Laboratory for Computer Security Education 1

Role-Based Access Control (RBAC) Lab

Copyright© 2006 Wenliang Du, Syracuse University.
The development of this document is funded by Grant DUE-Q22%rom the National Science Foundatipn.
Permission is granted to copy, distribute and/or modifg thdcument under the terms of the GNU Hree
Documentation License, Version 1.2 or any later versiorlipibd by the Free Software Foundation. A copy
of the license can be found at http://www.gnu.org/liceffgeitml.

Lab Description

The learning objectives of this lab are for students to discover the adyaotd&ole-Based Access Control
(RBAC) over other access control mechanisms, and to implement the RBéA¢ybe to enhance system se-
curity. Role based access control, as introduced in 1992 by Ferraidl¢dm, has become the predominant
model for advanced access control because it reduces the complekitpst of security administration in
large applications. Most information technology vendors have incotgpdf@BAC into their product line,
and the technology is finding applications in areas ranging from healtht@aefense, in addition to the
mainstream commerce systems for which it was designed. RBAC has alsinijgemented inFedor a

Li nux and Trusted Solaris. In this lab, students will develop a simplified RBAC sykieM ni x. Our
simplification is based on the RBAC standard proposed by NIST [1].

Lab Tasks

In traditionalUni x systems, there is a special type of programs c&kstd- Ul D programs. When the own-

ers of these programs are root (i%et - Root - Ul D programs), these programs are privileged programs;
namely, a user can gain additional privileges by running these programtke following, we useset -

Ul Dto refer to these privileged programs, rather than uSeg- Root - Ul D. In this lab, we would like

to use access control to protect th&sd - Ul D programs, such that only users who have been granted the
permissions to executeSet - Ul D program are allowed to run the program. We will use RBAC to conduct
the access control; namely, the permissions are assigned to roles, asrdneess to be in an appropriate
role to be able to execute a®et - Ul D program. Your system should have the following components and
functionalities:

(A) Core RBAC. Core RBAC includes five basic data elements called users (USERS), RIHES),
objects (OBS), operations (OPS), and permissions (PRMS). In this B®,izludes all thé&et - Ul D pro-
grams, and OPS includes just theecut e operation; therefore, each permission is a typleccute, ob €
OBS). Core RBAC also includes sessions (SESSIONS), where each sesaiomapping between a user
and an activated subset of roles that are assigned to the user. Bainsge associated with a single user
and each user is associated with one or more sessions. In this lab, we siak@ification, limiting each
user to be associated with only one session at any time. You can uselogar'session as the RBAC
session; however, if the same user has two login sessions (login twicevilmrifferent windows), we still
treat them as one RBAC session.

Based on the basic RBAC data elements, you should implement the followinigpheidies:

e Creation and Maintenance of Roles. Another simplification we make is that all roles are fixed after
system boots up. In other words, you do not need to worry about gidigileting roles. However, you
cannot hard-code roles. Administrators should be able to add/deleteantethe modification will



Laboratory for Computer Security Education 2

take effects after system reboots. However, 10 bonus points will lem gévthe implementation that
does not make this simplification.

e Creation and Maintenance of Relations: The main relations of Core RBAC are (a) user-to-role
assignment relationship (UA), and (b) permission-to-role assignmetibre{&A). Functions to create
and delete instances of UA relations @&®si gnUser andDeassi gnUser . For PA the required
functions area ant Per mi ssi on andRevokePer m ssi on. Note that these functions can only
be performed by administrators with appropriate roles, and these relatintmeanodified during the
run time.

e Activate/Deactivate Roles. When a user’s session starts, a default set of active roles for thevilise
be used for such a session. The composition of this set can then be &lyetteel user during the
session by adding or deleting roles. Functions relating to the adding apginigoof active roles are
AddAct i veRol e andDr opActi veRol e.

(B) RoleHierarchies. Role hierarchies define an inheritance relation among roles. NIST stldiefines
two types of hierarchies: the general role hierarchies and limited rolertinées. In this lab, you should
implement the general role hierarchies. In terms of hierarchies creatiomaintenance, to simplify the lab,
we assume that hierarchies are static and cannot be modified on the fharigecthe hierarchies and enable
them, one needs to reboot the machine. With this simplification, you can puttire rete hierarchy in a
configuration file, which will be loaded into the system during the system podtherefore, modification
of the hierarchies can be achieved by directly modifying the configuratarfie will give 10 bonus points
to the implementation that does not make such a simplification.

(C) Separation of Duty. Separation of duty relations are used to enforce conflict of interestigmlicat
organizations may employ to prevent users from exceeding a reas¢maddlef authority for their positions.
NIST RBAC standard defines two types of separation of duty relatiaic Separation of Duty (SSD) and
Dynamic Separation of Duty (DSD). SSD enforces the separation-of-duty constraints on the assignment of
users to roles; for example, membership in one role may prevent the aseb&ing a member of one or
more other roles, depending on the SSD rules enforced. DSD allows touseassigned conflicted roles,

but ensures that the conflicted roles cannot be activated simultanedughis lab, your system should
support both SSD and DSD. Similar to the previous components, we alsmasksat the SSD and DSD
constraints are static, and any change to the constraints may require systfmot. However, 10 bonus
points will be given to the implementation that does not make this simplification.

Design | ssues

We will prepare a document to describe the entire process of executirmpeam. Using this document,
students should be able to find the places where they can add this exsa asogol.

Submission

You need to submit a detailed lab report to describe what you have ddnehat you have observed. You
also need to demonstrate your system.



Laboratory for Computer Security Education 3

References

[1] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Crhamduli. Proposed NIST standard
for role-based access contréddCM Transactions on Information and system Security, 4(3):224-274,
August 2001.



