
RBACManager:
IMPLEMENTING A MINIMAL

ROLE BASED ACCESS CONTROL SCHEME (RBACM)
UNDER THE WINDOWS NT 4.0 WORKSTATION ® OPERATING SYSTEM

W. Caelli1, A. Rhodes2

Abstract
RBACManager is a Microsoft “Windows NT” system that has been developed to administer security using a
minimal, role-based access control (RBACM) model. A demonstration environment is outlined, prior to a
two-phase demonstration/tutorial. The demonstration emphasizes the security administration aspects of
RBACM and then details the results of an execution of a prototype application. Technical aspects of the
implementation are presented to provide an insight into the mapping of roles into Windows NT “groups”.
Future research, particularly for workflow environments, is discussed.

Introduction
This paper is the second of two related papers describing the design and implementation of a minimal Role
Based Access Control (RBACM) framework to run on top of the Windows NT 4.0 Workstation Operating
System. These papers are intended to provide a solid foundation for future investigation into higher level
RBAC models that are “active”, rather than “passive”, in nature. The associated paper is entitled “The
Design of a Minimal Role Based Access Control System under the Windows NT 4.0 Workstation®
Operating System” and has been submitted for publication.

RBACManager is a Windows NT application that has been developed to administer system security using a
role based access control (RBACM) model. This allows security administration to be centrally managed at a
higher abstraction level, which leads to simpler organisational security implementation and therefore fewer
errors. Unlike recent applications that have focused on integrating RBAC at the application level,
RBACManager integrates the RBAC framework at the operating system level. This provides facilities that
are sufficiently flexible to support a wide range of applications with minimal customization.

This paper is intended to demonstrate the use and application of RBACManager. The sections within the
paper are structured as follows:

�
RBACM Implementation Details

Outlines briefly the software technologies to implement RBACM.
�

RBACM Demonstration Details and Entities
Describes the conditions and scope of the demonstration. Presents the entities and
relationships used throughout the demonstration

�
RBACM Demonstration

Demonstrates the role based nature of RBAC Manager and provides evidence that RBAC
Manager successfully manages security at a high level. This section uses a step-by-step
tutorial approach to illustrate the application and use of RBAC Manager. In particular, as
RBACManager manages the underlying Windows NT security mechanisms, this section
highlights the impact on the Windows NT security entities as a result of an action taken in
RBACManager.

1 School of Data Communications, Queensland University of Technology, GPO Box 2434, Brisbane 4001, Australia.
2 School of Computing Science, Queensland University of Technology, GPO Box 2434, Brisbane 4001, Australia.

�
RBACM Summary

 Discusses briefly some issues arising from the implementation of RBACM
�

Technical Highlights

 Outlines many of the Windows NT security specifics that were required to successfully to
implement RBACM

�
Future Research

 Where does RBACM go from here?

RBACM Implementation Details
The implementation language chosen for RBACM was the Python scripting language. Python is a high-level
object-oriented programming language. As with other scripting languages, like Perl, Python is a
dynamically typed language. The main RBACManager compiled Python program is 15,139 bytes in length.

Python provides a rich set of libraries that may be used. In addtion, PythonWin contains a Microsoft
Foundation Class (MFC) based library with a rich interface to MFC, which was used extensively in the
implementation of RBACManager. Python also allows module extensions to be created (using a language
such as C) to implement features not found in standard Python. For RBACM a module extension was created
to provide an interface to the LAN Manager API and the Win32 Security API.

All aspects of Python are object-oriented. Python implements late binding of objects so the value of an
object is resolved at run time through a dynamic name search. This feature was exploited by this
implementation in that the same method name is applied to Role, User and FilePermissions classes.

RBACM Demonstration Details and Entities
The exposition of RBACM is conducted in two phases. Firstly, the security administration provided by
RBAC Manager is outlined. This demonstrates the concept of RBACM and how RBAC Manager fulfills the
requirements of an RBACM framework. It will also show that RBACM simplifies security administration by
providing a high level, centralized mechanism to administer security.

The second phase will involve demonstrating and providing evidence that RBAC Manager has enforced the
security administered in phase 1. A minimal prototype application was developed to assist with phase 2.
This shows that RBACManager provides a mechanism to successfully administer security while fulfilling
the requirements of RBACM.

A number of entities and entity relationships are applied throughout this demonstration. These are presented
below.

User Entities
User Name Full Name Password

Allan Allan Miller Allan
Brett Brett French Brett
Carolyn Carolyn Landers Carolyn
David David Rogers David
Ella Ella Smith Ella
Fran Fran Urkhart Fran
Geoff Geoff Daken Geoff
Helen Helen Willis Helen
Julie Julie Handcock Julie
Marsha Marsha Yang Marsha
Nathan Nathan Ford Nathan
Steve Steve Soberon Steve
Trent Trent Bridge Trent
Will Will Dodds Will
Yang Yang Hilltop Yang

Role Entities
Role Name Role Description Max. Users

Accounts Payable Accounts Payable Role 2
Accounts Receivable Accounts Receivable Role 2
Administration Administration Role 3
Admittance Admittance Role 2
Doctor Doctor Role 2
Intern Intern Role 1
Nurse Nurse Role 4
Nurse Assistant Nurse Assistant Role 2
Specialist Specialist Role 1

Entity Relationships

Role-Role Membership (member roles that will form the role hierarchies)

Role Name Member Roles
Accounts Payable Nil
Accounts Receivable Nil
Administration Nil
Admittance Nil
Doctor Intern

Nurse
Intern Nurse
Nurse Nurse Assistant
Nurse Assistant Nil
Specialist Nurse

Role-User Membership (valid users for a role)

Role Name Member Users
Accounts Payable � Marsha

� Nathan
Accounts Receivable � Allan

� Geoff
Administration � Carolyn

� Helen
� Steve

Admittance � Helen
� Yang

Doctor � Brett
� Ella

Intern � Will
Nurse � David

� Julie
� Trent

Nurse Assistant � Carolyn
� Fran

Specialist � Brett

Note that 1) Carolyn is in “Administration” and “Nurse Assistant”, 2) Helen is in
“Administration” and “Admittance” and 3) Brett is in “Doctor” and “Specialist”.

Role Mutex (roles that will be mutually exclusive)

Role Name Member Roles
Accounts Payable Accounts Receivable
Accounts Receivable Accounts Payable
Administration Nil
Admittance Nil
Doctor Nil
Intern Nil
Nurse Nil
Nurse Assistant Nil
Specialist Nil

Role Permissions (permissions assigned to each role)

Role Name Member File Permissions
Accounts Payable \RBAC Project\RBACDemo\payable RW
Accounts Receivable \RBAC Project\RBACDemo\receivable RWX
Administration \RBAC Project\RBACDemo\patient R
Admittance (* no file accessed *)
Doctor \RBAC Project\RBACDemo\treatment X
Intern \RBAC Project\RBACDemo\treatment W
Nurse \RBAC Project\RBACDemo\patient

\RBAC Project\RBACDemo\treatment
W
R

Nurse Assistant \RBAC Project\RBACDemo\patient R
Specialist (* no file accessed *)

RBACM Demonstration – Phase 1: Security Administration

Adding Users and Roles
After adding all the users and roles presented in the previous tables, the RBACManager User View and Role
View resemble the following two screens, respectively.

Examination of the Windows NT Security Database using “User Manager” shows that the “users” and
“roles” have been added. Note that the roles have been added as groups.

Assigning Actual Roles to “Roles”
After assigning the member roles, as presented in the Role – Role Membership table, the RBACManager role
hierarchy view resembles:

As Windows NT doesn’t allow local groups to be members of other local groups this function does not
actually modify any underlying structures in the Windows NT security sub-system. RBACManager
separately controls the role hierarchy in its own database. This will be further examined in the RBACM
summary section.

Assigning Users to Roles
After assigning the users to the roles as specified in the Role-User Membership table the RBACManager
User View and Role View resemble the following two screens respectively.

When a user is assigned to a role, RBACManager updates the underlying Windows NT Security Database.
Role members become members of Windows NT groups. Using Windows’ NT’s “User Manager” the
changes that RBAC Manager has made to the Windows NT Security Database may be inspected. The
screens below show that the users that were made role members have become members of the underlying
groups. Three examples (Accounts Payable, Accounts Receivable, Administration) are shown below:

Assigning Role Mutex
After assigning the roles described in the Role Mutex table as mutually exclusive, the RBACManager Role
Mutex View resembles the following screen:

Defining roles as mutually exclusive does
not alter the underlying Windows NT
security mechanisms.

Once roles have been made mutually
exclusive certain restrictions are placed on
these roles. In particular, a user, role, or
file permission cannot be assigned to both
the mutually exclusive roles. This is
illustrated below by showing that users of
the Accounts Payable role cannot be
assigned to the mutually exclusive
Accounts Receivable role.

The bottom left screen shows that Martha
and Nathan are members of the Accounts
Payable role.

The bottom right screen shows that neither
Martha nor Nathan can be assigned to the
Accounts Receivable role as they have

already been assigned to the Accounts Payable role which is mutually exclusive. That is, Martha or Nathan are not
displayed so they cannot be selected.

This screen shows that the file ‘\RBAC
Project\RBACDemo\payable’ has been
defined with file permissions linked to
the Accounts Payable role.

Mutually exclusive roles
cannot share common file
permissions. That is, ‘\RBAC
Project\RBACDemo\payable’
cannot be allocated the
Accounts Receivable role as it
has been allocated the
mutually exclusive role
Accounts Payable. Once
again, it simply is not
displayed, preventing it being
selected.

It is worth noting that role
members of mutually
exclusive roles also become
mutually exclusive. For
illustration purposes,
Administration has been
made a member of Account
Payable as shown here:

In this case, Administration
also becomes mutually
exclusive with Account
Receivable by transitivity .

This is illustrated in this
diagram by the fact that the
file permissions previously
assigned to the Accounts
Receivable role (‘\RBAC
Project\RBACDemo\receiva
ble’) cannot be allocated the
Administration role.

Likewise, if we assign
the file ‘\astemp’ to the
Administration role as
shown:

the Accounts Receivable role cannot
be assigned the file ‘\astemp’,
which this screen illustrates:

It is also worth noting that it is not
possible to define two roles as
mutually exclusive if it will violate
the role’s current users, roles and
permissions.

For example, in the following
illustrations, if we attempt to
define the Administration role to
be mutually exclusive with the
Admittance role RBACManager
will report an error and not allow
the role to be defined as mutually
exclusive.

Here, we attempt to make the
Admittance role a member of
the Administration role.

The attempted operation will result in
RBACManager reporting the following
error, (since user Helen is in both roles)
and not allow the operation to be
executed.

Assigning Permissions

The RBACManager
Permissions View resembles
this screen after assigning the
permissions described in the
Role Permissions table.

Note particularly the
permissions assigned to the
various instances of the patient
and treatment files. These will
accumulate since roles
accumulate permissions from
their children in the hierarchy.

RBACManager controls the file’s access control
by adding the role’s underlying group to the file’s
access control list (ACL). The following diagram
illustrates this by showing the files ACL.

This screen shows the ACL for the payable file,

and this screen shows the ACL for the receivable
file.

These two screens demonstrate that roles
accumulate permissions from children in
the hierarchy.

The first screen shows the ACL for the
patient file.

The second screen shows the ACL for the
treatment file.

RBACM Demonstration – Phase 2: Execution of Prototype Ap plication

The main menu of the prototype
application developed to
demonstrate the successful
security administration by
RBACManager is shown here.

As can be seen the menu contains 4 options that access the files specified below:

Option File
Patient Details \RBAC Project\RBACDemo\patient
Treatment Details \RBAC Project\RBACDemo\treatment
Accounts Receivable \RBAC Project\RBACDemo\receivable
Accounts Payable \RBAC Project\RBACDemo\payable

Patient Details Menu Option

The Patient Details menu
option displays the following
screen:

A user requires READ
access to the patient file to
access this option.

The Add Patient button displays the
following screen:

A user requires WRITE access to the
patient file to add a patient.

Treatment Details Menu Option

The Treatment Details menu
option displays the following
screen:

A user requires READ access to
the treatment file to access this
option.

The Add Treatment button displays
the following screen:

A user requires WRITE access to the
treatment file and READ access to
the patient file to add treatment
details.

Accounts Receivable Menu Option

The Accounts Receivable
menu option displays the
following screen:

A user requires READ access
to the receivable file to access
this option.

The Add Revenue button
displays the following
screen:

A user requires WRITE
access to the receivable
file to add revenue
details.

Accounts Payable Menu Option

The Accounts Payable
menu option displays the
following screen:

A user requires READ
access to the payable file
to access this option.

The Add Cheque button
displays the following
screen:

A user requires WRITE
access to the payable file
to add cheque details.

Test Cases
The following test cases illustrate that RBACManager has enforced the desired security.

Marsha (Accounts Payable)

Attempt to access Patient Details.

Denied as specified.

Attempt to access Account
Payable.

Allowed as specified.

Allan (Accounts Receivable)

Attempt to Access Accounts
Payable.

Denied as specified.

Attempt to access accounts
receivable.

Allowed as specified.

Attempt to add revenue
details.

Successful as specified
in the role permissions
table.

Fran (Nurse Assistant)

Attempt to access treatment
database. Denied, as Fran only has
access to the patient database.

Attempt to access
patient details.

Allowed as specified.

Attempt to add patient details.

Denied since Fran only has read
access, not write.

David (Nurse)

Attempt to Add Patient Details

Allowed since David
has access to the
patients database.

Attempt to access treatment
details:

Also allowed since David
has access to treatment
database.

Attempt to add treatment details:

Not allowed since David only has
read access, not write.

Ella (Doctor)

Attempt to add treatment details:

Allowed as
specified.

Attempt to access account
receivable

Denied as specified.

RBACM Summary
The RBACM administration tool, RBACManager, was successfully implemented in Windows NT. This tool
proved that an RBAC framework could be implemented under an operating system such as Windows NT
that supports access control lists (ACL). The implementation provided an insight into Windows NT and
RBACM and has provided a solid foundation for the future research that is discussed later in this paper.
Some issues arose from this experimental implementation. These are discussed below.

RBAC M Administration Tool Design
The RBACM administration tool uses it’s own database to store the RBAC configuration. This database is
separate from the Windows NT security mechanism. The RBACM administration tool simply manages the
configuration (role hierarchies, constraints, etc) and translates the RBAC configuration into the underlying
Windows NT security mechanisms. For example, a role is translated into a group.

Further research could investigate aligning the information stored in the RBACM administration tool and the
underlying Windows NT security mechanism. This may provide a more cohesive, extendable solution, if
technically possible.

Concurrent Access
One issue not addressed in the implementation is the inevitable simultaneous access by multiple processes.
In particular, if another process tries to access a file’s ACL while the RBACM administration tool is updating
it, there could (more than likely) be disastrous effect. Worst case scenario could be complete loss of the file.

This was outside the scope of this initial version. However, there is a definite need to serialize the access to
the ACL to ensure the tool is sufficiently robust to execute in a distributed environment.

Everyone Group
Another problem encountered was that every file created contained the “everyone” group in its ACL. (In
Windows NT the “everyone” group is a special (super)group that includes all other default Windows NT
groups and any local groups and therefore the members of each of those groups). This allows anyone to
access the file although the RBACM administration tool had not explicitly granted access.

All RBACM created files contained the “everyone” group in the ACL since the file was created under the
root directory (C:\) which is a container object. This means that every file created in the container object
inherits the container’s ACL. This will require further investigation to provide a secure system that is fully
controlled by the RBACM administration tool.

Technical Highlights
The goal behind the RBACM implementation was a detailed investigation into Windows NT security and the
RBAC paradigm to discover the best approach for integrating an RBAC framework. This led to some
challenging and interesting technical achievements during this implementation. Some of these are presented
below.

Application Level vs. System Level
In operating systems other than Windows NT it is quite common to find user databases and passwords lists
for individual applications. These multiple databases are maintained to restrict access by a subset of users to
the different functions of an application.

This is illustrated in Windows and DOS operating systems where there are normally many lists of passwords
defined for many different purposes. For example a user may be required to provide a password when
logging on to each domain (or File Server in NetWare) on the network, another to access e-mail, and yet
another to get back into the system after the screen saver has kicked in.

In Windows NT, additional passwords would be redundant as well as unnecessary, and would probably
prevent these applications from selling into a C2-secure environment. Instead, system administrators simply
create groups with the required restrictions to preclude unprivileged users. The application is then able to
use the Win32 security API to determine whether the current user qualifies to perform certain operations
throughout the application.

This was the approach adopted for the implementation of RBACM.

Impersonations
In Windows NT, the security levels are assigned to users and not the processes or threads that execute.
Therefore, the security abilities for a process or thread change as different users (with different security
levels) execute them. This may be permissable for standalone applications as each user executes the
application in their own address space.

However, development of a client-server application requires great care when dealing with access to secure
objects. As the server portion of the application is under control of the system which is likely to have
extended privileges, a request from a client may result in the server returning data to which the client does
not have access. This is a breach of security.

To overcome such problems Window NT provides a concept known as impersonation. Impersonation in a
client-server application in general, and in Windows NT networks in particular, is very widely used.
Impersonation is the act of taking the identity of another user account and acting in its security context, akin
to the UNIX suid feature. Therefore, in client-server applications, impersonations allow servers to access
data on behalf of privileged clients by assuming the security level of the client.

Furthermore, any process in the Windows NT system may try to impersonate any other process. Such
actions are under the control of the operating system for security reasons, otherwise there would be no
security at all.

Also, some Win32 functions require impersonation tokens (instead of the access token) as a parameter. For
example, RBACM required calling the AccessCheck() function to determine if a user has particular access to
an object. The AccessCheck() function requires an impersonation token of the currently logged on user. To
get an impersonation token in this situation, you have to impersonate yourself. Here’s how you do that:

1. Call ImpersonateSelf() to begin the impersonation.
2. Call OpenThreadToken() to get a HANDLE to the impersonation token. You must

use OpenThreadToken() because OpenProcessToken() returns the original token of
the process.

3. Do whatever you need with the token. In this particular case, call AccessCheck().
4. Call RevertToSelf() to end the impersonation.

Groups
A group is a useful mechanism which helps to simplify the administration of users on a network. A group is
a “named collection of users”. A group is assigned a SID just as an individual user. By using a group’s SID
in a discretionary access control list of a security descriptor, you may deny or allow access for all users in
the group. Windows NT has two types of groups: Global and Local groups. A global group is a named
collection of user accounts that is visible to any computer participating in a domain. A local group only
exists on an individual computer.

Windows NT local groups can contain global groups as members. However, Windows NT global groups
cannot have local or global groups as members. Unfortunately, this adds extra complexities when dealing
with the role hierarchies of an RBAC framework. If the operating system allows groups to be members of
groups the role hierarchy could be handled by the underlying operating system. However, RBACM required
the RBACM program to accumulate the permissions from roles lower in the hierarchy to determine the
access level to assign to a file’s ACL for the role’s corresponding group. Also, if a lower lever role’s
permissions are changed all the roles higher in the hierarchy required the permissions to be re-calculated and
each corresponding file’s ACL must be updated. This introduces efficiency issues for large hierarchies.

Future Research

RBAC Issues
Although there is much agreement on the basic concepts and value of RBAC, a number of remaining issues
still confront the RBAC community. Considerable research and work remains to develop solid theoretical
and practical foundations in the area.

First and foremost the continuing evolution of RBAC needs to be closely monitored to ensure that industry
proceeds in a common and consistent direction. Although at the time of the RBACM implementation it was
unknown if a common formal framework will be acceptable across the entire industry, there is a clear need
to define and guide the evolution of a reference model (Ferraiolo 1996). This will also require careful
consideration to ensure that the evolving RBAC aligns with other emerging concepts and models in
computer industry such as the Internet, interoperable objects and software components, and workflow
automation (Ferraiolo 1996). Subsequent to the development of RBACM, an RBAC “Common Criteria”
specification became available in September 1998.

Recent interest in RBAC has focused on integrating RBAC at the application level (Sandhu et al. 1996).
Applications have been built with RBAC encoded within the application itself. Operating systems,
however, provide little support for application-level use of RBAC. Therefore, a challenge facing the user
community is identifying application-independent facilities that are sufficiently flexible, yet simple to
implement and use, to support a wide range of application with minimal customization.

There also appears to be a lack of research relating to the management aspects of RBAC that needs to be
addressed before the industry advances. In particular, the development of a systematic methodology that
guide the analysis and design of an organization’s RBAC configuration (role hierarchies, constraints,
RBAC management in a unified framework) is one area requiring particular research attention (Sandhu
1996). There is also little discussion in the literature regarding the constraints applied within an RBAC
environment. That is, the categorization and taxonomy of constraints, along with some measure of difficulty
of enforcement.

Workflow Environments
It has been discovered that the currently accepted notion of RBAC is not ideally suited for the security needs
of all organizations (Sandhu et al. 1996). More sophisticated models are required to control access in
situations where sequences of operations need to be governed, such as workflow environments.

The completed research effort, RBACM, has provided a solid foundation for investigation into higher level
models that are active in nature. Most well known access control models are considered to be passive in
nature. These models do not distinguish between permission assignment and activation. Furthermore,
passive security models are not capable of representing or considering any levels of context when processing
an access operation on an object. It is expected that active security concepts to be an important area of
future research and we believe they will influence the evolution of RBAC.

Although, RBAC has been identified as a security model that would be well suited in collaborative
environments, such as workflow management systems, the passive and rigid nature of current RBAC models
present problems that prevent a natural integration. In particular, current RBAC models do not allow fine-
grain control of individual users in certain roles and on individual object instances. RBAC also provides no
support for the context associated with collaborative tasks.

Further research will be conducted in this area and will initially involve a detailed examination of the
suggested model proposed by Thomas (1997). Investigation of the recent work by Bertino, Ferrari & Atluri
(1997) will also be conducted in the area such that a high level access control language/parser/interpreter

could be defined and developed which is suitable for incorporation into modern operating systems such as
Windows NT.

In summary, the overall aim and intent of the proposed research will be to investigate current RBAC models
and the possible methods that can be applied to transform passive models into active models such that they
can fulfil the current security requirements of collaborative environments.

Bibliography
Bertino, E., Ferrari, E. & Atluri, V. 1997, ‘A Flexible Model Supporting the Specification and Enforcement of Role-based

Authorizations in Workflow Management Systems’, Proceeding of the Second ACM Workshop on Role-Based Access
Control, ACM, November 1997, pp. 1-12.

Chen, F. & Sandhu, R. 1995, ‘Constraints for Role Based Access Control’, Proceedings of the First ACM Workshop on Role-

Based Access Control, December 1995.

Davis, R. 1996, ‘Win32 Network Programming’, Addison-Wesley Developers Press, 1996.

Ferraiolo, D.F. 1996, ‘An Introduction to Role-Based Access Control’, Internal Report, Computer Systems Laboratories NIST,

January 1996.

Ferraiolo, D. F. 1996, ‘Toward a Common Framework for Role-Based Access Control’, [Online] URL

http://hissa.ncsl.nist.gov/rbac/ [Accessed 9 April 1998]

Hamilton, D. & Williams, M. 1996, ‘Programming Windows NT 4 Unleashed’, SAMS Publishing, 1996.
Kuhn, D. R. 1997, ‘Mutual Exclusion as a Means of Implementing Separation of Duty in Role-Bases Access Control System’,

Proceeding of the Second ACM Workshop on Role-Based Access Control, ACM, November 1997, pp23-40.

Microsoft Press 1995, ‘Microsoft Windows NT Resource Kit’, Microsoft Press, USA

Okuntseff, N. 1997, ‘Windows NT Security – Programming Easy-to-Use Security Options’, Publishers Group West, CA

Sandhu, R. 1996, ‘Report on the First ACM Workshop on Role-based Access Control’, Internal Report, Computer Systems

Laboratories NIST, March 1996.

Sandhu, R., Coyne, E. J., Feinstein, H. L. & Youman, C.E. 1996, ‘Role-Based Access Control Models’, IEEE Computer,

February 1996, pp. 38-47.

Thomas, R. K. 1997, ‘Team-based Access Control (TMAC): A Primitive for Applying Role-based Access Controls in

Collaborative Environments’, Proceeding of the Second ACM Workshop on Role-Based Access Control, ACM, November
1997, pp. 13-19.

