that policy does not drift away from its original objective
[114].

The concept of delegation can cause some confusion. For example, when a
user delegates their role, they can delegate: authority, responsibility, or duty.
The authority, responsibility, and duty to perform a task are often used inter-
changeably when discussing delegation, but have different connotations. In most
organizations, authority can be delegated, but responsibility can never be del-
egated. Authority to do the task, carries the least responsibility necessary to
execute the task, but does mean the delegated user can execute the delegated
task or role. Responsibility to do a task implies accountability and a vested in-
terest that a task or role can be executed properly. The duty to perform a task
implies that the delegated user is obligated to execute the given task. The focus
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of this section is the inclusion of delegation into the unified RBAC/DAC/MAC
model whose RBAC and MAC capabilities have been detailed in Chapter 3.

To begin, we focus on the concept of delegatable which indicates whether a
role can be delegated from one user to another. Users cannot dictate whether a
role is delegatable, this is an administrative function determined during design
time. However, once declared delegatable, a user does has some discretion in
terms of when to initiate the delegation. Formally, we define:

Definition 19: A delegatable UR, DUR, is a UR ∈ URL that is eligible for
delegation.

Definition 20: The delegatable UR vector, DURV, is defined for all r URs ∈
URL as:

DURV (URi) =

{
1 URi is a DUR
0 URi is not a DUR

This is why it is key that each role holds a vector value for delegation (DURV) if
delegation is going to be used at all. Initially, DURV contains all 0 entries. This
insures that all delegation action is initiated by the security administrator during
design time. For the URs given in Figure 16, the roles CDR CR1, JPlanCR1,
JPlanCR2, are delegatable (respective DURV(-) = 1) and ArmyLogCR1, and
ArmyLogCR2 are not (respective DURV(-) = 0).

The next two definitions involve a differentiation between users of roles with
respect to delegation. From an enforcement perspective, it will be critical to
know if the role that a user is playing is as the result of an original authorization
to that user, or the result of a delegation. Formally, we define:

Definition 21: An original user, OU ∈ UL, of a UR is authorized to the UR
via the security policy (∃ a VUA for the OU/UR, i.e., UAM(UR,OU) = 1),
and not by a delegation.

Definition 22: A delegated user, DU ∈ UL, is a user U that can be del-
egated a UR by an OU/DU (there is not a VUA for the DU/UR, i.e.,
UAM(UR,DU) 6= 1)), where a DU cannot be an OU for that same UR.

It is important we distinguish between a delegated and original user. If a user is
an original user of a certain role, then that role can never be delegated to that
user. And why should it? If you are an original user of a role, there is no need
to be a delegated user for that role.

The OU and DU differentiation is utilized to track, for each user role, whether
a user is an OU, a DU, or not authorized. Thus, in a similar fashion to the
authorization matrices in Chapter 3, we introduce an authorization matrix for
delegation. Formally, we define:

Definition 23: The r×u user delegation/authorization matrix, UDAM, indexed
by roles and users, is:
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UDAM(URi, Uj) =





2 Uj is a DU of URi

1 Uj is an OU of URi

0 URi is not authorized to DUi
Initially UDAM contains all 0 entries. As users are authorized to roles via
VUAs (Definition 17a), the relevant entries are set to 1.

From a assurance perspective, there must be guarantees on the capabilities of
an OU with respect to the characteristics of a DU, specifically, to insure that
LTs/TCs and CLS/CLR are consistent, which will enable the delegation to be
defined and checked at runtime.

The OU and DU identification is utilized to maintain some control over dele-
gations, which is referred to as delegation authority (DA), which is the authority
to grant and revoke delegation. Definition 23. For example, the OU should al-
ways be able to revoke delegation, but the DU cannot, unless the DU is given the
authority to delegate, called pass-on delegation authority (PODA), Definition 24.
Even then, the DU can only revoke his/her action.

The final three definitions establish, for a given user of a role, the ability to
have delegation authority, DA, and/or pass-on delegation authority, PODA (able
to pass on the authority to delegate). DA is the authority to grant and revoke
delegation, as given by a security officer at design time, and as initiated by a user
at runtime. PODA is an authority that allows a delegated user to pass on DA to
another user. Clearly, there is the potential for this process to be infinite, with
authority passed on and on down a chain. However, in our model, we have chosen
to limit delegation as follows: 1. A user is not given delegation authority (DA),
so that the role stays at a given level. 2. A user can be given delegation authority,
but not pass-on delegation authority, which means a role can be passed on to a
second user (not currently an OU or DU) and no further. And 3. A user can be
given both delegation authority and pass-on delegation authority, which means a
role can be passed on from a second party to a third party (not currently an OU
or DU). Only an OU can grant pass-on delegation authority, so the delegation
chain can go no further than the third party. Formally, we define:

Definition 24: Delegation authority, DA, is given to OU for delegation of a
DUR to another user.

Definition 25: Pass-on delegation authority, PODA, is authority given to an
OU/DU to pass on DA for a DUR to another OU/DU.

Definition 26: The r × u delegation authority matrix, DAM, indexed by roles
and users, is:

DAM(URi, Uj) =





2 Uj has DA and PODA for URi

1 Uj has only DA for URi

0 URj has neither DA nor PODA for URi

Initially DAM contains all 0 entries.
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From an assurance perspective, there must also be guarantees about DA and
PODA, since having DA allows an OU/DU to delegate, and more critically, hav-
ing PODA, allows an OU/DU to pass on that delegation authority to another
DU, which is a potentially dangerous privilege. To illustrate delegation concepts,
Figure 20 provides populated delegation matrices. To drive home the concepts,
we offer two examples below on delegation.

User\ User-Role ArmyLogCR1 ArmyLogCR2 JPlannerCR1 JPlannerCR2 CDR_CR1
DoBest 0           0           0     0          1
DoGood 0           0           1     1          0
DoRight 1           0           0      0          0
CanDoRight 0           1           0      0          0

User\ User-Role ArmyLogCR1 ArmyLogCR2 JPlannerCR1 JPlannerCR2 CDR_CR1
DoBest 0           0           0     0          2
DoGood 0           0           1     1          0
DoRight 0           0           0      0          0
CanDoRight 0           0           0      0          0

User\ User-Role ArmyLogCR1 ArmyLogCR2 JPlannerCR1 JPlannerCR2 CDR_CR1
DoBest 0           0           0     0          1
DoGood 0           0           1     1          0
DoRight 1           0           0      0          0
CanDoRight 0           1           0      0          0

Method\User-Role ArmyLogCR1 ArmyLogCR2 JPlannerCR1 JPlannerCR2 CDR_CR1
ArmyBattleCommamdSys 1          1           1         1          1
CrisisPicture 1          1           1        1          1
MarineCombatOpnsSys 0          0           1         1          1
LogPlanningTool 1          1           0       0          1

User Authorization Matrix (UAM): 1 = authorized, 0 = other

Delegation Authority Matrix (DAM): 2 = has DA and PODA, 1 = has DA, 0 = neither

User Delegation/Authorization Matrix (UDAM): 2 = U is a DU, 1 = U is a OU, and 0 = not authorized 

User-Role Authorization Matrix (URAM): 1 = UR authorized to invoke Method, 0 = otherwise 

Figure 20: Example: UAM, URAM, UDAM, URAM.

Example 1: To illustrate delegation, suppose that DoBest wishes to dele-
gate his (CDR CR1) to DoGood with DA, with DoBest, CDR CR1, and Do-
Good as given in Figure 20. This delegation can occur since DoBest is an
OU (UDAM(CDR CR1, DoBest) = 1) of CDR CR1, DoGood is not an OU
nor DU (UDAM(CDR CR1, DoGood) = 0), the UR is delegatable (assume
DURV(CDR CR1) = 1), and DoGood dominates CLR ((CDR CR1 CLS = T) ≤
(DoGoodCLR= T)).
DoBest can also grant DA because he has PODA (DAM(CDR CR1, DoBest)
= 2). Note that DoGood can execute the UR CDR CR1, but is limited to his
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own LT. Also note that UAM(CDR CR1, DoGood)=1, UDAM (CDR CR1, Do-
Good)=1 (DU), DAM(CDR CR1, DoGood)=1, (has DA) and VUA = [DoGood,
CDR CR1, [ct, ∞]] is created, as given in Figure 20.

Example 2: Continuing from Example 1, suppose DoGood wishes to also
delegate UR: CDR CR1 to CanDoRight? This delegation can take place be-
cause the role is delegatable (assume DURV(CDR CR1) = 1), CanDoRight is
not an OU or DU (UDAM(CDR CR1, CanDoRight) = 0), CanDoRight does
have the prerequisite clearance ((CDR CR1CLS = T) (CanDoRightCLR= T))
and the DA (DAM(CDR CR1, DoGood) = 1) from Example 1. However, this
delegation will be limited to the LT of CanDoRight (CanDoRightLT = [01jan03,
01feb03]). Note, that the UAM, UAM(CDR CR1, CanDoRight)= 1 (“autho-
rized”), the UDAM, UDAM (CDR CR1, DoGood) = 1 (delegated user, DU), the
DAM, DAM(CDR CR1, CanDoRight), remains “0” (has no delegation author-
ity) and a VUA, VUA = [CanDoRight, CDR CR1,[ct, ∞]] is created (TC by
default is [ct, ∞], but can further constrain the delegation).

4.2 Delegation Model - Delegation and Revocation Rules

In addition to the RBAC/DAC/MAC security model extensions for role del-
egation in the previous section, there are also infrastructure-related extensions
that are needed in support of the enforcement framework. In the definitions given
earlier, the DU is only allowed permissions because of the OU, and if the OU del-
egates a user role, and then has that role revoked, the DU, will also lose the
delegated role. This is an example of cascading deletes, which must be handled
dynamically via an enforcement framework rather than by security administrative
intervention. Thus, Definitions 19 to 26 are required to track the relationships
between users and delegated roles, to maintain security assurance and reduce
risk or compromise of the security policy. To augment Definitions 19 to 26 and
support role delegation in our enforcement framework, we employ a useful set
of definitions and rules for delegation which underlie a proposed delegation lan-
guage [138]. Recall the conceps from the previous section, namely: original
user (OU), delegated user (DU), delegation authority (DA), pass-on delegation
authority (PODA), and delegatable user role (DUR), and define the following:

• Original User Delegation Relation - the relation between an original user
and a delegated user.

• Delegated User Delegation Relation - the relation between a delegated user
and its delegated user

• Delegation Path - a set of ordered user role assignments of OU to DU (to
DU, etc.).
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• Revocation Authority (RA) - the authority to revoke a delegation path,
which can be only taken by the security administrator and the OU or the
DU initiating the delegation.

Granting, revoking, and delegating user roles, while a simple process, has the
potential to have a wide-ranging impact, particularly during revocation of dele-
gated roles. The delegation and revocation rules for our enforcement framework
are a simplified version of those proposed in [138]. The two main differences are:
1. a simplification of the rules with the PODA and DA matrices used to manage
delegation depth rather than an integer; and 2. the prohibition of independent
(by another OU) revocation, i.e., revocation only by the security officer.

Given these definitions and assumptions, the rules that are being incorporated
into our enforcement framework are:

• User-To-User Delegation Authority Rule: A user (OU or DU) who is a
current member of a delegatable role (DUR), can delegate that user role
to any user that meets the prerequisite conditions of the role: the DU
receiving the role is not a member of the role; the OU or DU is identified as
having delegation authority for the role; the DU meets the mandatory access
control constraints (MACC); and the DU satisfies lifetime constraints.

• Delegation Revocation Authorization Rule: An original user (OU) can re-
voke any delegated user (DU) from a user role in which the OU executed
the delegation. This is a stricter interpretation than [138], which allows
any OU of a role revocation authority over a DU in the delegation path. In
addition, a security administrator can revoke any delegation.

• Cascading Revocation Rule: Whenever an original user (OU) or delegated
user (DU) in the delegation path is revoked, all DUs in the path are revoked.

These rules and definitions detail the critical run-time considerations of role del-
egation, that must be supported as part of the Unified Security Resource, and
at design time, incorporated into the security administrative tools, which will be
discussed in Chapter 6.

4.3 Delegation Model - Analysis of Delegation Capabilities

This section analyses the role-delegation extensions of the RBAC/DAC/MAC
security model and enforcement framework against a number of different crite-
ria, providing the opportunity to assess our work on role delegation versus the
context of other research efforts. Specifically, we leverage the work of [11] for
a set of critical identifying characteristics of delegation including: monotonicity,
permanence, totality, administration, levels of delegation, multiple delegation,
agreements, cascading revocation, and grant-dependency revocation. We eval-
uate each of these delegation characteristics for incorporation into our security
model.
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• Monotonicity (monotonic/non-monotonic) refers to the state of control
the original user (OU) possesses after role delegation. Monotonic delegation
means that the OU maintains control of the delegated role. Non-monotonic
means that the OU passes the control of the role to a delegated user (DU). In
most real-world environments, the original user does not relinquish control
of the role, and this is the approach we have taken in our security model
and enforcement framework.

• Permanence refers to delegation in terms of time duration. Permanent
delegation is when a delegated user (DU) permanently replaces the original
user (OU). Temporary delegation has an associated time limit with each
role. When the time limit passes, the DU no longer has that role. Temporal
constraints are an important part of our security model, since limiting access
is in concert with the concept of least privilege. We are incorporating
temporary delegation into our security model by allowing the OU to set
lifetimes for each role delegation and by allowing the OU to revoke the
delegation at anytime (monotonicity).

• Totality refers to how completely the permissions assigned to the role are
delegated. Partial delegation refers to the delegation of a subset of the
permissions of the role. In total delegation, all of the permissions of the
role are delegated. Barka and Sandhu [11] note that partial delegation
works best in a hierarchical RBAC model. Our position is that partial
delegation defeats the purpose of creating roles and since our model is not
hierarchical, we are implementing total delegation.

• Administration refers to how delegation will be administered. The two
obvious alternatives to administration are user-directed and administrator-
directed (third party, agent-directed) delegation. Administrator-directed
delegation already exists in our security model to the extent that the secu-
rity administrator currently assigns all privileges. Our enforcement frame-
work is being extended to support user-directed delegation with revocation.

• Levels of delegation refers to the ability of a delegated user (DU) to
further delegate a role (PODA) and the number of vertical levels the dele-
gated role can be delegated. Barka and Sandhu [11] identify a single step
delegation where a DU would not be able to re-delegate and a multi-step
delegation where a DU could re-delegate the role. [138] extended [11]
by describing three ways to control the depth or levels of delegation: no
control - where roles can be re-delegated without limit; boolean control -
where roles can be re-delegated until a delegating user says no; and in-
teger control - where roles can be re-delegated until a certain number of
re-delegations have occurred. In order to maintain control of delegation at
the policy level, but still allow the original user (OU) some flexibility in
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delegating roles, we employ a modified boolean control and use the Delega-
tion Authority Matrix, DAM, to control delegation. This matrix limits the
levels of delegation by allowing only the OU to have delegation authority,
DA, and pass-on delegation authority, PODA, which is consistent with our
monotonicity approach, where the OU maintains control of the role. An
OU can grant PODA to a DU, but a DU cannot pass on PODA again, there
by limiting the delegation depth. This also reflects evaluation and informa-
tion flow paradigms of the military and other large organizations, where a
senior leader rates a subordinate two levels below and the subordinate is
responsible for knowing the mission intent two levels above. The security
policy will determine what OUs have DA and PODA and what roles can
be delegated. The OU will have the option of allowing DA, DA and PODA
or neither to a DU. A DU given DA can delegate the delegated role, but
the DU cannot grant DA (PODA) to the next DU. We feel this delegation
process will satisfy most organizations. Note that limiting who can have
PODA enforces the two-level limit.

• Multiple Delegations refers to the number of delegated users (DU) (hori-
zontally) to whom a delegatable user role (DUR) can be delegated to at any
given time. We are including unlimited delegations in our security model
since we want to maintain the user’s flexibility. Cardinality within a role
has been found not to be used [Awis97]; cardinality within a delegated role
would also probably not be used. A limit on the number of DUs to a role,
particularly when greater than one, is subjective. Subjective limits are not
often enforced; there are no hard bases for them.

• Agreements refer to the delegation protocol of the original user (OU)
to the delegated user (DU). There are two types of agreements, bilateral
and unilateral [11]. In bilateral agreements, the DU needs to accept the
delegated role. In unilateral agreements, the OU delegates the user role
permissions and the DUs are not required to accept or even acknowledge
the delegation. Bilateral agreements make sense if the responsibilities of
the role placed upon the DU require action (duty or responsibility) vs. just
the ability to perform an action (authority). For example, if there is a task
that needs to be done by everyone in a role on a monthly basis, then a
bilateral agreement would make sense as the user should acknowledge that
responsibility. However, that is more of an operational policy than security
policy. In our model, all tasks given to a role are added capabilities and
the operational actions required for those users are of operational concern,
therefore unilateral agreement is being modelled and implemented.

• Cascading Revocation refers to the indirect revocation of all delegated
users (DUs) when the original user (OU) revokes delegation or adminis-
tration revokes the OU’s delegated role. Non-cascading revocation could
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be useful in the event a middle manager user is fired without replacement
and subordinates need to execute the vacated roles. However, having un-
controlled delegation is an unnecessary assurance risk, so this special case
will be handled by security administration, but will not effect a cascading
revocation policy. Our existing enforcement framework is being modified
to support cascading revocation.

• Grant-Dependency Revocation refers to who has authority to revoke a
delegated user (DU). In grant-dependent revocation, only the original user
(OU) can revoke the delegated role. In grant-independent revocation, any
original member of the DUR can revoke a delegated role. We are utilizing a
limited form of grant-independent revocation where only the delegating user
and the security administrator can revoke a DUR. The goal is to let the OU
have some delegating authority, but still allow the security administrators
to have final control. Allowing a second party OU to revoke a delegation of
a fellow OU is not necessary as long as the security administrator maintains
the revocation capability.

4.4 Delegation Related Work

May different research efforts on role delegation are discussed in detail in
[11, 68, 79, 114, 138]. Related research for role delegation has been discussed
when relevant throughout the chapter. In large part, our work is a continuation
of work by [138], delegation definitions 19 to 26 have been influenced this work.
However, we have extend their efforts significantly by:

• Incorporating delegation into a MAC environment.

• Applying security assurance assertions to delegation.

• Applying delegation and delegation authority constraints. Using these con-
straints an original user of the delegatable role will maintain control of
delegation authority. This will provide limited delegation capability within
a security policy.

• Simplified the delegation and revocation rules for our enforcement frame-
work with two main differences: 1. Simplification of the rules with the
PODA and DA matrices used to manage delegation depth rather than an
integer; and, 2. Prohibition of independent (by another OU) revocation,
i.e., revocation only by the security officer.

In combination with our RBAC/MAC capabilities in the security model, role del-
egation becomes a true user controlled option, but security administrators retain
overall control if necessary and more importantly, security policy will always be
enforced. It is this combination that provides security assurance and distinguishes
our role delegation approach from others.



Chapter 5

Security Assurance

The importance of security assurance in large-scale applications development
continues to grow, as evident by numerous assurance research efforts [4, 45, 71,
72]. In one approach [4], assurance is supported by a sequential model (via OSI
model) and a network-centric model, for sharing that ranges from the user to
the transmission or communication method used. Another effort improves the
INFOSEC Model [72] by adding security services and countermeasures. A third
effort [71] proposes key security services for assurance, including, availability,
integrity, authentication, confidentiality, non-repudiation, etc. In a fourth effort,
the 1998 NIST Model [45] has improved administration tools (higher assurance)
and database consistency checks. In the area of mandatory access control (MAC),
assurance-related properties include: the Simple Security Property, a subject can
read information at the same or lower clearance level, i.e., read-down/no-read-
up [13]; the Strict *-Property, a subject can only write information at exactly the
level for which it is cleared, i.e., write-equal [91]; the Liberal *-Property, a subject
with a low clearance level can write an object with the same or higher clearance
level, i.e., write-up/no-write-down [13, 91]; and the Simple Integrity Property,
a subject can write information at its own level and lower, i.e., write-down/no-
write-up [18]. In addition, assurance also must focus on application behavior
with respect to its defined and realized security policy, specifically, with safety
(nothing bad will happen to a subject or object during execution) [62, 63] and
liveness (all good things can happen to a subject or object during execution) [5].

Our main objective in this chapter is to explore assurance for our
RBAC/DAC/MAC security model as presented in Chapters 3 and 4. Our ap-
proach focuses on which methods of APIs can be invoked based on the respon-
sibilities and security classification level of a role, the security clearance level
of the user, and the values (parameters), time, and classification level of the
method; all of which must be satisfied in order for the invocation to successfully
proceed. In order to achieve this capability, we provide assurance that validates
the method invocation by a user playing a role in a number of different ways.

63
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First, we must guarantee the timeframe of the invocation, to insure that a user
(with one lifetime) playing a role (with another lifetime) can invoke a method
(yet another lifetime) at the current time. In fact, this assurance guarantee is
partially checked when the security policy is being defined, and must be rechecked
at execution time (i.e., actual method invocation). Second, we must guarantee
that the method invocation does not violate MAC domination. Specifically, we
demonstrate that our approach satisfies the Simple Security Property [13] for in-
vocations of read-only and read-write methods, and the Simple Integrity Property
for invocations of read-write methods. Finally, for a security policy defined us-
ing our RBAC/DAC/MAC model, we provide a series of theorems that insure
a degree of safety (nothing bad will happen when a user playing a role invokes
a method) and liveness (all good things can happen when a user playing a role
invokes a method). When combining MAC and RBAC, MAC requirements take
priority and the enforcement mechanisms must support this requirement.

Security assurance is critical in our RBAC/DAC/MAC model to allow the
consistency of URs, CLR/CLS levels, LTs, role delegations, user authorizations,
etc., to be verified when the security policy is defined, changed, and executed. To-
wards that end, in the remainder of this chapter: Section 5.1 examines assurance
guarantees on the available time of access for a method invocation; Section 5.2
details the attainment of MAC guarantees with regards to assurance, namely, the
Simple Security Property [13] for invocations of read-only and read-write methods
and the Simple Integrity Property for invocations of read-write methods; Section
5.3 explores the degree of safety (nothing bad will happen) and liveness (all
good can happen during an invocation). In all three areas, lemmas and/or theo-
rems are provided to demonstrate the attaintment of assurance guarantees, with
RBAC/DAC/MAC model extensions as needed. Overall, our research in this re-
gard has been influenced by numerous others [13, 17, 18, 62, 63, 73, 91, 109, 116].

5.1 Time-Based Guarantees

To support time-based guarantees, we introduce available time, AT, which
represents the maximum amount of time derived from various intersections of
LTs and TCs of the RBAC/DAC/MAC modeling constructs in the Definitions
in Chapters 3 and 4. To explain AT, recall that each LT and TC (which is also
a LT) is a discrete time interval. Each of the modeling constructs in Chapters 3
and 4 (e.g., URA, UA, OU, DU, etc.) are all combinations of other constructs
(e.g., URA = [UR,M, TC, SC]) which involve LTs (e.g., UR and M each have
LTs) and a TC. When defining URA, there must be LT overlap, AT. Formally, let
ΣLT = ∩alliΣLT

i , where each ΣLT
i represents a LT or a TC, using intersection for

LTs/TCs as given in Definition 1. Then, any time t is in the maximum amount
of time, AT, or t ∈ ∩ΣLT

i ∀ i ⇔ t ∈ ΣLT . Finally, to assist us in proving lemmas,
we offer the following definition to compare two LTs:
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Definition 1a: Let Compare(X, Y ) be a function that returns the overlap of
LTs X and Y . Compare(X,Y ) = {Y if X .Y ; X if Y .X; ∅ if Y ∩X = ∅;
Y ∩X otherwise}.
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X.LT

Y.LT

X.LT

Y.LT

X.LT
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X.LT

Compare(X,Y) = Y

Compare(X,Y) = Ø

Compare(X,Y) = X

Compare(X,Y) = X Y

Y.LT

X.LT

Compare(X,Y) = Ø

Figure 21: The Compare Function

The Compare Function is very important to our security model and security
assurance, as the compare function is used to determine the available time (at),
which is the maximum amount of time functions are available to a User. Limiting
a function to the maximum available time is good assurance practice. Figure 21
shows the possible outputs of the Compare Function. Using Definition 1a, we offer
lemmas for the available time, AT, for URAs (Definition 14), URs (Definition 7),
UAs (Definition 16), DUs (Definition 22) and Users (Definition 9). ATs are
useful in demonstrating the degree of safety and liveness that can be supported
(see Section 5.3).

Lemma 1 is the first of several Lemmas we will build upon to prove secu-
rity assurance in our MAC/DAC/RBAC Security Model. Lemma 1 , illustrated
in Figure 22, states that the time a user-role authorization is available is the
intersection of lifetimes.

Lemma 1: If URAi = [UR,M, TC, SC] is a VURA, then URAATi = MLT ∩
URLT ∩ TC.
Proof:

1. By Definitions 14 and 15a, URAi = [UR,M, TC, SC] as a VURA
means URAM(UR,M) = 1. By Definition 7,
UR = [URName, URLT , URCLS]. Set URAATi = URLT .
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2. By Definition 4, M = [MName,MLT ,MCLS,MParams]. Apply Defini-
tion 1a with URAATi = Compare(URAATi ,MLT ).

3. By Definition 12, a TC is a LT. In URAi = [UR,M, TC, SC], TC con-
strains when UR authorized to M. Apply Definition 1a with URAATi =
Compare(URAATi , TC).

4. If URAATi ∩ [ct,∞] = ∅, then URAATi = ∅ and proof completes.

5. Otherwise, URAATi = MLT ∩ URLT ∩ TC since it is equivalent to
URAATi = URAATi ∩TC (by steps 2 and 3 of the proof and substituting
for URAATi on the r.h.s. with MLT ∩URLT ). Note that if URAATi = ∅,
then there is no overlap.

ct

UR.LT

M.LT

Compare(TC,Compare(UR.LT, M.LT)) = 
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Figure 22: Lemma 1, User-Role Authorization, Available Time

Lemma 2 ,illustrated in Figure 23, states that the time a user-role is available
,UR.AT, is bound by the minimum start time, min st, of all of the User-Role
Authorizations (URA) for that UR and the maximum end time, max et, of all of
the User-Role Authorizations (URA) for that UR. Recall from Definition 1, that
lifetimes are bound by a start time, st, and an end time, et and from Definition
4, that all Methods have a lifetime, M.LT, and it is the M.LT with the TC that
determines the URA.LT.

Lemma 2: If UR = [URName, URLT , URCLS] is a user role, then URAT =
URLT∩URA Range∩[ct,∞] where min st = min(allURAAT.st),max et =
max(allURAAT.et), and URA Range = [min st,max et].
Proof:

1. By Definitions 14 and 15a, URAi = [UR,M, TC, SC] as a VURA
means URAM(UR,M) = 1. By Definition 7,
UR = [URName, URLT , URCLS]. Set URAATi = URLT .
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2. By Definition 1, A lifetime, LT, is a time interval with start time (st)
and end time (et), [st, et], et > st.

3. If URAATi ∩ [ct,∞] = ∅, then URAATi = ∅ and proof completes. Else,
there must be a URALT with URALT.st and URALT.et

4. If there is more than one URA for a UR, Then the UR is available at
the earliest start time, min st = min(allURAAT.st).

5. If there is more than one URA for a UR, Then the UR is no longer
available at the latest end time, max et = max(allURAAT.et).

6. If we repeat the previous step with each additional URA, we build an
URA Range = [min st,max et].

7. If we intersect URA Range with URLT we have the earliest possible
start time of a UR and this is precisely Lemma 2.

ct
UR.LT

UR.AT = UR.LT URA_Range  [ct, ]
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URA2.LT
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Figure 23: Lemma 2, User-Role, Available Time

Lemma 3 states that the authorized user’s available time for a specific user-
role is limited by the intersection of the lifetimes of the role, the user, and the
assigned time constraint. This Lemma is similar to Lemma 1 in its construct.

Lemma 3: If UA = [U,UR, TC] is a VUA, then UAAT = ULT ∩ URAT ∩ TC.
Proof:

1. By Definitions 16 and 17a, UA = [U,UR, TC] as a VUA means
UAM(UR,U) = 1. By Definition 9, U = [UUserId, ULT , UCLR]. Set
UAAT = ULT .

2. By Lemma 2, URAT is the AT of UR for all of its URAs. Apply
Definition 1a with UAAT =Compare(UAAT , URAT ). Note that UAAT

represents the time that U can engage an authorized UR.
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3. By Definition 12, a TC is a LT. In UA = [U,UR, TC], TC constrains
when UR authorized to U. Apply Definition 1a with
UAAT =Compare(UAAT ,TC).

4. If UAAT ∩ [ct,∞] = ∅, then UAAT = ∅ and proof completes.

5. Otherwise, UAAT = ULT∩URAT∩TC since it is equivalent to UAAT =
UAAT ∩ TC (by steps 2 and 3 of the proof and substituting for UAAT

on the r.h.s. with ULT ∩ URAT ). Note that URAT may still equal ∅,
i.e., there is no overlap.
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Figure 24: Lemma 3 , User Authorization, Available Time

Lemma 4 sets the lifetime terms for user-role delegation. Lemma 4 sets the
maximum available time of a delegation to the intersection of the available time
of the original user and the lifetime of the delegated user. This is important
because a user should not be able to increase the availability of one of their roles
by delegating the role to another user. Also, a delegated user, should not have
more availability to a given role than the original user. This Lemma also requires
that the proper matrices are considered to validate the delegation or there is no
available time.

Lemma 4: If OU delegates one of its DUR, UR, to DU, then a delegated user
authorization DUA = [DU,UR, TC] has DUAAT = OUAAT ∩DULT .
Proof:

1. Let OUA = [U,UR, TC] be a VUA for OU. By Lemma 3, OUAAT is
the time available for an OU to a UR. Set DUAAT = OUAAT .

2. For OU to delegate UR to DU, UAM(UR,OU) = 1. When OU
delegates UR to DU, then UAM(UR,DU) must be set to 1, and a
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DUA = [DU,UR, TC] is created. The UR and TC in the DUA are
as given in the OUA (Step 1), and thus do not impact DUAAT since
they are already in OUAAT .

3. By Definition 9, DU = [DUUserId, DULT , DUCLR]. Apply Definition
1a with DUAAT =
Compare(DUAAT , DULT ).

4. If DUAAT ∩ [ct,∞] = ∅, then DUAAT = ∅ and proof completes.

5. DUAAT = OUAAT∩DUAT since it is equivalent to DUAAT = DUAAT

∩DULT (by Step 3 of the proof and substituting for DUAAT on the
r.h.s. with OUAAT ).

Lemma 5 is similar to Lemma 2 in that Lemma 2 states that the time a
user-role is available, is the intersections of all same user-role authorizations.
If a user-role is not part of any user-role authorizations, then the user-role is
never available. Conversely, the role will be available if there is a valid user-
role authorization. Lemma 5 states that the time a user is available, is the
intersections of all same user authorizations. If a user is not part of any user
authorizations, then the user-role is never available. Conversely, the user will be
available if there is a valid user authorization.

Lemma 5: If U = [UUserId, ULT , UCLR] is a user, then UAT = ∩alliUAATi ,
where each UAATi represents one VUA where UAM(URj, U) = 1 for some
j = 1..r.
Proof:

1. Consider UAM as given in Definition 17a. If UAM(URj, U) = 0 for
some j, then U not authorized to URj, and there is no need to use
this entry to calculate UAT .

2. Consider all j where UAM(URj, U) = 1 (VUA of UR to U). If ∃ at
least one j s.t. UAM(URj, U) = 1 and URLT = ∅, then set UAT = ∅,
and proof completes.

3. Let UAM(URj, U) = 1 and UAM(URk, U) = 1 for some j, k. Apply
Definition 1a with UAT = Compare(UAATij , UA

AT
ik

), where ij/ik is the
VUA for URj/URk.

4. Repeat this step for each remaining entry UAM(U,URj) = 1, apply
Definition 1a with UAT = Compare(UAT , UAATik ).

5. If UAT ∩ [ct,∞] = ∅, then UAT = ∅ and proof completes.

6. Otherwise, UAT = ∩alliUAATi .

In summary, the ATs for each of the RBAC/DAC/MAC modeling constructs
(UR, URA, UA, DUA, U) allow us to constrain when each construct is available.
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5.2 MAC Guarantees

Mandatory access controls are governed by strict rules for subjects (users) to
access stored information or objects. These rules are so strict that few researchers
have tried to incorporate them into current access control systems. These rules
lack flexibility because, for assurance reasons, there can be no comprise of clas-
sified information. We have chosen to incorporate these rules into our security
model in order to provide a flexible MAC/DAC/RBAC Security Model that is
flexible enough to handle real-world needs, yet maintain security assurance over
classified material. Government classified information rules are detailed in the
JOS Orange Book Security Requirements [35] and include many different prop-
erties. For our work, we concentrate on the Simple Integrity and Simple Security
Properties.

The Simple Security Property dictates that a subject can read information at
the same or lower clearance level (read-down/no-read-up) [13]. The idea here is
that a subject can not have access to information above his/her clearance level;
This eliminates the chance of comprise. There is a basic assumption that subjects
will only share information at the appropriate levels and that is fine, but access
is a problem. Having access to higher level information violates the “need to
know” principle which is a foundation of security assurance. The Simple Integrity
Property dictates that a subject can write information at its own level and lower
(write-down/no-write-up) [18]. Again, since one can only create information at
their own level or lower, this makes since. The problem comes with information
flow. It is a security violation to send information from high to low. In this
section, we prove that our RBAC/DAC/MAC model (see Chapters 3 and 4)
and associated enforcement framework [67, 96] satisfies both the Simple Security
Property and the Simple Integrity Property.

In support of our model, we must recast the Simple Security and Simple
Integrity Properties and apply them to our model with methods, roles, and users.
To do so, we extend Definition 4 to include read-write and read-only methods,
allowing us to distinguish among methods that modify an object (for simple
integrity) and ones that only read an object (for simple security). Formally, we
define:

Definition 4a: Each method set, Mij = {Mijk | k = 1..qij}, is partitioned into
read-only methods, MRO

ij = {MRO
ijk for some k} and read-write methods,

MRW
ij = {MRW

ijk for some k}, with MRO
ij ∩MRW

ij = ∅ and MRO
ij ∪MRW

ij =
Mij.

Next, the function Dominate compares two CLR and/or CLS (Definition 2 and
Definition 13) to return true when one dominates the other and false otherwise.

Definition 28: Let Dominate(X,Y ) be a boolean function, with X and Y ei-
ther CLR/CLS (Definition 2) with U < C < S < T [35]. Dominate(X, Y ) =
{true if X ≥ Y ; false if X < Y }.
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Given these definitions, we can now present and prove a series of lemmas on
user role authorizations (URAs), user roles (URs), and user authorizations (UAs)
in regards to the Simple Security and Integrity Properties.

Lemma 6.1: If URAi = [UR,M, TC, SC] is a VURA, then URAi satisfies the
Simple Security Property of role (subject) versus method (object) for all
MRO and MRW .
Proof by contradiction:

1. By Definitions 14 and 15a, URAi = [UR,M, TC, SC] as a VURA
means URAM(UR,M) = 1. By Definition 7, UR = [URName, URLT ,
URCLS], where URCLS is the role’s CLS. By Definition 4, M = [MName,
MLT ,MCLS, MParams], where MCLS is the method’s CLS. For MAC
purposes, treat UR as the subject and M as the object.

2. If M ∈MRO
ij or M ∈MRW

ij , it has a CLS, MCLS. Suppose
Dominate(URCLS ,MCLS) = false. Then, URAM(UR,M) = 0
(Definitions 14, 15a, and 15b).

3. This contradicts Step 1 where URAM(UR,M) = 1.

4. Therefore, Dominate(URCLS,MCLS) = true (URCLS ≥ MCLS).

5. This is exactly the Simple Security Property (read-down/no-read-up)
in [13].

Lemma 6.2: If URAi = [UR,M, TC, SC] is a VURA, then URAi satisfies the
Simple Integrity Property of role (subject) versus method (object) for all
MRW .
Proof by contradiction: Exact Steps as Lemma 6.1 except for Steps 2 and
5 (below).

1. By Definitions 14 and 15a, URAi = [UR,M, TC, SC] as a VURA
means URAM(UR,M) = 1. By Definition 7, UR = [URName, URLT ,
URCLS], where URCLS is the role’s CLS. By Definition 4, M = [MName,
MLT ,MCLS, MParams], where MCLS is the method’s CLS. For MAC
purposes, treat UR as the subject and M as the object.

2. If M ∈MRW
ij , it has a CLS, MCLS. Suppose that

Dominate(URCLS,MCLS) = false.
Then, URAM(UR,M) = 0 (Definitions 14, 15a, and 15b).

3. This contradicts Step 1 where URAM(UR,M) = 1.

4. Therefore, Dominate(URCLS,MCLS) = true (URCLS ≥ MCLS).

5. This is exactly the Simple Integrity Property (write-down/no-write-
up) [18].
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Lemma 6.3: Let UR = [URName, URLT , URCLS] and α = ∪alliURAi, where
each URAi is a VURA (URAM(UR,Mj) = 1 for some j = 1..q). If
Dominate(URCLS,MCLS

j ) = true for all URAi ∈ α, then UR satisfies the
Simple Security Property for all methods and Simple Integrity Property for
MRW .
Proof:

1. For each M ∈MRO
ij and M ∈MRW

ij , by Lemma 6.1,
Dominate(URCLS,MCLS) = true, and, UR satisfies the Simple Secu-
rity Property for all methods.

2. For each M ∈ MRW
ij , by Lemma 6.2, Dominate(URCLS,MCLS) =

true, and, UR satisfies the Simple Integrity Property for all MRW .

3. Steps 1 and 2 mean that UR satisfies the Simple Security Property for
all methods and the Simple integrity Property for MRW .

Lemma 7: If UA = [U,UR, TC] is a VUA, then UA satisfies the Simple Security
and Integrity Properties for user (subject) CLR vs. role (object) CLS.
Proof by contradiction:

1. By Lemma 6.3, UR satisfies Simple Security Property for all methods
and the Simple Integrity Property for MRW . Hence,
Dominate(UR,Mk) = true for all Mk authorized to UR.

2. By Definitions 16 and 17a, UA = [U,UR, TC] as a VUA means
UAM(UR,U) = 1. By Definition 9, U = [UUserId, ULT , UCLR], with
UCLR.

3. Suppose that Dominate(UCLR, URCLS) = false.

4. Then, UAM(UR,U) = 0 (Definitions 16, 17a, and 17b), which con-
tradicts Step 2.

5. Therefore, Dominate(UCLR, URCLS) = true (UCLR ≥ URCLS).

6. Since UR satisfies both Simple Security and Integrity Properties, UA
also does.

Lemma 8: If OU delegates one of its DUR, UR, to DU, then a delegated user
authorization DUA = [DU,UR, TC] satisfies both the Simple Security and
Integrity Properties for delegated user (subject) vs. role (object).
Proof:

1. By Lemma 6.3, UR satisfies Simple Security Property for all methods
and the Simple Integrity Property for MRW . Hence,
Dominate(UR,Mk) = true for all Mk authorized to UR.

2. By Lemma 4, if an OU delegates to a UR to a DU, the available time
is DUAAT = OUAAT ∩DULT . IF AT is Ø, Delegation cannot happen
and the proof ends.
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3. By Definition 22 and Definition 23, UDAM(URi, Uj) = 2. else, dele-
gation cannot happen and proof ends.

4. For UDAM(URi, Uj) = 2 delegation, DU must be a valid user with a
VUA, UAM(URi, Uj) = 1. For our purpose, DU = U and we continue
in the same manner as Lemma 7.

5. By Definitions 16 and 17a, UA = [U,UR, TC] as a VUA means
UAM(UR,U) = 1. By Definition 9, U = [UUserId, ULT , UCLR], with
UCLR.

6. Suppose that Dominate(UCLR, URCLS) = false.

7. Then, UAM(UR,U) = 0 (Definitions 16, 17a, and 17b), which con-
tradicts Step 4.

8. Therefore, Dominate(UCLR, URCLS) = true (UCLR ≥ URCLS).

9. Since UR satisfies both Simple Security and Integrity Properties, UA
also does.

In summary, Lemmas 6.1, 6.2, 6.3, 7, and 8, collectively, allow us to demonstrate
that our RBAC/DAC/MAC model (and enforcement framework) will satisfy two
important MAC properties.

5.3 Safety and Liveness Guarantees

In this section, we explore safety and liveness and their attainment with our
framework. Our approach has been strongly influenced by research on safety
(nothing bad will happen to a subject or object during execution) [62, 63] and
liveness (all good can happen to a subject or object during execution) [5]. Re-
member, in our work, at different times the subject will be a user or a role, and
the object will be a method or a role. To support the work in this section, in
Section 5.3.1 we review a set of security assurance rules, SARs, that are intended
to represent the conditions under which authorizations and delegations can occur
(design time) and enforcement can occur (runtime) [67]. Then, in Section 5.3.2,
we demonstrate the satisfaction of these rules in terms of both safety and liveness.
Overall, the work in this section culminates the contributions of this dissertation
by verifying the capabilities of the security model as presented in Chapters 3 and
4.

5.3.1 Security Assurance Rules

A security assurance rule, SAR, is a logical statement that must be satisfied
in order for a privilege to be set (design-time) or an action to be performed
(runtime). The first four SARs are non-delegation checks when a security officer
is defining privileges (Rule I for when an officer attempts to assign a method to
a UR and Rule II for when an officer attempts to authorize a UR to a User) and
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at runtime (Rule III for when a user selects a UR to play for a session and Rule
IV for when a user attempts to invoke a method, via a client application).

Rule I: Let A ∈ UR and M be a method. URA = [A,M, TC, SC] is a
VURA iff ACLS ≥ MCLS, TC = ALT ∩ MLT ∩ TC 6= ∅, TC.et > ct;
Set URAM(A,M) = 1, V URAL = V URAL ∪ URA.

Rule II: Let A ∈ UR and X ∈ UL. UA = [X,A, TC] is a VUA iff XCLR ≥
ACLS, TC = XLT ∩ ALT ∩ TC 6= ∅, TC.et > ct; Set UAM(A,X) =
1, UDAM(A,X) = 1, V UAL = V UAL ∪ UA.

Rule III: Let A ∈ UR and X ∈ UL. A can be authorized to X at runtime iff
UAM(A,X) = 1 (Rule II is satisfied), and for the V UA = [X,A, TC] ∈
V UAL, TC.et > ct.

Rule IV: Let A ∈ UR, X ∈ UL, and M be a method. X with role A can invoke
M at runtime iff UAM(A,X) = 1 (Rule II is satisfied), UDAM(A,M) = 1
(Rule I is satisfied), for V UA = [X,A, TC] ∈ V UAL, TC.et > ct, for
V URA = [A,M, TC, SC] ∈ V URAL, TC.et > ct, SCOracle([MName,
MParams,MActualV alues], SC) = true.

Notice that SCOracle compares actual values of the invocation against the SC
and returns true if M.ActualValues satisfies SC and false otherwise. For Rules
III and IV, if the security information (i.e., UAM, UDAM, VUA, VURA, etc.)
is up-to-date, there is no need to recheck Rules I and II; however, to guarantee
a higher-level of assurance, rechecks of rules can be performed. Note that in
support of SCOracle, we assert the following:

Assumption: There exists a SC Oracle that does not fail. The number and
type of parameters vary with each method and SC will vary as well, to
adapt to these different situations. This is a reasonable assumption since
SC is simply checking to see if the Boolean is satisfied and this can be done
with a very high expectation of success.

The remaining five SARs are for delegation [67]. Rules V and VI are for the
assignment of DA and PODA to a user X. Rule VII is for design-time delegation
of a UR by a user to another user. Rule VIII is for setting DA or DA/PODA
from one user (either OU or DU) to another DU (Rule VII satisfied).

Rule V: Let X ∈ UL and A ∈ URL. X can have DA for A (DAM(A,X) =
1 ) iff UDAM(A,X) = 1(X an OU), DURV (A) = 1(A a DUR), and
∃ a V UA = [X,A, TC].

Rule VI: Let X ∈ UL and A ∈ URL. X can have DA and PODA for
A (DAM(X,A) = 2) iff UDAM(A,X) = 1(X an OU), DURV (A) =
1(A a DUR), and ∃ a V UA = [X,A, TC].
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Rule VII: Let X ∈ UL and A ∈ URL, s.t. DAM(A,X) ≥ 1 (Rules V or VI).
X can delegate A to user Y limited by TC iff UDAM(A, Y ) 6= 1, Y CLR ≥
ACLS, TC = (Y LT ∩ ALT ∩ TC) 6= ∅, and TC.et > ct. Set UAM(A, Y ) =
1, UDAM(A, Y ) = 2, and V UAL = V UAL ∪ UA = [Y,A, TC].

Rule VIII: Let X ∈ UL be an OU/DU, A ∈ URL, and Y ∈ UL be a DU
of A. Y can have DA for A (DAM(A,Y) = 1 ) if X has at least DA for A
(DAM(A,X) ≥ 1). Y can have DA and PODA for A(DAM(A,Y)=2 if X
has both DA and PODA for A (DAM(A,X)=2). (Rule VIII limited to 2
levels in our framework).

5.3.2 Proof of Safety and Liveness

In this section we present a series of theorems related to safety and liveness,
which correspond to the rules that have been presented in Section 5.3.1. For
consistency in our use of terms, we define the following: a legal access is an
access authorized by a security policy; liveness means that every legal access is
authorized (all good things can happen) [5]; and, safety means that no illegal
access is authorized (no bad things will happen) [62, 63]. To begin, consider
Theorems I and II below, which correspond to Rules I and II as given in Section
5.3.1.

Theorem I: Rule I meets security requirements for both liveness and safety.
Rule I: Let A ∈ UR and M be a method. URA = [A,M, TC, SC] is a
VURA iff ACLS ≥ MCLS, TC = ALT ∩MLT ∩ TC 6= ∅, TC.et > ct; Set
URAM(A,M) = 1, V URAL = V URAL ∪ URA.
Proof:

1. Let A be a user role and M be the method being authorized.

2. Initially, the URAM is set to all 0s. This is perfect access control as
there are no UR authorizations to any methods, Mijk, in this system.
This meets safety (no bad things can happen), but not liveness, as no
good things can happen.

3. Lemma 1 ensures that a URA is a VURA and URAATi = MLT ∩
URLT ∩ TC. If URAATi 6= ∅ and URAATi ∩ [ct,∞] 6= ∅, then M can
be assigned to UR. Otherwise M cannot be assigned to UR because it
can never be available.

4. Lemma 6.1 insures ACLS ≥MCLS.

5. To change an entry from 0 to 1 in a URAM, there must be a URA
(Definition 14).

6. In order to build liveness, yet maintain safety, 0 entries in the URAM
must be changed to 1 (URAM(A,M) = 1) for only those URs autho-
rized to Ms (Definitions 15a and 15b). Validating changes to URAM
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allows for both safety and liveness; there is no access except for these
specific authorizations (all legal, no illegal access) and this is precisely
Rule I.

Theorem II: Rule II meets security requirements for both liveness and safety.
Rule II: Let A ∈ UR and X ∈ UL. UA = [X,A, TC] is a VUA iff
XCLR ≥ ACLS, TC = XLT ∩ALT ∩TC 6= ∅, TC.et > ct; Set UAM(A,X) =
1, UDAM(A,X) = 1, V UAL = V UAL ∪ UA.
Proof:

1. Let X be a user and A be the role being authorized.

2. Initially, the UAM and UDAM are set to all 0s. This is perfect access
control as there are no users, U, authorized to any user roles, UR, in
this system. This meets safety requirements, but not liveness, as no
user can do anything.

3. U and UR must be available for access and URAT ∩UAT ∩ [ct,∞] 6= ∅.
Lemma 3 insures the maximum AT for a U to a UR. The intersection
with the current time assures that available time has not passed, which
is obviously a requirement for use.

4. Lemma 7 insures XCLR ≥ ACLS.

5. To change an entry from 0 to 1 in UAM/UDAM, there must be a UA
(Definition 16).

6. In order to build liveness, yet maintain safety, 0 entries in the
UAM/UDAM must be changed. Validating changes to UAM and
UDAM allows for both safety and liveness, as there is no access allowed
except for these specific authorizations and this is precisely Rule II.

Both Theorems I and II are for the design time verification of security privileges
as authorizations of being defined.

Theorems III and IV are for runtime checks of privileges against the RBAC/DAC/MAC
model. The safety and liveness of Rule III (Theorem III) focuses on the runtime
authorization of user to role. This is necessary for safety and liveness in a dy-
namic environment where tranquility of CLR and CLS is not guaranteed, URs
can change, and user and time constraints can expire.

Theorem III: Rule III meets security requirements for both liveness and safety.
Rule III: Let A ∈ UR and X ∈ UL. A can be authorized to X at runtime
iff UAM(A,X) = 1 (Rule II is satisfied), and for the V UA = [X,A, TC] ∈
V UAL, TC.et > ct.
Proof:

1. Let X be a user and A be the role being authorized.

2. If UAM(A,X) 6= 1, then deny runtime authorization. End of proof.
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3. Revalidate Rule II: XCLR ≥ ACLS, TC = XLT ∩ ALT ∩ TC 6= ∅,
TC.et > ct.

• If XCLR < ACLS, then Rule II fails.

• If TC = XLT ∩ ALT ∩ TC = ∅, then Rule II fails.

If either case is true, deny runtime authorization. End of proof.

4. Otherwise, Rule II is revalidated at runtime, then by Theorem II, Rule
II satisfies safety and liveness. Thus, Rule III does as well.

Recall that Rule IV (Section 3.3.1) checks to see if the invocation of a method by
a user playing a specific role can occur. As such, there must be re-verifications
of privileges and constraints in a similar fashion to Rule III/Theorem III.

Theorem IV: Rule IV meets security requirements for both liveness and safety.
Rule IV: Let A ∈ UR, X ∈ UL, and M be a method. X with role
A can invoke M at runtime iff UAM(A,X) = 1 (Rule II is satisfied),
UDAM(A,M) = 1 (Rule I is satisfied), for V UA = [X,A, TC] ∈ V UAL,
TC.et > ct, for V URA = [A,M, TC, SC] ∈ V URAL, TC.et > ct,
SCOracle([MName, MParams,MActualV alues], SC) = true.
Proof:

1. Let X be a user, A be its role, and M be the method being invoked.

2. If SCOracle([MName,MParams,MActualV alues], SC) = false, then deny
runtime authorization. End of proof.

3. If UAM(A,X) 6= 1, then deny runtime authorization. End of proof.

4. If URAM(A,M) 6= 1, then deny runtime authorization. End of proof.

5. If UAT = ∅, (set by Lemma 3) then deny runtime authorization. End
of proof.

6. If UTC.et ≤ ct, then deny runtime authorization. End of proof.

7. Otherwise, Rules I and II are revalidated enusring both safety and
liveness. Thus, Rule IV does as well.

Note that since UAT by Lemma 3 includes URAT which includes MLT by Lemma
1, there is no need to consider the latter two for the proof. We present the
remaining five theorems for role delegation. You will find that the following
proofs are similar to the first four proofs in that the users and user-roles still
need to meet and often time are more constrained with delegation. Certainly,
delegated users need to be held to at least the same security assurance standards
set for an original user.

Rule V is for assigning delegation authority, DA, for a user role, UR at design
time. The proof of Theorem V verifies delegation authority by examining whether
the UR is delegatable and whether the user is already a delegated or an original
user of a UR. The proof also examines for a valid user authorization and time



78

constraints like Lemma 2, then proceeds to verification of delegation authority
by examining whether the UR is delegatable and whether the user is already a
delegated or an original user of a UR.

Theorem V: Rule V meets security requirements for both liveness and safety.
Rule V: Let X ∈ UL and A ∈ URL. X can have DA for A (DAM(A,X) =
1 ) iff UDAM(A,X) = 1(X an OU), DURV (A) = 1(A a DUR), and
∃ a V UA = [X,A, TC].

Proof:

1. Let X be a user and A is a UR, V UA(UAM(A,X) = 1). Definitions
17a,b. In order for UAM(A,X) = 1, Rule II must be satisfied (The-
orem II). UDAM(A,X) = 1 implies that UAM(A,X) = 1 also by
Rule II.

2. If V UA(UAM(A,X) 6= 1) there can be no delegation authority as-
signed because X is not a valid user to begin with. End of proof.

3. Initially, the DURV,DAM, and UDAM are set to all 0s. This is
perfect safety as there are no users authorized to delegate any user
roles, UR, in this system. This, of course, meets safety requirements,
but not liveness, as delegation cannot happen. Definitions 20, 26 and
23.

4. If DURV (A) = 0 or UDAM(A,X) = 0 or DAM(A,X) = 0 there
can be no delegation authority assigned because one of the following
is true: The UR is not delegatable (Definition 20), the user does not
have delegation authority (Definition 26), or the user is not authorized
to user role (Definition 23). All of which prevent delegation. End of
Proof.

5. Therefore, the only way delegation authority can be assigned to X is if
DURV (A) 6= 0 and UDAM(A,X) 6= 0 and DAM(A,X) 6= 0, which
is Rule V. Since only thing that can happen is delegation authority,
which is good, we prove liveness. The only thing that can happen is
good, nothing bad can happen, which proves safety.

Theorem VI for proving Rule VI is very similar to Theorem V with the dif-
ference in the consideration of the Delegation Authority Matrix, DAM (Defini-
tion 26). Rule VI is for assigning delegation authority, DA, and Pass-on Del-
egation Authority, PODA, at design time. UDAM(A,X) = 1 implies that
UAM(A,X) = 1 by Rule II. Note that Rule VI establishes, DA or DA/PODA
for user X to role A when X is an OU .

Theorem VI: Rule VI meets security requirements for both liveness and safety.
Rule VI: Let X ∈ UL and A ∈ URL. X can have DA and PODA for
A (DAM(X,A) = 2) iff UDAM(A,X) = 1(X an OU), DURV (A) =
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1(A a DUR), and ∃ a V UA = [X,A, TC].

1. Let X be a user and A is a UR, V UA(UAM(A,X) = 1). Definitions
17a,b. In order for UAM(A,X) = 1, Rule II must be satisfied (The-
orem II). UDAM(A,X) = 1 implies that UAM(A,X) = 1 also by
Rule II.

2. If V UA, (UAM(A,X) 6= 1), there can be no delegation authority as-
signed because X is not a valid user to begin with. End of proof.

3. Initially, the DURV,DAM, andUDAM are set to all 0s. This is per-
fect safety as there are no users authorized to delegate any user roles,
UR, in this system. This, of course, meets safety requirements, but
not liveness, as delegation cannot happen. Definitions 20, 26 and 23.

4. If DURV (A) = 0 or UDAM(A,X) = 0 or DAM(A,X) = 0 there
can be no delegation authority assigned because one of the following
is true: The UR is not delegatable (Definition 20), the user does not
have delegation authority (Definition 26), or the user is not authorized
to user role (Definition 23). All of which prevent delegation. End of
Proof.

5. Therefore, the only way delegation authority can be assigned to X is if
DURV (A) 6= 0 and UDAM(A,X) 6= 0 and DAM(A,X) 6= 0, which
is Rule V.

6. Since the only thing that can happen is delegation authority, which is
good, we prove liveness. Since the only thing that can happen is good,
so nothing bad can happen, which proves safety.

Theorem VII is similar to and uses Theorems II, IV, and VI. Theorem VII
for Rule VII is for executing the actual delegation of a role from one user to
another user. In order to be able to delegate, the delegating user must have
delegation authority, the user-role must be delegatable and the gaining user must
be a valid user. This Proof examines how the user must have proper authority
or the delegation cannot happen. Theorems II and IV are for checking for valid
user authorizations at design time and runtime, respectively. Next, the proof
examines the authority of the delegating user to delegate a role. Rule VII is for
the design-time delegation of a UR by a user to another user, which creates entries
UAM(A, Y ) = 1, UDAM(A, Y ) = 2, and V UAL = V UAL ∪ UA = [Y,A, TC].
if successful.

Theorem VII: Rule VII meets security requirements for both liveness and
safety.
Rule VII: Let X ∈ UL and A ∈ URL, s.t. DAM(A,X) ≥ 1 (Rules
V or VI). X can delegate A to user Y limited by TC iff UDAM(A, Y ) 6=
0, Y CLR ≥ ACLS, TC = (Y LT ∩ ALT ∩ TC) 6= ∅, and TC.et > ct. Set
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UAM(A, Y ) = 1, UDAM(A, Y ) = 2, and V UAL = V UAL ∪ UA =
[Y,A, TC].
Proof:

1. User, Y must satisfy the requirements of Theorems II and III. This
insures the user meets the same TC, SC and MACC requirements as
the delegating user. Else, no delegation, end of proof.

2. User Y cannot be anOU orDU of the delegated UR, (UDAM(A, Y ) 6≥
1). If the user Y is already a DU or OU, the delegation cannot happen.
End of proof.

3. Let X be delegating user (DAM(A,X) ≥ 1) and A a delegatable
UR, (DURV (A) = 1). If U is not authorized to delegate or UR not
delegatable, delegation cannot occur, end of proof.

4. If V UA, (UAM(A,X) 6= 1), there can be no delegation authority as-
signed because X is not a valid user to begin with. End of proof.

5. Initially, the DURV,DAM, and UDAM are set to all 0s. This is
perfect safety as there are no users authorized to delegate any user
roles, UR, in this system. This, of course, meets safety requirements,
but not liveness, as delegation cannot happen. Definitions 20, 26 and
23.

6. If DURV (A) = 0 or UDAM(A,X) = 0 or DAM(A,X) = 0 there
can be no delegation authority assigned because one of the following
is true: The UR is not delegatable (Definition 20), the user does not
have delegation authority (Definition 26), or the user is not authorized
to user role (Definition 23). All of which prevent delegation. End of
Proof.

7. Therefore, the only way delegation authority can be assigned to X
is if DURV (A) 6= 0 and UDAM(A,X) 6= 0 and DAM(A,X) 6= 0,
Y CLR ≥ ACLS,TC = (Y LT ∩ALT ∩ TC) 6= ∅, and TC.et > ct which is
Rule VII.

8. Since delegation authority can happen, which is good, we prove live-
ness. Since the only thing that can happen is good, nothing bad
happens, which proves safety.

Rule VIII is for executing PODA of a UR from an OU to a DU to another
DU . This proof is similar to Theorem VII in that the DU must meet the V UA
from Lemmas 3 and 7 and Theorem II. In addition to Theorem VII, OUs andDUs
are validated according to the Delegation Authority Matrix, DAM, Definition 26.
In order for the delegation to occur, Rule VII requires Role Delegation and User
DA Authority Checks, and MACC Domination Check, LT/TC Check, with the
overlap of LTs and TC after the current time. Note that Rule VII is utilized to
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establish that Y is a DU of A, if X has at least DA for A (X satisfies Rules V
or VI).

Theorem VIII makes sure that an OU/DU must grant PODA before a DU
can grant DA. In our framework, we can limit the delegation to two vertical by
only allowing an OU to grant PODA. That way a DU can only DA to another
U .

Theorem VIII: Rule VIII meets security requirements for both liveness and
safety.
Rule VIII: Let X ∈ UL be an OU/DU , A ∈ URL, and Y ∈ UL be a
DU of A. Y can have DA for A (DAM(A, Y ) = 1) if X has at least DA
for A (DAM(A,X) ≥ 1). Y can have DA and PODA for A(DAM(A,Y)=2
if X has both DA and PODA for A (DAM(A,X)=2). (Rule VIII limited to
2 levels in our framework).
Proof:

1. User, Y must satisfy the requirements of Theorems II and III. This
insures the user meets the same TC, SC and MACC requirements as
the delegating user. Else, no delegation, end of Proof

2. User Y cannot be anOU orDU of the delegated UR, (UDAM(A, Y ) 6≥
1). If the user Y is already a DU or OU, the delegation cannot happen.
End of Proof.

3. Let X be delegating user (DAM(A,X) ≥ 1) and A a delegatable
UR, (DURV (A) = 1). If U is not authorized to delegate or UR not
delegatable, delegation cannot occur, end of proof.

4. If V UA, (UAM(A,X) 6= 1), there can be no delegation authority as-
signed because X is not a valid user to begin with. End of proof.

5. Initially, the DURV,DAM, and UDAM are set to all 0s. This is
perfect safety as there are no users authorized to delegate any user
roles, UR, in this system. This, of course, meets safety requirements,
but not liveness, as delegation cannot happen. Definitions 20, 26 and
23.

6. If DURV (A) = 0 or UDAM(A,X) = 0 or DAM(A,X) = 0 there
can be no delegation authority assigned because one of the following
is true: The UR is not delegatable (Definition 20), the user does not
have delegation authority (Definition 26), or the user is not authorized
to user role (Definition 23). All of which prevent delegation. End of
Proof.

7. Therefore, the only way delegation authority can be assigned to X
is if DURV (A) 6= 0 and UDAM(A,X) 6= 0 and DAM(A,X) 6= 0,
Y CLR ≥ ACLS,TC = (Y LT ∩ALT ∩ TC) 6= ∅, and TC.et > ct which is
Rule VII.
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8. If PODA is to occur from X to Y , X must have PODA,
DAM(A,X) < 1, Def 26. If DAM(A,X) 6= 2, PODA cannot happen,
End of Proof.

9. We know delegation authority can happen from Theorem VII iff
DAM(A,X) 6= 0 and we also know PODA can happen
iff DAM(A,X) = 2, which is good, proving liveness. Since only
good things can happen when DAM(A,X) 6= 0, nothing bad hap-
pens, which proves safety.

5.3.3 Summary of Rules and Theorems

As stated earlier, our main objective in this chapter is to explore assurance
for our RBAC/DAC/MAC security model. We focus on which methods of APIs
can be invoked based on the user role attributes, the security classification and
clearances, method parameter values, and time constraints, all of which must be
satisfied in order for the invocation to be successfully. We leverage the best quali-
ties and principles established by role-based, discretionary, and mandatory access
control methods to include the Simple Security and Simple Integrity Properties
required in government systems for protecting access to sensitive information.
We also consider the required balance between safety (no bad things can hap-
pen) and liveness (all good things happen) that must be achieved in spite of
the strict controls imposed by mandatory access controls and the user freedom
provided by discretionary access controls. We accomplish all this by establishing
a strict set of security assurance rules that enforce the necessary qualities. We
conclude the chapter by formally proving that each rule, within the context of
our security model, can provide both safety and liveness in support of security
assurance. This is one of the significant contributions of this dissertation.



Chapter 6

Security Enforcement: Framework and

Prototype

In this chapter, we present the security enforcement framework and prototype
that realizes our RBAC/DAC/MAC security model as given in Chapters 3 and
4, which includes the security assurance capabilities as detailed in Chapter 5. We
separate our presentation into two parts. First, we explore the security enforce-
ment framework that is built upon our abstract middleware model (see Chapter
3), and the realization of the RBAC/DAC/MAC security model as: a set of secu-
rity tools that allow security officers to define a security policy; the definition of
security services that support the RBAC/DAC/MAC model within an abstract
middleware framework; and, the associated processing steps that occur when a
user of a client application, playing a role, attempts an action in the client that
causes a method invocation against a software artifact (resource). Second, we
examine the actual prototyping effort that has been ongoing over the past four
plus years. The prototype has been developed as part of numerous independent
studies and design laboratories by graduate students, including: Spring 2000 (two
MS students) Fall 2000 (four MS students), Spring 2001 (six MS students), Sum-
mer 2001 (two MS students), Fall 2001 (three MS students), Spring 2002 (three
MS students) and Fall 2002 (five MS students), Spring 2003 (one MS student).
The prototyping effort, in almost its entirety, has been designed and supervised
by C. Phillips.

The remainder of this chapter is organized into three sections. In Section
6.1, we explore the underlying concepts of the security enforcement framework
that coincides to the RBAC/DAC/MAC model as presented in Chapters 3 and 4,
which includes assurance capabilities as discussed in Chapter 5. In Section 6.2, we
emphasize the prototype of the framework from Section 6.1, which includes secu-
rity administrative tools to define and manage the security policy (e.g., authorize
methods to roles, users to roles, delegation, assign CLS and CLR, etc.) and
the interactions that occur within the enforcement framework at runtime when
a user playing a role tries to invoke a method of a client application. We also
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include a discussion of the client applications (and associated database resources
- artifacts) that have been developed to demonstrate the concepts.

6.1 Security Enforcement Framework

In this section, we present a security enforcement framework for a combined
RBAC/DAC/MAC security model, which enforces selective access of users (ex-
ecuting client applications) to the software artifacts (resources) that comprise
a distributed application, as shown in Figure 25. The associated security ad-
ministrative tools and enforcement framework for this research are shown in the
bottom half of Figure 25. The enforcement framework, the Unified Security Re-
source (USR), is modeled as another resource in a middleware setting, that is
dedicated to handling security interactions, and embodies the capabilities of the
RBAC/DAC/MAC model as discussed in Chapters 3 and 4, and the assurance
needed in support of the material in Chapter 5. The USR consists of three sets
of services: Security Policy Services to manage the definition of roles and the
authorization of their privileges (i.e., methods); Security Authorization Services
to authorize roles to users; and, Security Registration Services to identify clients
and track security behavior. The USR is a repository for all static and dynamic
security information on roles, clients, resources, authorizations, etc. To provide
an interaction point for security officers seeking to define and manage their se-
curity policy, the enforcement framework as given in Figure 25 also depicts: the
Security Policy Client (SPC) to manage URs by granting/revoking privileges
(TCs, methods, SCs) and setting CLS levels; the Security Authorization Client
(SAC) to assign CLRs and authorize roles to end users; and the Security Delega-
tion Client (SDC) for use by the security officer and users to grant, update, and
revoke delegations.

In this section, we emphasize conceptual issues and detail the capabilities
of the enforcement framework from a number of different perspectives. First,
we explore the Unified Security Resource (USR) in detail. Second, we present
security enforcement actions that occur for an active client. Third, we examine
the participation of software artifacts (resources) in the security paradigm, which
includes the actions taken for a resource to register its services for secure access.
Fourth, we discuss the capabilities of the security administration and management
tools (SPC, SAC, and SDC). Fifth, we detail security assurance checks that are
provided at design and runtime, and we finish by discussing related prototyping
research. research prototype, and related prototype work.

6.1.1 The Unified Security Resource (USR)

The Unified Security Resource (USR) consists of three sets of services: Se-
curity Policy Services managing roles and their privileges; Security Autho-
rization Services to authorize roles to users; and, Security Registration
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Figure 25: Security Enforcement Framework Software Architecture.

Services to identify clients and track security behavior. The USR is a reposi-
tory for all static and dynamic security information on roles, clients, resources,
authorizations, etc., and is organized into a set of services, as given in Figure 26.
Security Policy Services are utilized to define, track, and modify user roles,
to allow resources to register their services and methods (and signatures), and
to grant/revoke access by user roles to resources, services, and/or methods with
optional time and signature constraints. These services are used by a security
officer to define a policy, and by the resources (e.g., database, Java server, etc.) to
dynamically determine if a client has permission to execute a particular [resource,
service, method] under a time and/or signature constraint. There are five differ-
ent Security Policy Services: Register for allowing a resource to (un)register
itself, its services and their methods (and signatures), which is used by a resource
for secure access to its services; Query Privilege for verification of privileges; User
Role to allow the security officer to define and delete user roles; Constraint to
allow time and signature constraints to be defined by the security officer, and for
these constraints to be dynamically verified at runtime; and, Grant-Revoke for
establishing privileges.
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Figure 2: The Services of USR.
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Figure 26: The Services of USR.

Security Authorization Services are utilized to maintain profiles on the
clients (e.g., users, tools, software agents, etc.) that are authorized and actively
utilizing non-security services, allowing a security officer to authorize users to
roles. There are two services: Authorize Role Service, for the security officer
to grant and revoke a role to a user with the provision that a user may be
granted multiple roles, but must play only a single role when utilizing a client
application; and, Client Profile Service for the security officer to monitor and
manage the clients that have active sessions. Security Registration Services
are utilized by clients at start-up for identity registration (client id, IP address,
and user role), which allows a unique Token (see Definition 18) to be generated
for each session of a client. The two Security Registration services are: The
Register Client Service and the Security and Analysis Services. The tracking and
analysis services allow for a security officer to follow all activity for reasons of
nonreputiation and recovery. Finally, the Global Clock Resource (GCR) ,
Figure 25, is used by Security Policy Services to verify a TC when a client (via
a UR) is attempting to invoke a method, and Security Registration Services to
obtain the time, which is then used in the generation of a unique Token.
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6.1.2 Security Enforcement: Client Application

The processing required by a client application is best illustrated with an
example, which is given in Figure 27. In the first step in the process, the user
of the GCCS Client must be authenticated to play a particular role. To do so,
the GCCS Client registers with USR via the Register Client method (step 1),
which must verify the user role (steps 2 and 3), and return a generated Token
via the Create Token method (step 4). To generate the Token in step 4, the
Security Registration Service interacts with GCR (steps not shown) in order to
construct a Token which consists of User-Id, UR-ID, IP address, and creation
time. This token is unique even if the user has multiple active sessions of same
role on one machine. Assuming that the registration and Token generation was
successful, the user can then attempt to utilize services from the GCCS Resource.
The GCCS Client consults the lookup service for the desired [resource, service,
method] (step 5) which returns a proxy to CrisisPicture, allowing the method
to be invoked (step 6) with the parameters Token, CR1, NA20, and NC40. The
GCCS Resource has two critical steps to perform before executing CrisisPicture.
First, the GCCS Resource verifies that the Client has registered with the security
services (steps 7 and 8). If this fails, a negative result is sent back via the Reg-
isterCourse result (step 11). If this is successful, then the GCCS resource must
perform a privilege check (privileges assigned by role) to verify if the user role
can access the method limited by signature constraints and/or time constraints
(both may be null). This is done in step 9, as part of the Check Privileges
method, which uses method calls from Figure 11 such as: 9a CheckTC (Token,
UnivDB, Modification, RegisterCourse); 9b CheckSC (Token, UnivDB, Modifi-
cation, RegisterCourse, ParamValueList). The CheckTC method interacts with
GCR to verify that the current time is within the limits of the time constraint (if
present). If the privilege check is successful (step 10) then the method executes as
called and the result (DoRight executing CrisisPicture) is returned as a success in
step 11. Otherwise, the result (step 10) denies the registration via step 11. Note
that the signature constraint is verified in two phases. The parameters constraint
(if present) must be checked prior to method invocation, while the return-type
constraint (if present) must be checked after execution and before the result has
been returned.

6.1.3 Participation of Resources in Security Paradigm

In our enforcement framework in Figure 25, resources that want to utilize
the security capabilities, must announce themselves to USR. Specifically, each
resource must register with the Security Policy Services, so that the master re-
source list, service list, and method list (and their signatures) can be modified to
include resources as they dynamically enter and leave the environment. Resources
must be allowed to both register and unregister themselves, their services, and
methods (with signatures) via the Security Registration Service (see Figure 25
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and Figure 26). For our example, the GCCS resource, Chapter 3, Figure 13,
would register its Joint and Component services and all of their methods and
signatures. This registration is critical, since it stores the information into a rela-
tional database which is then accessible by the administrative and management
tools. In addition, resources like GCCS utilize USR to dynamically verify if the
client is authorized to a [resource, service, method] under optional TCs and/or
SCs, Definitions 11 and 12.

6.1.4 Security Administrative/Management Tools

Recall that in Figure 25, there are administrative and management tools,
namely: the Security Policy Client (SPC) manages user roles by granting/revoking
privileges (TCs, resources, services, methods, and SCs); the Security Authoriza-
tion Client (SAC) authorizes roles to end users; a Security Analysis and Tracking
Tool (SAT) analyzes Java source code of resources to track nested method invo-
cations; and, a Global Clock Resource (GCR) supports time-constrained access to
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resources (and their services/methods) by role. In the remainder of this section,
we focus the discussion on the three tools (SPC, SAC, and SAT) to illustrate
the techniques and processes that are utilized to engineer the security for a dis-
tributed application using our security model and enforcement framework.

The Security Policy Client (SPC) can be used to define and remove user
roles, and to grant and revoke privileges (i.e., time constraints, resources, services,
methods, and/or signature constraints). The security officer can also inspect and
monitor security via the tracking capabilities of SPC. The results track status of
the attempted access (Success/Error) of the method (method-id) of a resource
(resource-id) by the particular user (user-id) playing a specific role (role-id).

The Security Authorization Client (SAC) supports authorization of role(s)
to users. A user may hold more than one role, but can only act in one role at a
time. Playing multiple roles at the same time may lead to conflicts if different
SCs and/or TCs are defined on the same resource, service, or method. If more
broad access is desired, a role with expanded capabilities can be defined to en-
compass privileges of multiple roles without SC/TC conflicts. The SAC provides
the security officer with the ability to create a new User, which has an identi-
fier, password, a time constraint (begin/end date) that indicates the valid time
interval for the user, and a text description.

The Security Delegation Client (SDC) has three primary delegation func-
tions: Grant, Update, and Revoke. In order to invoke the SDC, one must be an
authorized user of a delegatable role. If this is the case, an original user will
be able to invoke SDC. Grant allows the user to choose a delegated user, the
delegatable roles, set the lifetime, and authorize re-delegation. Update allows a
user to modify any existing delegation, while Revoke enables the user to cancel
any delegation. The delegation of a role by a user is similar to the security officer
assigning roles. Delegation works in conjunction with the other elements of the
Unified Security Resource [67], and utilizes the same underlying databases. With
SDC, an organization has the flexibility to give certain users delegation authority,
while still maintaining administrative control and security assurance.

Finally, the Static Analysis Tool (SAT), is utilized by the security officer to
analyze source code of Java resources, allowing us to track not only the method on
a resource that has been directly authorized to a role, but also the other resources
(and services/methods) that are called. Given the directory location of a Java
source code, SAT analyzes a class by inspecting all of the method definitions to
find any other method called inside the one under inspection. The SAT tracks
the information on the method being analyzed, the methods that are invoked by
the method, and the user roles assigned to the method. As mentioned earlier,
this gives a security officer the capability to track user activity for both recovery
purposes and non-reputation. An important consideration in security assurance
is the ability to hold an individual accountable (non-repudiation)for actions and
to know at what point recovery must be initiated.
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6.1.5 Security Assurance Checks in the Prototype

The administrative tools and enforcement framework for the RBAC/DAC/MAC
security model and its role delegation extensions must support security assurance
at design time (for security officers creating the security policy and for users estab-
lishing delegation) and at runtime (for enforcing the delegation and revocation
rules, and the critical delegation concepts in Chapter 4). Design- time checks
prevent illegal actions at definition, while run-time checks insure that the model
and its concepts are enforced operationally. Design-time assurance checks are
enumerated and discussed below:

1. MACC Domination: There is a MACC check when adding a role to a
user. Recall that the user must dominate the role with respect to clearance
vs. classification. This check has a direct impact on role delegation because
MAC constraints cannot be violated.

2. Role Delegation: The security system checks to make sure the delegated
user (DU) is not already a member of the delegated role before allowing a
delegation to be defined. For example, if user X is assigned role B, and is
attempting to delegate B to user Y, then for that delegation to be successful,
user Y cannot be an OU or a DU of role B (UDAM(B,Y) = 0).

3. User-To-User Delegation Authority: Recall that a user (OU or DU)
who is a current member of a delegatable role (DUR), can delegate that
role to any user that meets the prerequisite conditions of the role: the DU
receiving the role is not a member of the role; the OU or DU is identi-
fied as having DA for the role (DAM(UR,U) > 0); and, the DU meets
the mandatory access control constraints (MACC). This rule is partially
checked during definition.

4. Lifetime Consistency: In regard to the permanence criteria (Chapter 4),
the lifetime of the DU must be within the lifetime of the delegating user
(OU or DU), verified at design time.

5. Modified Boolean Delegation: In regard to the levels of delegation cri-
teria (Chapter 4), the combination of pass-on delegation authority, PODA,
and delegation authority, DA, used in the Delegation Authority Matrix,
DAM, controls the levels of delegation. An OU can delegate - with optional
DA and PODA, and the delegated user can only DA. This must be enforced
at design time to insure more than two levels are prohibited. In order for a
user to have PODA, UDAM(UR,U) = 1 (U is an OU) and DAM(UR,U) =
2 (U has DA and PODA) for the UR.

Run-time assurance checks are similar to design time checks, and are enumer-
ated and discussed below:
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1. MACC Domination: The user CLR must dominate the role CLS. This
dynamic check will revalidate this relationship between role and the user at
run time. This run-time check is needed since the security privileges may
have changed at the current time vs. the time of definition.

2. Role Delegation: At run-time, the security system must check to make
sure the delegated user (DU) is not already a member of the delegated role
before allowing a delegation to occur. This run-time check is needed since
the security privileges may have changed at the current time vs. the time
of definition

3. User-To-User Delegation Authority Rule: A user (OU or DU) who is
a current member of a delegatable role (DUR), can delegate that user role
at runtime to any user that meets the prerequisite conditions of the role.
This rule must also be checked during runtime.

4. Lifetime Consistency: In regard to the permanence criteria (Chapter 4),
the lifetime of the DU must be within the lifetime of the OU. This run-time
check is needed since the lifetimes must also be verified with respect to the
current time.

5. Modified Boolean Delegation: In regard to the levels of delegation cri-
teria (Chapter 4), the two levels (first, OU to DU - with optional DA and
PODA, and second, DU to DU with only optional DA) must be enforced at
run time using the Delegation Authority Matrix, DAM and User Authoriza-
tion Matrix, UAM. Both levels of delegation must be checked at runtime,
with the further check to prohibit the second DU from delegating, enforcing
the two levels.

6. Delegation Revocation Authorization Rule: An original user (OU)
can revoke any delegated user (DU) from a role in which the OU executed
the delegation. This is a stricter interpretation than [138], which allows
any OU of a role revocation authority over a DU in the delegation path. In
addition, a security administrator can revoke any delegation. This rule is
checked during runtime.

7. Cascading Revocation Rule: Whenever an original user (OU) or dele-
gated user (DU) in the delegation path is revoked, all DUs in the path are
revoked. This rule is checked during runtime.

6.1.6 Related Prototyping Research

There are many ongoing developmental and prototyping projects in different
areas that have a relationship to our security enforcement framework and asso-
ciated prototype. The National Institute of Standards and Technology (NIST)
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Model, developed in 1992, was an attempt to get away from the DAC/MAC
model, which was considered as inappropriate for many, commercial and civilian
government needs [39]. The NIST Model has strong parallels with our research,
and is a good reference for the concepts of least privilege, separation of duty,
static constraints (for mutual exclusion and separation of duty), dynamic con-
straints (conflict-of-interest) and role hierarchy (for administration), along with
other accepted RBAC concepts. The NIST Model was improved in 1998 [45]
to be a hybrid between the RBAC96 model [111] and the original 1992 NIST
Model. The improvements include improved administration tools (higher assur-
ance) and improve database consistency checks. However, there are some critical
differences between their approach and our own efforts. The NIST Model is not
multi-level secure, is not readily portable between UNIX and NT platforms, is
primarily object based, and does not achieve the same high level of security gran-
ularity of our model/framework. In addition to these efforts, there have been
other related initiative and products that are addressing similar problems to our
research. One Department of Defense and NATO effort is the Command Control
Systems Interoperability Program (C2SIP) to bring NATO forces together using
a database engine that accepts any NATO country formats [1]. The Air Force
Research Laboratory in conjunction with Verdian is working on a comprehensive
information tagging and release policy called Secure Information Releasability
Environment [119]. There are products like e-Portal and Multi-domain Dissem-
ination System, which concentrates on sensitive information access using secure
transmission [119]. In addition, there are systems that use firewall technology to
create a secure network connections between hosts on any unclassified network
[60].

6.2 Security Enforcement Prototype

This section reviews the proof-of-concept prototyping efforts for our
RBAC/DAC/MAC model and enforcement framework as shown in Figure 25.
The objectives of the section are to familiarize the reader with the prototype
interfaces and show consistency between the security model, enforcement frame-
work and a prototype. We have designed and implemented the entire security
framework with two different resources and two separate lookup services, Fig-
ure 28. Our prototype includes the USR, administrative and management tools,
and global clock resource which are all capable of interacting with either CORBA
or JINI as the lookup middleware. The current version of USR implements all
of the services from Figure 26. To verify the security framework, we prototyped
two distributed applications, consisting of a Java client and associated database
resource. We have utilized a university application and have also prototyped a
hospital application where a client can access information in a Patient DB Fig-
ure 28. The hospital portion of the figure (left side) interacts with CORBA as
the lookup middleware; the university portion (right side) uses JINI. Note that
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the middleware lookup service is transparent to the user; however, a client could
be constructed to use CORBA and/or JINI depending on which one is active in
the network. Note that details on both applications are given in Section 6.4.

From a technology perspective, the university application in Figure 28(right
side) is realized using Java 1.3, JINI 1.1, Windows NT 4.0 and Linux, and Ora-
cle 8.1.7. The hospital application (left side) uses the same technologies except
for Visibroker 4.5 for Java as middleware. Both of the resources (Patient DB
and University DB) operate in a single environment using the same security sys-
tem transparently, and both resources are designed to allow registration of their
services with both CORBA and JINI. The University DB Java Client allows stu-
dents to query course information and enroll in classes, and faculty to query and
modify the class schedule. The Patient DB Java Client supports similar capabil-
ities in a medical domain. The individual methods associated with each resource
are also depicted in Figure 28. Additionally, the prototype includes administra-
tive and management tools, namely: the Security Policy Client (SPC) manages
user roles by granting/revoking privileges (TCs, resources, services, methods, and
SCs); the Security Authorization Client (SAC) authorizes roles to end users; a
Static Analysis Tool (SAT) (not shown) analyzes Java source code of resources to
track nested method invocations; and, a Global Clock Resource (GCR) supports
time- constrained access to resources (and their services/methods) by role. In
the remainder of this section, we focus the discussion on the three tools (SPC,
SAC, and SAT) to illustrate the techniques and processes that are utilized to
engineer the security for a distributed application using our model and enforce-
ment framework. We conclude with a short overview of one of the prototyped
resources.

The remainder of this section is organized into five parts. First, we exam-
ine the initialization steps that are required to enable the prototype, for the
databases, middleware, USR, and client. Second, we detail the capabilities of the
Security Policy Client. Third, we explore the functions of the Security Autho-
rization Client. Fourth, we examine the Security Delegation Client, and all of
the associated interactions that are needed in support of the delegation process.
Last, we present the client applications and associated resources that have been
developed in support of the prototype. In all, we make extensive use of bit-maps
from the prototype to illustrate the requisite capabilities.

6.2.1 Security Prototype Initialization

We start with a quick review of the behind-the-scene implementation work
needed to support the security prototype and enforcement framework. Figure 26
depicts the necessary services as explained earlier in this chapter. Figure 29 de-
picts the database scheme used as the repository for all of the user and resource
data required to make the security assurance checks at design and runtime. This
prototype uses the Oracle Database Management System, but can support any
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Figure 28: Prototype Security and Resource Architecture.

DBMS supported by Java. The important point here is that the database ele-
ments in Figure 29 are directly related to the method parameters.

As most distributed applications, the security prototype observes the
client/server paradigm. This paradigm requires the servers to be running before
a client application can operate. The next two figures, Figure 30 and Figure 31,
depict the initialization of the various servers. We start with the Global Clock
Server, Figure 30. The Global Clock Server, as mentioned throughout this work,
is a key element to maintaining security assurance. All elements of this prototype
security system consult the Global Clock for current time. We make the assump-
tion that the delta-time required to garnish a response from the Global Clock
is not significant. What is critical is that there is only one clock to determine
validity of all temporal constraints. Next comes the Security Service, Figure 30,
followed by the Patient and University Database Servers, Figure 31. Not shown
is the database server, which, of course, must be running to effectively operate
the security system. In this prototype, only the resource servers that will be used,
need to be started.
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Figure 29: Resource Database Scheme.

The next aspect of this prototype initialization that requires comment is the
Lookup Service Architecture, Figure 32. Our initial prototype effort only used
Jini. In order to show flexibility and middleware independence, we developed a
combined CORBA/Jini solution. CORBA and Jini are two distributed system ar-
chitectures; CORBA is a well-established distributed system architecture which
supports communicating objects specified in a language- independent manner,
with possible implementations in a large variety of languages. CORBA supplies
an Object Request Broker (ORB) whereby these objects can locate and commu-
nicate with each other. The requirements of language independence place certain
limitations on the mechanisms that can be used in implementation. Jini is a more
recent distributed system technology, based on Java. Jini services must be writ-
ten in pure Java, and this allows the Jini architecture to exploit certain features
of Java. In particular, Jini makes heavy use of mobile Java code, moving “live”
objects from one Java Virtual machine (JVM) on a server, to other JVM’s on
clients. In order for services in one system to be used by another, there must be
a bridge between the two. The bridge, depicted in Figure 32, encapsulates its in-
ner details through two classes: Register and Lookup. Register provides method
register (int whichServer, Object o, int corbaOrJini,) for servers to register ser-
vices with either CORBA, Jini or both. The servers do not need to know how
to communicate with CORBA and Jini. They only need to provide which server
they want to register with, the lookup services, the server object to be registered,



96

Figure 30: Start Global Clock and Security Servers.

and which lookup services they want to register with as parameters and the call
Register.register() method; Lookup provides method lookup (int whichServer) for
clients to look for services; the clients do not need to know which lookup services
that servers register with, CORBA or Jini. They only need to provide which
server they want to find as the parameter and call the Lookup.lookup() method.

6.2.2 The Security Policy Client

The Security Policy Client (SPC) in Figure 28 can be used to define and
remove user roles, and to grant and revoke privileges (i.e., time constraints, re-
sources, services, methods, and/or signature constraints). The SPC is a set of
tabbed panels for each major function of the GUI, as shown in the following fig-
ures, Figure 33 to Figure 42. These figures detail how the security model and
enforcement framework is realized.

The first figure ( Figure 33) is simply the Security Policy Client (SPC) Login.
The login is required by most distributed systems for authentication purposes,
so the system can verify you are who you say you are based on the userid and
password. The SPC login also provides a measure of authorization by allowing
a specific userid to only pick from authorized roles in a pull-down menu. This
authorization is accomplished using stored data already entered into the Unified
Security Resource (USR). Allowing a particular userid to only see authorized roles
is a measure of security assurance because the user only sees what is necessary
and nothing more. Allowing any user to see all the system roles is providing
unnecessary information and is a violation of the “need to know” concept. In
this example, Figure 33, even the security admin has constraints.
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Figure 31: Start Patient and University Database Servers.

Figure 34 depicts the Security Policy Client (SPC) registration of two re-
sources; the Patient Database Resource (PDB) and the University Database Re-
sourse (UDB). The SPC registration GUI supplies a listing of available resources,
of course, but also provides a series of pull-downs to set the lifetime of the re-
source. This corresponds directly the definition of a resource (Definition 6) and
the definition of a lifetime (Definition 1). Note: There is the opportunity to add
both a start time, st, and an end time, et. Both of which will be checked against
the current time, ct, in a design time check that will not allow and expired re-
source to be registered. The security system automatically provides a default
resource registration of one year from the ct. An additional note, is the fact a
classification is associated with each resource. In order to leverage mandatory
access control, MAC, (Definition 13) each resource is assigned a classification.
The user is responsible for assigning the classification and in the absence of a
classification, an “Unclassified”, U, will be the security system default.

The next GUI, Figure 35, depicts the addition of a service (Definition 5)
to a resource. In this case, the three available services; Query, Update, and
Membership, are services available to the PDB resource. Notice the PDB resource
is highlighted in the resource pull-down menu. For security assurance purposes,
the service classification must dominate the resource classification. Note: This
version of the security system prototype does not force the entry of a lifetime
like that accomplished with the resource. Using the lifetime with the resource is
adequate for the system proof of concept.

After the service GUI is, Figure 36, which depicts the addition of methods
(Definition 4) and subsequent confirmation of the methods to a resource. In this
case, there are several available methods available to the PDB resource. Again,
notice the PDB resource is the chosen resource from the pull-down menu. For
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Figure 32: Lookup Service Architecture.

security assurance purposes, the service classification must dominate the resource
classification. This holds true for adding methods to services as well. The idea
of dominance is defined in Chapter 3 along with what drives the overall resource
classification. Note: This version of the security system prototype does not force
the entry of a lifetime for each service or method like that accomplished with the
resource. Using the lifetime with the resource is adequate for the system proof
of concept with rest to lifetimes.

Once the services and methods are registered to a resource, the methods
can be logically separated into the appropriate services. Figure 37 shows the
successful addition of a method to a service. Note that the method classification
is assigned by the resource owner and must dominate the service. In Figure 37,
the “getDiagnosis” method carries the classification of (S), secret, but the service
classification is (U) or Unclassified.

Figure 38 depicts the query function of the SPC. The query function allows
an SPC user to examine what services and methods are available to a specific
resource. The GUI is a series of pull-down menus that allow the SPC user to cus-
tomize a simple query. The query information is found in the database supported
by the USR. The database scheme is depicted in Figure 29.

In addition to assigning the correct functionality to a resource by assigning the
proper services and methods, the SPC is also used to build user roles (Definition
7). It is in the user role, that the security policy for a distributed system is
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Figure 33: Login: Security Policy Client .

realized. In building roles, the policy maker is dictating what a user can and
cannot do while executing their role. The principle of “least privilege” is observed
when building roles to supports security assurance. The GUI in Figure 39 shows
how the SPC is used to create a user role. The SPC is also used to set the
classification level of a role (default (U)). For security assurance reasons, a user
clearance must dominate the user role classification. In Figure 39, the role
“nurse” is created and assigned a classification of Secret, (S). The lifetime of a
user roles is assigned to the user role when assigned to a resource, Figure 40.

After creating the user role, it is critical to security assurance that no resource,
service, or method be assigned to a role in violation of MACC (Definition 13).
This is a design-time check executed by the enforcement framework. Also, as
depicted in Figure 40 to Figure 42, a lifetime is assigned to each resource,
service, and method, when added to a role. This lifetime assignment is used for
assurance checks at design time, when a user is assigned a role and at runtime,
when a user tries to invoke a method.

Two of the significant contributions of our security model and enforcement
framework are depicted in Figure 43; the Signature Constraint, Definition 11,
and the Time Constraint, Definition 12. Both are realized using the SPC while
assigning a method to a user role. The Time Constraint is like a lifetime and is
assigned in the same way; a start time and an end time are registered using the
menu pull-down menus. The Time constraint is always and additional constraint
on the availability of a method. A Time Constraint cannot increase method avail-
ability beyond that of the existing time constraints. The Signature Constraint
is much different than any other constraint discussed thus far. The Signature
Constraint uses the method parameters, of the method being assigned, to cre-
ate Boolean Expressions which must be satisfied at runtime. In our example,
Figure 43, the “dept head” role is assigned the “updateCourseCapacity” method
with a constraint on course CSE372 of an enrollment of 30 students. This means
the maximum course size can be 30 students. This constraint reflects a policy
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Figure 34: SPC: Register Resources.

that no course should have more than 30 students and even the department head
cannot violate this constraint. One method can have many signature constraints,
because there can be constraints assigned on each parameter of the method and
there can be multiple constraints set on each parameter to form limits. For this
reason we make an assumption that there exists a “Signature Constraint Ora-
cle,” Table 4, Assumption: XXXIV, that will always return the correct Boolean
expression resolution. Constraints on different method parameter are “AND”ed
together and constraints on the same parameter are “OR”ed together. Once the
the “Add Signature Constraints” option is selected, the SPC will automatically
cycle through each parameter and prompt the user for a constraint.
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Figure 35: SPC: Add Services to Resource.

Figure 36: SPC: Add and Confirm Methods to Resource.
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Figure 37: SPC: Add Method to Service.

Figure 38: SPC: Resource Query.
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Figure 39: SPC: Create a User Role.

Figure 40: SPC: Grant Resource to User Role.
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Figure 41: SPC: Grant Service to a User Role.

This GUI uses Rule I to ensure no CLS or LT policy violations.

Figure 42: SPC: Grant Methods to a User Role.
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Figure 43: SPC: Create Signature Constraint on Method to User Role.
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Figure 44: USR: Tracking Service.

In addition to creating and building roles to support the security policy, the
security officer can also inspect and monitor security via the tracking capabil-
ities of SPC. A typical security tracking history is shown in Figure 44. By
logging invocations the security officer can track status of the attempted access
(Success/Error) of the method (method-id) of a resource (resource-id) by the
particular user (user-id) playing a specific role (role-id). With this functionality,
non-repudiation is achieved, which means a user cannot deny an action and can
be held accountable. There is no anonymous activity in this security model pro-
totype, even by the security policy folks. In the event of intended or unintended
database corruption, tracking activity also plays a key role in recovery. Database
administrators can recover from a point closest to the point of corruption, thus
minimizing the impact of an attack. Both non-repudiation and recovery are essen-
tial components of good security assurance; they help maintain system integrity
and deter malicious user activity.

The Static Analysis Tool (SAT), is utilized by the security officer to analyze
source code of Java resources, allowing us to track not only the method on a
resource that has been directly authorized to a role, but also the other resources
(and services/methods) that are called. Given the directory location of a Java
source code, SAT analyzes a class by inspecting all of the method definitions
to find any other method called inside the one under inspection. The result, in
Figure 45, tracks the information on the method being analyzed, the methods
that are invoked by the method, and the user roles assigned to the method.
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Figure 45: USR: Security Analysis Service.

Methods that are in violation of policy are noted and the security officer can
make a decision to include the method in violation into a role (making it valid)
or change the role. Role-based system would be complete without the ability to
query a role. Figure 46 displays the results of a role query on the nurse role. The
display lists the Role, Classification, Resources, Services, and Methods to which
the role is assigned, along with the authorized users.

6.2.3 The Security Authorization Client

The Security Authorization Client (SAC) supports authorization of role(s)
to users. A user may hold more than one role, but can only act in one role at
a time. Playing multiple roles at the same time may lead to conflicts in the
event different SCs and/or TCs are defined on the same resource, service, or
method. If more broad access is desired, a role with expanded capabilities can be
defined to encompass privileges of multiple roles without SC/TC conflicts. The
SAC is also a set of tabbed panels, shown in the following figures ( Figure 48
to Figure 50). The SAC has the capability to create a new User, which has an
identifier, password, a time constraint (begin/end date) that indicates the valid
time interval for the user, and a text description. The SAC is separate from
the SPC for security assurance reasons. Policy, set by the SPC is normally at



108

Figure 46: SPC: Query a Role.

a higher authority level than authorizations, so the individual setting the policy
should not be the person making authorizations. This could also lead to a conflict
of interest, because policy can constrain authorizations and one individual, with
both roles, could customize their own authorizations. Separating the SPC and
SAC is also in concert with the security assurance concept of least privilege.

An authorized user needs to login to the Security Authorization Client just
like the Security Policy Client, ( Figure 47. The first SAC figure, Figure 48,
describes the creation of a user. In this case the user is assigned a User Id (kim),
a clearance (S-Secret), and a default lifetime of one year (5 May 2002 to 5 May
2003). These entries are derived from the definition of a User (Definition 9). The
next significant use of the SAC is to grant privileges. This is accomplished in
Figure 49 where User, kim, is granted the User Role, nurse. To stay consistent
with our security model, Chapter 3, a security check is accomplished to ensure
User, kim, has the clearance to dominate the classification of the User Role,
nurse. Notice that a lifetime is also given to the user role upon assignment to a
user. After assignment, if necessary, the user-role lifetime will be automatically
adjusted so the user-role lifetime dominates. The user will not be allowed to
access a user role if either the user-role lifetime or the user lifetime has expired.
This is consistent with the security model and supports security assurance. The
final SAC figure, Figure 50, depicts a user query. Like the SPC, the SAC uses
the Unified Security Resource Database to query information. In this case, the
User ID, kim, is the subject of the query. The User Id query displays: User
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Id, lifetime, clearance, and role, which are necessary for making access control
determinations.

Please note that there are other SAC tabs not discussed in this section because
they are the subject of previous and future work to be discussed later.

Figure 47: SAC: Login Authentication.
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Figure 48: SAC: Create a User.

This GUI uses Rule II to ensure no MAC, TC, or LT violations;
Rule III to ensure valid user authorization;

and Rule IV at runtime to validate constraints.

Figure 49: SAC: Grant Role to User.
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Figure 50: SAC: User Query.
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6.2.4 The Security Delegation Client

For consistency in authorization, there must be the ability to define, examine,
and control role consistency and delegation authority. Recall that Figure 25
depicts, the Security Policy Client (SPC), to manage URs by granting/revoking
privileges (TCs, methods, SCs) and setting CLS levels; the Security Authorization
Client (SAC) to assign CLRs and authorize roles to end users; and the Security
Analysis Tool (SAT) to dynamically track all client activity, including logins and
method invocations. The SPC, SAC, and SAT all have different responsibilities
in defining and assuring role delegation. In fact; role delegation forced a change in
both the Security Policy Client and Security Authorization Client, as you will see.
In this section, we show how the changes in the SPC and SAC along with Security
Delegation Client (SDC) are used to grant, update, and revoke delegations. This
is accomplished through a series of figures ( Figure 51 to Figure 57), which
depicts the different aspects of role delegation.

Figure 51: SPC: Create Delegatable Role.

To begin, a user role must be created and designated as delegatable (Definition
19). This is a policy issue and is handled with the policy client, SPC. Figure 51
shows how SPC is used to establish whether a role is delegatable (DUR); note
the dark arrow pointing to the radio buttons, indicating delegatable and pass-on
delegatable. In our example, CDR-CR1 is a delegatable user role and CDR-CR1
is also a pass-on delegatable user role (Definition 25). This means, the user role
can be passed from one delegated user to another, if the original user is authorized
and grants that permission at delegation time.
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This GUI uses Rules I, II, and III to ensure
no MAC, TC, LT, SC or VUA violations.

This GUI also uses Rules V and VI for assignment of DA and PODA.

Figure 52: SAC: Grant Role with Delegation Authority.

Next, a user must be authorized to delegate, Definition 22. This authorization
is accomplished with the authorization client, SAC. In Figure 52, SAC is used
to grant delegation authority to the user. Again, note the dark arrow pointing
to the radio button. Figure 52, represents a key step in role delegation. A User
can be granted Delegation Authority, and a user role can be made delegatable,
but delegation still cannot happen until the delegatable user role is granted to
a user with delegation authority. Notice also, the SAC is not required to grant
delegation or pass-on delegation authority (PODA). In this case, a delegatable
user role can be delegated to another authorized user, but the delegation can go
no further because there is no pass-on delegation authority.

From the user’s point of view, once given authority by the security admin-
istrator to delegate a delegatable user role, there must be tools for the user to
manage delegation, tools which are also needed by the security administrator.
Delegation is accomplished via the Security Delegation Client, SDC. The Secu-
rity Delegation Client (SDC) is depicted in four figures, Figure 54 to Figure 57,
and has three primary delegation functions: Grant, Update, and Revoke.

In order to invoke the SDC, ( Figure 53) one must be an authorized user
(Definition 17a) of a delegatable role. If this is the case, an OU (Definition 21)
will be able to invoke the SDC. The Grant tab GUI, Figure 55, allows the user
to:
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1. Choose a DU (Definition 22), with the “Delegate to:” pull-down menu.
The SDC will only populate the pull-down menu with eligible delegatees.
A DU must meet the same MACC requirements as the delegating user and
the security assurance rules developed in Chapter 6.

2. The delegatable role to delegate from the “Delegatable Role List”, again,
only delegatable roles will populate this list according to the DU.

3. Set the delegation lifetime, which will be constrained by the lifetimes of the
OU and DU.

4. And finally, the Grant Tab Gui is where the delegating user grants delega-
tion and pass-on delegation authority, PODA (Definition 25). Notice the
dark arrow pointing to the checkbox on Figure 55.

Figure 53: Login: Security Delegation Client.

The Security Delegation Client (SDC) is responsible for interfacing with the
other elements of the Unified Security Resource (USR) for security assurance.
Figure 54 depicts the typical errors one might encounter while trying to delegate
a role. The typical delegation errors are: MACC, Time Constraint, and already
assigned. The SDC initiates all of the security assurance checks required for
assignment of the role. These checks help maintain consistency with the security
model, enforcement framework, and the prototype. The delegation client requires
an additional check to make sure the delegated user is not already an authorized
user. In that case, there is no need for delegation.
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Rules I - IV and VII in action.

Figure 54: SDC: Delegation Errors.

The Update tab allows a user to modify any existing delegation Figure 56,
while the Revoke tab enables the user to cancel any delegation Figure 57. It is
important to note here, when modifying a delegation, the same security assurance
rules (Chapter 5) are check as when making the original delegation, and when a
delegation is revoked, the revocation must follow the revocation rules established
in Chapter 4. The delegation of a user role by a user is similar to the security
officer assigning user roles. This process works in conjunction with the other
elements of the Unified Security Resource (see Figure 25), and utilizes the same
underlying databases [96]. With the SDC, an organization has the flexibility to
give certain users DA and PODA, while still maintaining administrative control
and security assurance.

Finally, the design-time assurance checks as given earlier in Chapter 5, are
summarized below with respect to the tool (SAC or SDC) that is utilized to
perform the check. Again, this shows consistency between our security model,
enforcement framework, our prototype.

1. MACC Domination: This check is performed by SAC.

2. Role Delegation: This check is performed by SAC.

3. User-To-User Delegation Authority: This check is performed by SDC.

4. Lifetime Delegation Consistency: This check is performed by SDC.
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This GUI uses Rule VII for the Delegation.
and this GUI uses Rules V and VI for DA and PODA.

Figure 55: SDC: Successful Delegation.

5. Delegation Authority Matrix: This check is performed by SDC.

Remember, all of the information for delegation is accessible via the Unified
Security Resource (see Figure 25) which contains a database for storing and
managing all security-related meta data. Thus, the design-time assurance checks
can be in separate tools since the database is shared.
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This GUI uses all Rules to validate updated delegation.

Figure 56: SDC: Update GUI.

Figure 57: SDC: Revoke Delegation GUI.
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6.2.5 Client Applications and Database Resources

The Patient Database resource (PDB) and the University Database resource
(UDB) are simple resources built to test our security prototype in a distributed
environment. Figure 25 illustrates the distributed environment architecture. We
have successfully implemented a Unified Security Resource that can administer
more than one security policy to different resources in the same distributed envi-
ronment. This is an important goal because it shows the potential of this security
resource to be used in support of the Dynamic Coalition Problem discussed in
Chapter 2 and other distributed environments. This section provides the reader
with a set of graphical user interfaces for the PDB. The main purpose of this
section is to illustrate how the a security policy can be enforced on a specific
resource, and not necessarily how the resource works. We could not simulate
the use of the Global Command and Control System (GCCS) used for examples
throughout Chapters 2, 3 and 4, but have provided examples of what typical
GUIs would look like, if implemented, in Appendix A.

All clients start with a login GUI for authorization and authentication, Fig-
ure 58. Upon login, the user must select a role. The PDB Client Authentication
GUI will only provide a list of roles authorized to that user, in this case, “jin.”
It is the security resource that provides that information to the login client. It
was the SAC that created the user, jin, and granted the roles, accountant and
doctor.

Figure 58: PDB: Client Authentication.
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Like the Security Policy Client (SPC) and the Security Authorization Client
(SAC) the PDB uses a series of tabbed GUIs. The first PDB GUI, Figure 59
shows the AddRemove Tab. This tab has two sub-tabs that allow the user to
add and remove patients. If the user was not authorized to use this function,
it would be “grayed out” indicating it is not available. The next tab is the
Update Tab, GUI, Figure 60. This tab has three sub-tabs shown in figures 61,
62, and 63. Figure 60 shows the Diagnosis Tab, which is used for updating
a patient’s diagnosis; Figure 61, shows the Prescription Tab, and Figure 62,
shows the Payment Mode. If any function was not available to the user, it would
be “grayed out.” The final five figures, Figure 63 to Figure 67 depict the five
sub-tabs of the Query Tab: Medical History, Diagnosis, Prescription, Payment,
and Patient List.

Figure 59: PDB: Add Patient.
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Figure 60: PDB: Update Diagnosis.

Figure 61: PDB: Update Perscription.
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Figure 62: PDB: Update Payment Mode.

Figure 63: PDB: Query Patient History.
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Figure 64: PDB: Query Patient Diagnosis.

Figure 65: PDB: Query Patient Prescription.
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Figure 66: PDB: Query Patient Payment.

Figure 67: PDB: Query Patient List.



Chapter 7

Research Contributions and Future Research

This dissertation has examined security assurance guarantees for a resource-
based, RBAC/DAC/MAC security model and enforcement framework [67, 96,
97]. Specifically: Chapter 2 reviewed the problem definition to include informa-
tion sharing and security in a distributed environment and a description of the
Dynamic Coalition Problem. The Dynamic Coalition Problem addresses con-
cerns facing military and government agencies in an international information
sharing environment. Chapter 3 covered the security model we have developed
to support RBAC/DAC/MAC security using lookup service middleware. This
model with associated proofs, is one of the major contributions to the security
and access control field. Chapter 4 extended the RBAC/DAC/MAC security
model with DAC, by offering role delegation as a viable tool for users, giving
some discretion, but still maintaining the highest levels of security assurance.
Chapter 5 examined our security guarantees with respect to available time (when
an invocation can occur - Section 5.1), sensitivity levels (MAC) (authorizations
of methods to user roles, and user roles to users - Section 5.2), and for the prop-
erties of safety and liveness (related to authorization, invocation, and delegation
- Section 5.3). The work in Chapter 5 represents a second major contribution in
this research, specifically, the series of lemmas and theorems that demonstrate
consistency within the context of our RBAC/DAC/MAC security model, provide
validation for the important MAC properties of Simple Security and Simple In-
tegrity, and insuring safety (nothing bad can happen) and liveness (all good can
happen). Chapter 6 displayed different aspects of the proof-of-concept prototype
which we successfully modelled a distributed resource environment. In this pro-
totype, we show the relevance of our work by providing separate resources with
different security policies in the same environment using one security resource
and different lookup service middleware solutions. The remainder of the chapter
will detail my research contributions and future research effort.

124
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7.1 Research Contributions

Security assurance is critical to the success of information sharing in any envi-
ronment. Our formal RBAC/DAC/MAC security model and enforcement frame-
work with its security assurance proofs is intended to address this critical aspect
of information sharing. Security and access control in distributed environments
is difficult to achieve and manage. Our research and proof of concept prototype,
shows that it is possible to provide a security framework and infrastructure for
incorporating security into a distributed setting with flexibility, portability, and
platform independence characteristics.

Our security model is a significant improvement over other models and has
several unique features. First, this security model unifies RBAC, DAC and MAC.
This has not been done because DAC is considered too flexible and MAC too rigid
with respect to enforcing security policy. Second, our usage of time-based con-
straints for temporally controlled access is unique. By defining time- periods of
access, lifetimes for objects and subjects, we are able to establish a very fine-
grained access control in a time sensitive and dynamic environment which has
not been realized before. A third feature of this security model is the use of
value-based constraints to govern access to methods based on parameter values.
Methods that are part of the APIs are normally available to all in an uncon-
strained manner. Our approach provides fine-grained access to methods, allowing
multiple roles, which utilize the same public method, to have different invocation
constraints without changing the original code. Finally, we provide a level of
DAC in our approach, by supporting role delegation by the user. In our secu-
rity model the best of role-based, discretionary, and mandatory access controls
are unified for hybrid system with proven security assurance value. This model
coupled with the concepts of design time and runtime security assurance checks
makes for a useful and powerful security assurance tool in a dynamic distributed
environment where policies and players change often.

Another significant contribution is the proof of safety and liveness for our
unified RBAC/DAC/MAC model. We prove that an authorized user can execute
any authorized task, and only those authorized tasks, without violating the es-
tablished security policy. This is safety (nothing bad can happen) and liveness
(all good things can happen)in its purest form. This is done thought a series of
eight safety and liveness proofs which are based on eight formally defined secu-
rity assurance rules. The security assurance rules, SARs, are derived from the
security model. These SARs dictate what is required for a user to become a user
and for a user to execute (invoke a method) a portion of a user role for both
runtime and design time activities. Our model also focuses on the MAC Simple
Security and Simple Integrity Properties. This is very important when dealing
with objects that can be manipulated by a combination of read or write methods.
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The final contribution of this dissertation is the proof of concept prototype.
We have realized our unified RBAC/DAC/MAC security model, based on an ab-
stract middleware model, in support of interacting software artifacts and client
applications. We leveraged middleware capabilities for our security model and en-
forcement mechanism and implemented a prototype security system that supports
our RBAC/DAC/MAC security model. We have demonstrated a degree of flexi-
bility, portability, and platform independence in our solution approach, through
a prototype that utilizes multiple middleware platforms (i.e., JINI, CORBA),
databases (Oracle, Access), and operating systems (Linux, NT, Win), in sup-
port of applications in health care, a university setting, and military acquisi-
tion/logistics.

The relevance of this work can be applied directly to the U.S. Military. With
shrinking budgets and force structure, the U.S. Military has become more re-
liant on solutions that use the Internet to execute necessary tasks and this re-
quires interaction between legacy software systems, COTS, GOTS, and shared
databases. We have demonstrated success in this area including the restrictive
MACC requirements imposed on government systems. We have demonstrated
potential use of a system that can be used in coalitions (DCP) and the GCCS,
where there is the need to dynamically federate users and resources while simul-
taneously maintaining information assurance. We have addressed the inherent
security risks incurred as a result of federating participants in a crisis quickly,
yet still needing to share information. Since Coalition warfare is the wave of
the future with respect to crisis management worldwide, this security model has
potential value. We have also developed a solution that is rapidly deployable,
easy to use, platform independent, and allows for dynamic policy configuration.
Clearly, this work is important and relevant to this situation.

Specifically, we have met the goals of:

1. Unification of Role-based, Discretionary, and Mandatory Access Controls.
The objectives here were to develop MAC, time, and method signature
constraints to which work in concert to maintain flexibility, but realize a
very strict security policy as needed to support Government Orange Book
requirements.

2. Establishing a set of security assurance rules that can be proven and used
at both run and design time to provide increased assurance. This was
accomplished with the objectives of a security framework for both design
and dynamic runtime assurance, along with administrative tools to realize
a fine-grained security policy.

3. Accomplishing everything in a distributed setting. Our objectives here were
to develop a middleware lookup service solution that is flexible, portable,
and platform independent, which provides a security solution to legacy sys-
tems with minimal programming impact. Our middleware solution seems
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viable and the working prototype lends creditability to the idea that a fine-
grained security policy can be realized for an existing resource using lookup
service middleware and a security resource which itself is distributed.

4. Maintaining a method focus on resource APIs as it is the method that is
often used to manipulate objects. The objective here was to use the method
signature to control API access based on signature constraints. We were
successful in using this approach to build very fine-grained access to public
APIs by user role.

7.2 Future Research

There are ongoing efforts in a number of areas. First, for methods, we are
researching finer-grained MAC that would allow different method parameters to
have different CLSs and constraints. There are arguments that once a query is
started, there is no way, other than hardware failure, to prevent a result from be-
ing returned to the user. Potentially, a misguided query could generate sensitive
information for which the user is not cleared, creating a security violation. We
would like to leverage Jini’s security platform (sandbox) and execute a return
parameter check before results are returned to the user. This would add another
level of security assurance by preventing potentially harmful queries from being
initiated accidently and the results returned in violation of policy. Second, we are
assessing our security model approach using CMU’s Systems Security Engineer-
ing Capability Maturity Model (SSE-CMM), an accepted ISO standard used in
industry. The SSE-CMM was designed to help organizations develop a security
program covering all aspects of security from the physical to the digital. Our
interest, of course, is in the automation/digital aspect of information security.
The SSE-CMM provides a comprehensive list of security considerations and eval-
uation criteria so an organization can quantify their security posture and make
plans to improve. This examination will provide valuable insight to possible flaws
and future work to our security model. Third, we are examining the applicabil-
ity of the core ideas of our security approach in Chapter 3 to XML documents.
XML is a protocol for managing information and is fast becoming a standard
way of storing data. With XML, we can manage, format and filter data, which
may produce security assurance improvements to our model. If we can leverage
this standard, we can enhance the portability and usefulness of our model. Next,
we have started work on mutual exclusion with respect to role deconfliction and
mutual exclusion of methods. Role deconfliction is helpful for separation of duty
issues where one user should not be given too much responsibility our conflicting
roles. We will look at creating a deconfliction list for a user role when the user role
is established (design time) to immediately identify what other roles cannot be
combined for a sole user. We will also attempt to do the same checks for methods
within roles. Finally, in the longer-term, role hierarchies, and credential-based
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access control for resources that do not require specific user identification, are all
of interest. We have done work on role hierarchies which makes building roles
more efficient, but have not worked that into our current model. Credential-
based assess control can have profound impact on security policy because first,
credentials will have to be generated then verified (runtime), and second, the
organization will not assign individuals to roles, only the credentials necessary to
execute that role. This is an interesting twist on access control policy and will
raise assurance issues.

Our work in distributed security and access control is ongoing; please see [139]
for further information.
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Appendix A

GUI for GCCS Example

Figure 68: Start Global Clock Server.
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Figure 69: Start Security Server

Figure 70: Login: Policy Client Authentication
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Figure 71: SPC: Register Resource

Figure 72: SPC: Register Service
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Figure 73: SPC: Register Methods

Figure 74: SPC: Added Method to Service
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Figure 75: SPC: Resource Query

Figure 76: SPC: Create Role
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Figure 77: SPC: Add Resource to Role

Figure 78: SPC: Add Service to Role
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Figure 79: SPC: Add Method to a Role

Figure 80: SPC: Add a Signature Constraint
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Figure 81: SPC: Query a Role

Figure 82: SAC: Create a User
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Figure 83: SAC: Grant Role to a User
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Security Model Acronyms
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Acronyms (Alphabetical Order) 

C:   Client        (Definition 18) 

CLR:  Clearance        (Definition 2) 

CLS:   Classification       (Definition 2) 

ct:   current time        (Definition 1) 

DA:   Delegation Authority       (Definition 24) 

DAM:   Delegation Authority Matrix      (Definition 26) 

).(

).(

).(

),(

326URforPODAnorDAneitherhasU0

226URforDAonlyhasU1

126URforPODAandDAhasU2

UURDAM

ij

ij

ij

ji

DAPPL:   Distributed Application      (Definition 3) 

DU: Delegated User       (Definition 22) 

DUR:   Delegatable User-Role      (Definition 19) 

DURV:   Delegatable User-Role Vector     (Definition 20) 

DURanotisUR

DURaisUR
URDURV

i

i

i
0

1
)(

et: end time       (Definition 1) 

LT:   lifetime        (Definition 1) 

M:  Method        (Definition 4) 

MACC:   Mandatory Access Control      (Definition 13) 

OU:   Original User        (Definition 21) 

PODA:   Pass-on Delegation Authority      (Definition 25) 

R:   Resource        (Definition 6) 

S:   Service        (Definition 5) 

SC:   Signature Constraint       (Definition 11) 

SLEVEL:   sensitivity level       (Definition 2) 

st: start time       (Definition 1)

TC:   Time Constraint       (Definition 12) 

U:   User         (Definition 9) 

UA:   User Authorization       (Definition 16) 

UAM:   User Authorization Matrix      (Definition 17a) 

otherwise

URtoauthorizedisU
UURUAM

ij

ji
0

1
),(

UDAM:  User Delegation/Authorization Matrix    (Definition 23) 

).(

).(

).(

),(

323

223

123

URtoauthorizednotisU0

URofOUanisU1

URofDUaisU2

UURUDAM

ij

ij

ij

ji

UL:   User List        (Definition 10) 

UR:   User Role        (Definition 7) 

URL:   User-Role List       (Definition 8) 

URA:   User-Role Authorization      (Definition 14) 

URAM:   User-Role Authorization Matrix     (Definition 15) 

otherwise

MinvoketoauthorizedisUR
MURURAM

ji

ji
0

1
),(

VUA:   Valid User Authorization      (Definition 17a) 

VUAL: Valid User Authorization List     (Definition 17b) 

VURA:   Valid User-Role Authorization     (Definition15a) 

VURAL:    Valid User-Role Authorization List    (Definition 15b) 

Figure 84: Acronyms - Alphbetical Order
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Acronyms (Order of Appearance) 

LT:   lifetime        (Definition 1) 

et:   end time        (Definition 1) 

st:   start time        (Definition 1) 

ct:   current time        (Definition 1) 

SLEVEL:   sensitivity level       (Definition 2) 

CLR:  Clearance        (Definition 2) 

CLS:   Classification       (Definition 2) 

DAPPL:   Distributed Application      (Definition 3) 

M:  Method        (Definition 4) 

S:   Service        (Definition 5) 

R:   Resource        (Definition 6) 

UR:   User Role        (Definition 7) 

URL:   User-Role List       (Definition 8) 

U:   User         (Definition 9) 

UL:   User List        (Definition 10) 

SC:   Signature Constraint       (Definition 11) 

TC:   Time Constraint       (Definition 12) 

MACC:   Mandatory Access Control      (Definition 13) 

URA:   User-Role Authorization      (Definition 14) 

URAM:   User-Role Authorization Matrix     (Definition 15a) 

otherwise

MinvoketoauthorizedisUR
MURURAM

ji

ji
0

1
),(

VURA:   Valid User-Role Authorization     (Definition 15a) 

VURAL: Valid User-Role Authorization List    (Definition 15b) 

UA:   User Authorization       (Definition 16) 

UAM:   User Authorization Matrix      (Definition 17a) 

otherwise

URtoauthorizedisU
UURUAM

ij

ji
0

1
),(

VUA:   Valid User Authorization      (Definition 17a) 

VUAL: Valid User Authorization List     (Definition 17b) 

C:   Client        (Definition 18) 

DUR:   Delegatable User-Role      (Definition 19) 

DURV:   Delegatable User-Role Vector     (Definition 20) 

DURanotisUR

DURaisUR
URDURV

i

i

i
0

1
)(

OU:   Original User        (Definition 21) 

DU:   Delegated User       (Definition 22) 

UDAM:  User Delegation/Authorization Matrix    (Definition 23) 

).(

).(

).(

),(

323

223

123

URtoauthorizednotisU0

URofOUanisU1

URofDUaisU2

UURUDAM

ij

ij

ij

ji

DA:   Delegation Authority       (Definition 24) 

PODA:   Pass-on Delegation Authority      (Definition 25) 

DAM:   Delegation Authority Matrix      (Definition 26) 

).(

).(

).(

),(

326URforPODAnorDAneitherhasU0

226URforDAonlyhasU1

126URforPODAandDAhasU2

UURDAM

ij

ij

ij

ji

Figure 85: Acronyms - Order of Appearance


