
Role-Based Access Control
�

Ravi S. Sandhuy

Laboratory for Information Security Technology
ISSE Department, MS 4A4
George Mason University

Fairfax, VA 22030

voice: 703-993-1659
fax: 703-993-1638

email: sandhu@isse.gmu.edu
http://www.isse.gmu.edu/faculty/sandhu

September 17, 1997

Abstract The basic concept of role-based access control (RBAC) is that per-
missions are associated with roles, and users are made members of appropriate
roles thereby acquiring the roles' permissions. This idea has been around since
the advent of multi-user computing. Until recently, however, RBAC has re-
ceived little attention from the research community. This article describes the
motivations, results and open issues in recent RBAC research.

The article focuses on four areas. Firstly, RBAC is a multi-dimensional
concept that can range from very simple at one extreme to quite complex and
sophisticated at the other. This presents problems in coming up with a de�nitive
model of RBAC. We see how this impasse is resolved by having a family of
models which can accommodate all these variations. Secondly, we discuss how
RBAC can be used to manage itself. Recent models developed for this purpose
are presented. Thirdly, the
exibility of RBAC can be demonstrated in many
ways. Here we show how RBAC can be con�gured to enforce di�erent variations
of classical lattice-based mandatory access controls. Fourthly, we describe a
conceptual three-tier architecture for speci�cation and enforcement of RBAC.
The article concludes with a discussion of open issues in RBAC.

�Portions of this article have been published earlier in [SCFY96, San96, SB97, SBC+97, SF94].
yRavi Sandhu is also a�liated with SETA Corporation, 6862 Elm Street, McLean, VA 22101

Contents

1 INTRODUCTION 1

1.1 Motivation and Background : 1

1.2 RBAC Limitations : 3

1.3 What is a Role? : 3

1.4 Roles versus Groups : 4

2 THE RBAC96 MODELS 4

2.1 Base Model: RBAC0 : 5

2.2 Role Hierarchies: RBAC1 : 8

2.3 Constraints: RBAC2 : 11

2.4 Consolidated Model: RBAC3 : 14

2.5 Discussion : 15

3 THE ARBAC97 ADMINISTRATIVE MODELS 17

3.1 URA97 for User-Role Assignment : 21

3.2 PRA97 for Permission-Role Assignment : 24

3.3 RRA97 for Role-Role Assignment : 25

3.4 Discussion : 28

4 ROLES AND LATTICES 29

4.1 Lattice-Based Access Controls : 30

4.2 Basic Lattices : 31

4.3 Composite Con�dentiality and Integrity Roles : : : : : : : : : : : : : : : : : 34

4.4 Discussion : 36

5 THREE-TIER ARCHITECTURE 37

5.1 The Three Tiers : 37

5.2 The Central Tier : 40

5.3 Harmonizing the Top Two Tiers : 40

5.4 Harmonizing the Bottom Two Tiers : 41

5.5 Discussion : 42

6 CONCLUSION 43

List of Figures

1 The RBAC96 Family of Models : 6

2 Examples of Role Hierarchies : 9

3 Role Hierarchies for a Project : 12

4 RBAC Administrative Model : 19

5 Example Role and Administrative Role Hierarchies : : : : : : : : : : : : : : 22

6 Example of can-assign and can-revoke : 23

7 Example of can-assignp and can-revokep : 25

8 Out of Range Impact : 27

9 Example of can-modify : 27

10 A Partially Ordered Lattice : 31

11 Role Hierarchies for the Lattice of Figure 10 : : : : : : : : : : : : : : : : : : 32

12 Con�dentiality and Integrity Lattices : 34

13 Composite Con�dentiality and Integrity Roles : : : : : : : : : : : : : : : : : 35

14 ANSI/SPARC Database Architecture : 39

15 A Three Tier Architecture for RBAC : 39

16 Harmonizing the Top Two Tiers : 40

17 Harmonizing the Bottom Two Tiers : 42

1 INTRODUCTION

The concept of role-based access control (RBAC) began with multi-user and multi-application
on-line systems pioneered in the early 1970s. The central notion of RBAC is that permis-
sions are associated with roles, and users are assigned to appropriate roles. Roles are created
for the various job functions in an organization and users are assigned roles based on their
responsibilities and quali�cations. Users can be easily reassigned from one role to another.
Roles can be granted new permissions as new applications and systems are incorporated,
and permissions can be revoked from roles as needed.

This basic idea has been around in one form or another for a long time. Yet, it has
received surprisingly little attention from the research community until recently. This article
describes the motivations, results and open issues in recent RBAC research.

This section introduces RBAC and discusses general issues related to it. In section 2
we show that RBAC is a multi-dimensional concept ranging from very simple at one end
to quite sophisticated at the other. This makes it di�cult to construct a single de�nitive
model of RBAC. Instead we describe a family of models which can accommodate all these
variations. In section 3 we discuss how RBAC can be used to manage itself. In section 4
we demonstrate the
exibility and power of RBAC by showing how it can be con�gured to
enforce di�erent variations of classical lattice-based mandatory access controls. Section 5
describes a conceptual three-tier architecture for speci�cation and enforcement of RBAC.
Section 6 concludes the article with a brief discussion of open issues in RBAC.

1.1 Motivation and Background

A recent study by the US National Institute of Standards and Technology (NIST) [FGL93]
demonstrated that RBAC addresses many needs of the commercial and government sectors.
In this study of 28 organizations, access control requirements were found to be driven by
a variety of concerns including customer, stockholder and insurer con�dence, privacy of
personal information, preventing unauthorized distribution of �nancial assets, preventing
unauthorized usage of long-distance telephone circuits, and adherence to professional stan-
dards. The study found that many organizations based access control decisions on \the roles
that individual users take on as part of the organization." Many organizations preferred to
centrally control and maintain access rights, not so much at the system administrator's per-
sonal discretion but more in accordance with the organization's protection guidelines. The
study also found that organizations typically viewed their access control needs as unique
and felt that available products lacked adequate
exibility.

Other evidence of strong interest in RBAC comes from the standards arena. Roles
are being considered as part of the emerging SQL3 standard for database management
systems, based on their implementation in Oracle 7. Roles have also been incorporated in
the commercial security pro�le of the Common Criteria [Com96]. There are ongoing e�orts
by NIST to provide standards and guidance for RBAC.

RBAC is also well matched to prevailing technology and business trends. A number of
products support some form of RBAC directly, and others support closely related concepts,
such as user groups, that can be utilized to implement roles.

1

Many commercially successful access control systems for mainframes implement roles
for security administration. For example, an operator role can access all resources but not
change access permissions, a security-o�cer role can change permissions but have no access
to resources, and an auditor role can access audit trails. This administrative use of roles
is also found in modern network operating systems, e.g., Novell's NetWare and Microsoft
Windows NT.

Recent resurgence of interest in RBAC has focussed on general support of RBAC at the
application level. Speci�c applications have been, and are being, built with RBAC encoded
within the application itself. Existing operating systems and environments provide little
support for application-level use of RBAC. Such support is beginning to emerge in some
products. The challenge is to identify application-independent facilities that are su�ciently

exible, yet simple to implement and use, to support a wide range of applications with
minimal customization.

Sophisticated variations of RBAC include the capability to establish relations between
roles as well as between permissions and roles and between users and roles. For example,
two roles can be established as mutually exclusive, so the same user is not allowed to
take on both roles. Roles can also take on inheritance relations, whereby one role inherits
permissions assigned to a di�erent role. These role-role relations can be used to enforce
security policies that include separation of duties and delegation of authority. Heretofore,
these relations would have to be encoded into application software; with RBAC, they can
be speci�ed once for a security domain.

With RBAC it is possible to prede�ne role-permission relationships, which makes it
simple to assign users to the prede�ned roles. The NIST study cited above indicates that
permissions assigned to roles tend to change relatively slowly compared to changes in user
membership of roles. The study also found it desirable to allow administrators to confer and
revoke membership to users in existing roles without giving these administrators authority
to create new roles or change role-permission assignments. Assignment of users to roles
will typically require less technical skill than assignment of permissions to roles. It can also
be di�cult, without RBAC, to determine what permissions have been authorized to what
users.

Access control policy is embodied in various components of RBAC such as role-permission,
user-role and role-role relationships. These components collectively determine whether a
particular user will be allowed to access a particular resource or piece of data. RBAC
components may be con�gured directly by the system owner or indirectly by appropriate
administrative roles as delegated by the system owner. The policy enforced is the net result
of the precise con�guration of various RBAC components as directed by the system owner.
Moreover, the access control policy will evolve incrementally over the system life cycle. The
ability to modify policy to meet the changing needs of an organization is an important
bene�t of RBAC.

Although RBAC is policy neutral, it directly supports three well-known security princi-
ples: least privilege, separation of duties and data abstraction. Least privilege is supported
because RBAC can be con�gured so only those permissions required for the tasks conducted
by members of the role are assigned to the role. Separation of duties is achieved by en-
suring that mutually exclusive roles must be invoked to complete a sensitive task, such as

2

requiring an accounting clerk and account manager to participate in issuing a check. Data
abstraction is supported by means of abstract permissions such as credit and debit for an
account object, rather than the read, write, execute permissions typically provided by the
operating system. However, RBAC cannot enforce application of these principles. The se-
curity o�cer can con�gure RBAC so it violates these principles. Also, the degree to which
data abstraction is supported will be determined by the implementation details.

1.2 RBAC Limitations

As a cautionary note it is important to emphasize that RBAC is not a panacea for all
access control issues. More sophisticated forms of access control are required to deal with
situations where sequences of operations need to be controlled. For example, a purchase
requisition requires various steps before it can lead to issuance of a purchase order. RBAC
does not attempt to directly control the permissions for such a sequence of events. Other
forms of access control can be layered on top of RBAC for this purpose. Mohammed and
Dilts [MD94], Sandhu [San88, San91] and Thomas and Sandhu [TS94, TS97] discuss some
of these issues. We view control of sequences of operations to be outside the direct scope
of RBAC, although RBAC can be a foundation on which to build such controls.

1.3 What is a Role?

A role is properly viewed as a semantic construct around which access control policy is
formulated. The particular collection of users and permissions brought together by a role is
transitory. The role is more stable because an organization's activities or functions usually
change less frequently.

There can be several distinct motivations for constructing a role, including the following.
A role can represent competency to do speci�c tasks, such as a physician or a pharmacist.
A role can embody authority and responsibility, e.g., project supervisor. Authority and
responsibility are distinct from competency. Alice may be competent to head several de-
partments, but is assigned to head one of them. Roles can re
ect speci�c duty assignments
that are rotated through multiple users, e.g., a duty physician or shift manager. RBAC
models and implementations should be able to conveniently accommodate all of these man-
ifestations of the role concept.

The concept of a role originated in organizational theory much before the advent of
computerized information systems. Even in the context of modern information systems
roles have signi�cance beyond their application in security and access control. From the
perspective of RBAC it is therefore important to distinguish the concept and scope of a
role for access control purposes as opposed to the more general organizational context in
which roles arise. Roles have bigger signi�cance than access control but we should not be
tempted to expand the access control arena as a consequence. Instead we should focus on
aspects of roles that are relevant from the access control perspective. This question does
impact activities such as the design of roles which may need to take the bigger picture into
account even though the immediate focus is on roles for access control purposes.

3

1.4 Roles versus Groups

A frequently asked question is, \What is the di�erence between roles and groups?" Groups
of users as the unit of access control are commonly provided in many access control systems.
A major di�erence between most implementations of groups and the concept of roles is that
groups are typically treated as a collection of users and not as a collection of permissions.
A role is both a collection of users on one side and a collection of permissions on the other.
The role serves as an intermediary to bring these two collections together.1

Consider the Unix operating system. Group membership in Unix is de�ned in two
�les, /etc/passwd and /etc/group. It is thus easy to determine the groups to which a
particular user belongs or all the members of a speci�c group. Permissions are granted
to groups on basis of permission bits associated with individual �les and directories. To
determine what permissions a particular group has will generally require a traversal of the
entire �lesystem tree. It is thus much easier to determine the membership of a group than to
determine the permissions of the group. Moreover the assignment of permissions to groups
is highly decentralized. Essentially, the owner of any sub-tree of the Unix �lesystem can
assign permissions for that sub-tree to a group. (The precise degree to which this can be
done depends on the particular variant of Unix in question.) However, Unix groups can be
used to implement roles in certain situations, even though groups are not the same as our
concept of roles.

To illustrate the qualitative nature of the group versus role distinction, consider a hy-
pothetical system in which it takes twice as long to determine group membership as to
determine group permissions. Assume that group permissions and membership can only be
changed by the system security o�cer. In this case, the group mechanism would be very
close to our concept of a role.

The preceding discussion suggests two characteristics of a role, it should be approxi-
mately equally easy to determine role membership and role permissions, and control of role
membership and role permissions should be relatively centralized in a few users. Many
mechanisms that are claimed to be role-based fail one or both of these requirements.

Groups are also an established concept with a generally well-understood meaning much
like other well-known concepts such as a directory. Although groups can be extended to
provide the same features as roles, it is better to coin a new term to avoid confusion with the
existing concept of a group. Moreover, groups are a useful concept without being extended
to roles. It is therefore better to keep these two concepts separated.

2 THE RBAC96 MODELS

Notwithstanding the recognized usefulness of the RBAC concept, there has been little agree-
ment on what RBAC means. As a result RBAC is an amorphous concept interpreted in
di�erent ways, ranging from simple to elaborate and sophisticated.

1It should be mentioned that sometimes a role is de�ned to be a collection of permissions [Bal90, Gui95,
Not97]. We will see in section 3 that, for administrative purposes, it is actually bene�cial to distinguish
three kinds of roles respectively containing only users, only permissions and both users and permissions.

4

To understand the various dimensions of RBAC we de�ne a family of four conceptual
models. RBAC0, the base model, speci�es the minimum requirement for any system that
fully supports RBAC. RBAC1 and RBAC2 both include RBAC0, but add independent
features to it. They are called advanced models. RBAC1 adds the concept of role hi-
erarchies (situations where roles can inherit permissions from other roles). RBAC2 adds
constraints (which impose restrictions on acceptable con�gurations of the di�erent compo-
nents of RBAC). RBAC1 and RBAC2 are incomparable to one another. The consolidated
model, RBAC3, includes RBAC1 and RBAC2 and, by transitivity, RBAC0. We refer to
this family of models as RBAC96 (for RBAC '96). The relationship between the four mod-
els of RBAC96 is shown in �gure 1(a) and the consolidted model RBAC3 is portrayed in
�gure 1(b).

These models provide a guideline for development of products and their evaluation by
prospective customers. For the moment, we assume there is a single security o�cer who is
the only one authorized to con�gure the various sets and relations of these models. We will
introduce a more sophisticated management model in section 3.

2.1 Base Model: RBAC0

RBAC0 consists of that part of �gure 1(b) not identi�ed with one of the three advanced
models, that is, it omits the role hierarchy and constraints. There are three sets of entities
called users (U), roles (R), and permissions (P). The diagram also shows a collection of
sessions (S).

A user in this model is a human being. The concept of a user can be generalized to
include intelligent autonomous agents such as robots, software agents, immobile computers,
or even networks of computers. For simplicity, we focus on a user as a human being. A
role is a job function or job title within the organization with some associated semantics
regarding the authority and responsibility conferred on a member of the role.

A permission is an approval of a particular mode of access to one or more objects in the
system. The terms authorization, access right and privilege are also used in the literature
to denote a permission. Permissions are always positive and confer the ability to the holder
of the permission to perform some action(s) in the system. Objects are data objects as well
as resource objects represented by data within the computer system. Our conceptual model
permits a variety of interpretations for permissions, from very coarse grain, e.g., where
access is permitted to an entire subnetwork, to very �ne grain, where the unit of access is a
particular �eld of a particular record. Some access control literature talks about \negative
permissions" which deny, rather than confer, access. In our framework denial of access is
modeled as a constraint rather than a negative permission.

The nature of a permission depends on the implementation details of a system and the
kind of system that it is. A general model for access control must therefore treat per-
missions as uninterpreted symbols to some extent. Each system protects objects of the
abstraction it implements. Thus an operating system protects such entities as �les, direc-
tories, devices, and ports, with operations such as read, write, and execute. A relational
database management system protects relations, tuples, attributes, and views, with op-
erations such as SELECT, UPDATE, DELETE, and INSERT. An accounting application

5

3(b) The RBAC model

many-to-many

one-to-many

 RBAC 2
Constraints

 RBAC 1
Role Hierarchies

 RBAC 3
Consolidated Model

0 RBAC

Base Model

(a) Relationship among RBAC96 models

CONSTRAINTS

.

.

.

user roles

ROLES

R

USER

ASSIGNMENT

UA

PERMISSION

ASSIGNMENT

PA

SESSIONS

S

HIERARCHY

ROLE

RH

U

USERS
PERMISS-

IONS

P

Figure 1: The RBAC96 Family of Models

6

protects accounts and ledgers with operations such as debit, credit, transfer, create-account,
and delete-account. It should be possible to assign the credit operation to a role without
being compelled to also assign the debit operation to that role. Note that both operations
require read and write access to the operating system �le that stores the account balance.

Permissions can apply to single objects or to many. For example, a permission can be
as speci�c as read access to a particular �le or as generic as read access to all �les belonging
to a particular department. The manner in which individual permissions are combined
into a generic permission so they can be assigned as a single unit is highly implementation
dependent.

Figure 1(b) shows user assignment (UA) and permission assignment (PA) relations.
Both are many-to-many relations. A user can be a member of many roles, and a role can
have many users. Similarly, a role can have many permissions, and the same permission
can be assigned to many roles. The key to RBAC lies in these two relations. Ultimately, it
is a user who exercises permissions. The placement of a role as an intermediary to enable
a user to exercise a permission provides much greater control over access con�guration and
review than does directly relating users to permissions.

Each session is a mapping of one user to possibly many roles, i.e., a user establishes
a session during which the user activates some subset of roles that he or she is a member
of. The double-headed arrow from the session to R in �gure 1(b) indicates that multiple
roles are simultaneously activated. The permissions available to the user are the union of
permissions from all roles activated in that session. Each session is associated with a single
user, as indicated by the single-headed arrow from the session to U in �gure 1(b). This
association remains constant for the life of a session.

A user may have multiple sessions open at the same time, each in a di�erent window
on the workstation screen for instance. Each session may have a di�erent combination of
active roles. This feature of RBAC0 supports the principle of least privilege. A user who is
a member of several roles can invoke any subset of these that is suitable for the tasks to be
accomplished in that session. Thus, a user who is a member of a powerful role can normally
keep this role deactivated and explicitly activate it when needed. We defer consideration of
all kinds of constraints, including constraints on role activation, to RBAC2. So in RBAC0

it is entirely up to the user's discretion as to which roles are activated in a given session.
RBAC0 also permits roles to be dynamically activated and deactivated during the life of a
session. The concept of a session equates to the traditional notion of a subject in the access
control literature. A subject (or session) is a unit of access control, and a user may have
multiple subjects (or sessions) with di�erent permissions active at the same time.

The following de�nition formalizes the above discussion.

De�nition 1 The RBAC0 model has the following components:

� U , R, P , and S (users, roles, permissions and sessions respectively),

� PA � P �R, a many-to-many permission to role assignment relation,

� UA � U �R, a many-to-many user to role assignment relation,

7

� user : S ! U , a function mapping each session si to the single user user(si) (constant
for the session's lifetime), and

� roles : S ! 2R, a function mapping each session si to a set of roles roles(si) � fr j
(user(si); r) 2 UAg (which can change with time) and session si has the permissions
[r2roles(si)fp j (p; r) 2 PAg. 2

We expect each permission and user to be assigned to at least one role.

It is possible for two roles to be assigned exactly the same permissions but still be
separate roles. Likewise for users. A role is properly viewed as a semantic construct around
which access control policy is formulated. The particular collection of users and permissions
brought together by a role is transitory. For example, when a role is created it may have
no users or permissions assigned to it. At any instant there may be several such roles that
have been created. This situation may persist for days. Nevertheless the roles should not
be viewed as identical.

As noted earlier, RBAC0 treats permissions as uninterpreted symbols because the pre-
cise nature of a permission is implementation and system dependent. We do require that
permissions apply to data and resource objects and not to the components of RBAC itself.
Permissions to modify the sets U , R, and P and relations PA and UA are called admin-

istrative permissions. These will be discussed later in the management model for RBAC.
For now we assume that only a single security o�cer can change these components.

Sessions are under the control of individual users. As far the model is concerned, a user
can create a session and choose to activate some subset of the user's roles. Roles active
in a session can be changed at the user's discretion. The session terminates at the user's
initiative. (Some systems will terminate a session if it is inactive for too long. Strictly
speaking, this is a constraint and properly belongs in RBAC2.)

RBAC0 does not have a notion of one session creating another session. Sessions are
created directly by the user. For simplicity we have omitted this aspect, but we recognize
there are situations where an existing will need to create another session, possibly with
di�erent roles.

Some authors include duties [Jon93], in addition to permissions, as an attribute of roles.
A duty is an obligation on a user's part to perform one or more tasks, which are generally
essential for the smooth functioning of an organization. In our view duties are an advanced
concept which do not belong in RBAC0. We have also chosen not to incorporate duties
in our advanced models. One approach is to treat them as similar to permissions. Other
approaches could be based on new access control paradigms such as task-based authoriza-
tion [San88, San91, TS94, TS97].

2.2 Role Hierarchies: RBAC1

RBAC1 introduces role hierarchies (RH). Role hierarchies are almost inevitably included
whenever roles are discussed in the literature [FK92, HDT95, NO95, vSvdM94]. They are
also commonly implemented in systems that provide roles.

Role hierarchies are a natural means for structuring roles to re
ect an organization's

8

Primary-care

Physician Physician

Specialist

(a)

Health-care provider

Physician

Project Supervisor

Project Member

Test Engineer Programmer

(b)

(c)

Project Member

Test Engineer Programmer

Project SupervisorTest Engineer’ Programmer’

Figure 2: Examples of Role Hierarchies

9

lines of authority and responsibility. Examples of role hierarchies are shown in �gure 2.
By convention more powerful (or senior) roles are shown toward the top of these diagrams,
and less powerful (or junior) roles toward the bottom. In �gure 2(a) the junior-most role
is health-care provider. The physician role is senior to health-care provider and thereby
inherits all permissions from health-care provider. The physician role can have permissions
in addition to those inherited from the health-care provider role. Inheritance of permis-
sions is transitive so, for example, in �gure 2(a), the primary-care physician role inherits
permissions from the physician and health-care provider roles. Primary-care physician and
specialist physician both inherit permissions from the physician role, but each one of these
will have di�erent permissions directly assigned to it. Figure 2(b) illustrates multiple in-
heritance of permissions, where the project supervisor role inherits from both test engineer
and programmer roles.

Mathematically, these hierarchies are partial orders. A partial order is a re
exive, tran-
sitive and anti-symmetric relation. Inheritance is re
exive because a role inherits its own
permissions, transitivity is a natural requirement in this context, and anti-symmetry rules
out roles that inherit from one another and would therefore be redundant.

The formal de�nition of RBAC1 is given below.

De�nition 2 The RBAC1 model has the following components:

� U , R, P , S, PA, UA, and user are unchanged from RBAC0,

� RH � R � R is a partial order on R called the role hierarchy or role dominance
relation, also written as � in in�x notation, and

� roles : S ! 2R is modi�ed from RBAC0 to require roles(si) � fr j (9r0 � r)[(user(si); r
0) 2

UA]g (which can change with time) and session si has the permissions [r2roles(si)fp j
(9r00 � r)[(p; r00) 2 PA]g. 2

We also write x > y to mean x � y and x 6= y.

Note that a user is allowed to establish a session with any combination of roles junior to
those the user is a member of. Also, the permissions in a session are those directly assigned
to the active roles of the session as well as those assigned to roles junior to these.

It is sometimes useful in hierarchies to limit the scope of inheritance. Consider the
hierarchy of �gure 2(b) where the project supervisor role is senior to both the test engineer
and programmer roles. Now suppose test engineers wish to keep some permissions private
to their role and prevent their inheritance in the hierarchy to project supervisors. This
situation can exist for legitimate reasons, for example, access to incomplete work in progress
may not be appropriate for the senior role while RBAC can be useful for enabling such access
to test engineers. This situation can be accommodated by de�ning a new role called test
engineer0 and relating it to test engineer as shown in �gure 2(c). The private permissions
of test engineers are assigned to role test engineer0. Test engineers are assigned to role
test engineer0 and inherit permissions from the test engineer role, which are also inherited
upward in the hierarchy by the project supervisor role. Permissions of test engineer0 are,
however, not inherited by the project supervisor role. We call roles such as test engineer0

10

as private roles. Figure 2(c) also shows a private role programmer0. In some systems the
e�ect of private roles is achieved by blocking inheritance of certain permissions. In this case
the hierarchy does not depict the distribution of permission accurately. It is preferable to
introduce private roles and keep the meaning of the hierarchical relationship among roles
intact.

Figure 3 shows, more generally, how a private subhierarchy of roles can be constructed.
The hierarchy of �gure 3(a) has four task roles, T1, T2, T3 and T4, all of which inherit
permissions from the common project-wide role P . Role S at the top of the hierarchy
is intended for project supervisors. Tasks T3 and T4 are a subproject with P3 as the
subproject-wide role, and S3 as the subproject supervisory role. Role T10 in �gure 3(c) is a
private role for members of task T1. Suppose the subproject of �gure 3(a) comprising roles
S3, T3, T4, and P3, requires a private subhierarchy within which private permissions of
the project can be shared without inheritance by S. The entire subhierarchy is replicated
in the manner shown in �gure 3(c). The permissions inheritable by S can be assigned to
S3, T3, T4, and P3, as appropriate whereas the privates ones can be assigned to S30, T30,
T40, and P30, allowing their inheritance within the subproject only. As before members of
the subproject team are directly assigned to S30, T30, T40, or P30. Figure 3(c) makes it
clear as to which private roles exist in the system and assists in access review to determine
what the nature of the private permissions is.

2.3 Constraints: RBAC2

RBAC2 introduces the concept of constraints. Constraints apply to all aspects of RBAC as
indicated in �gure 1(b). Although we have called our models RBAC1 and RBAC2, there
isn't really an implied progression. Either constraints or role hierarchies can be introduced
�rst. Hence the incomparable relation between RBAC1 and RBAC2 in �gure 1(a).

Constraints are an important aspect of RBAC and are sometimes argued to be the
principal motivation for RBAC. A common example is that of mutually disjoint roles, such
as purchasing manager and accounts payable manager. In most organizations the same
individual will not be permitted to be a member of both roles, because this creates a
possibility for committing fraud. This is a well-known and time-honored principle called
separation of duties.

Constraints are a powerful mechanism for enforcing higher-level organizational policy.
Once certain roles are declared to be mutually exclusive, there need not be so much concern
about the assignment of individual users to roles. The latter activity can be delegated and
decentralized without fear of compromising overall policy objectives of the organization.
So long as the management of RBAC is entirely centralized in a single security o�cer,
constraints are a useful convenience; but the same e�ect can largely be achieved by judicious
care on the part of the security o�cer. However, if management of RBAC is decentralized
(as will be discussed later), constraints become a mechanism by which senior security o�cers
can restrict the ability of users who can exercise administrative privileges. This enables the
chief security o�cer to lay out the broad scope of what is acceptable and impose this as
a mandatory requirement on other security o�cers and users who participate in RBAC
management.

11

CSO

SO1 SO2 SO3

(b) Administrative Role Hierarchy

T1 T3 T4

S

S3

P

P3

T2

(a) Role Hierarchy

T1

S

P

T2

T1’

T3 T4

P3

S3

P3’

T3’

S3’

T4’

(c) Private and Scoped Roles

Figure 3: Role Hierarchies for a Project

12

With respect to RBAC0 constraints can apply to the UA and PA relations and the user
and roles functions for various sessions. Constraints are predicates which, applied to these
relations and functions, return a value of \acceptable" or \not acceptable." Constraints can
also be viewed as sentences in some appropriate formal language. Intuitively, constraints
are better viewed according to their kind and nature. We discuss constraints informally
rather than stating them in a formal notation. Hence, the following de�nition.

De�nition 3 RBAC2 is unchanged from RBAC0 except for requiring that there be a col-
lection of constraints that determine whether or not values of various components of RBAC0

are acceptable. Only acceptable values will be permitted. 2

Implementation considerations generally call for simple constraints that can be e�ciently
checked and enforced. Fortunately, in RBAC simple constraints can go a long way. We
now discuss some constraints that we feel are reasonable to implement. Most, if not all,
constraints applied to the user assignment relation have a counterpart that applies to the
permission assignment relation. We therefore discuss constraints on these two components
in parallel.

The most frequently mentioned constraint in the context of RBAC is mutually exclusive

roles. The same user can be assigned to at most one role in a mutually exclusive set. This
supports separation of duties. Provision of this constraint requires little motivation. The
dual constraint on permission assignment receives hardly any mention in the literature.
Actually, a mutual exclusion constraint on permission assignment can provide additional
assurance for separation of duties. This dual constraint requires that the same permission
can be assigned to at most one role in a mutually exclusive set. Consider two mutually
exclusive roles, accounts-manager and purchasing-manager. Mutual exclusion in terms of
UA speci�es that one individual cannot be a member of both roles. Mutual exclusion in
terms of PA speci�es that the same permission cannot be assigned to both roles. For
example, the permission to issue checks should not be assigned to both roles. Normally
such a permission would be assigned to the accounts-manager role. The mutual exclusion
constraint on PA would prevent the permission from being inadvertently, or maliciously,
assigned to the purchasing-manager role. More directly, exclusion constraints on PA are a
useful means of limiting the distribution of powerful permissions. For example, it may not
matter whether role A or role B gets signature authority for a particular account, but we
may require that only one of the two roles gets this permission.

More generally membership by users in various combinations of roles can be deemed to
be acceptable or not. Thus it may be acceptable for a user to be a member of a programmer
role and a tester role in di�erent projects, but unacceptable to take on both roles within
the same project. Similarly for permission assignment.

Another example of a user assignment constraint is that a role can have a maximum
number of members. For instance, there is only one person in the role of chairman of a
department. Similarly, the number of roles to which an individual user can belong could
also be limited. We call these cardinality constraints. Correspondingly, the number of
roles to which a permission can be assigned can have cardinality constraints to control
the distribution of powerful permissions. It should be noted that minimum cardinality
constraints may be di�cult to implement. For example if there is a minimum number of

13

occupants of a role, what can the system do if one of them disappears? How will the system
know this has happened?

The concept of prerequisite roles is based on competency and appropriateness, whereby
a user can be assigned to role A only if the user is already a member of role B. For example,
only those users who are already members of the project role can be assigned to the testing
task role within that project. In this example the prerequisite role is junior to the new
role being assumed. Prerequisites between incomparable roles can also occur in practice.
A similar constraint on permission assignment can arise in the following way. It could be
useful, for consistency, to require that permission p can be assigned to a role only if that
role already possesses permission q. For instance, in many systems permission to read a �le
requires permission to read the directory in which the �le is located. Assigning the former
permission without the latter would be incomplete. More generally we can have prerequisite
conditions whereby a user can be assigned to role A only if the user is already a member
or not a member of speci�ed roles, and similarly for permissions. This idea is used in the
administrative models of section 3.

User assignment constraints are e�ective only if suitable external discipline is maintained
in assigning user identi�ers to human beings. If the same individual is assigned two or more
user identi�ers, separation and cardinality controls break down. There must be a one-to-one
correspondence between user identi�ers and human beings. A similar argument applies to
permission constraints. If the same operation is sanctioned by two di�erent permissions,
the RBAC system cannot e�ectively enforce cardinality and separation constraints.

Constraints can also apply to sessions, and the user and roles functions associated with
a session. It may be acceptable for a user to be a member of two roles but the user cannot
be active in both roles at the same time. Other constraints on sessions can limit the number
of sessions that a user can have active at the same time. Correspondingly, the number of
sessions to which a permission is assigned can be limited.

A role hierarchy can be considered as a constraint. The constraint is that a permission
assigned to a junior role must also be assigned to all senior roles. Or equivalently, the
constraint is that a user assigned to a senior role must also be assigned to all junior roles.
So in some sense, RBAC1 is redundant and is subsumed by RBAC2. However, we feel it
is appropriate to recognize the existence of role hierarchies in their own right. They are
reduced to constraints only by introducing redundancy of permission assignment or user
assignment. It is preferable to support hierarchies directly rather than indirectly by means
of redundant assignment.

2.4 Consolidated Model: RBAC3

RBAC3 combines RBAC1 and RBAC2 to provide both role hierarchies and constraints.
There are several issues that arise by bringing these two concepts together.

Constraints can apply to the role hierarchy itself. The role hierarchy is required to be a
partial order. This constraint is intrinsic to the model. Additional constraints can limit the
number of senior (or junior) roles that a given role may have. Two or more roles can also
be constrained to have no common senior (or junior) role. These kinds of constraints are
useful in situations where the authority to change the role hierarchy has been decentralized,

14

but the chief security o�cer desires to restrict the overall manner in which such changes
can be made.

Subtle interactions arise between constraints and hierarchies. Suppose that test engineer
and programmer roles are declared to be mutually exclusive in the context of �gure 2(b).
The project supervisor role violates this mutual exclusion. In some cases such a violation
of a mutual exclusion constraint by a senior role may be acceptable, while in other cases it
may not. We feel that the model should not rule out one or the other possibility. A similar
situation arises with cardinality constraints. Suppose that a user can be assigned to at most
one role. Does an assignment to the test engineer role in �gure 2(b) violate this constraint?
In other words, do cardinality constraints apply only to direct membership, or do they also
carry on to inherited membership?

The hierarchy of �gure 2(c) illustrates how constraints are useful in the presence of
private roles. In this case the test engineer0, programmer0, and project supervisor roles can
be declared to be mutually exclusive. Because these have no common senior for these roles,
there is no con
ict. In general private roles will not have common seniors with any other
roles because they are maximal elements in the hierarchy. So mutual exclusion of private
roles can be speci�ed without con
ict. The shared counterpart of the private roles can
be declared to have a maximum cardinality constraint of zero members. In this way test
engineers must be assigned to the test engineer0 role. The test engineer role serves as a
means for sharing permissions with the project supervisor role.

2.5 Discussion

We have presented the RBAC96 family of models that systematically spans the spectrum
from simple to complex. RBAC96 provides a common frame of reference. RBAC0 is simple
and free of built in constraints so as to provide a foundation for the more advanced models.
RBAC2 allows us to accommodate existing systems and models that have built in constraints
such as only one role can be used at any time. RBAC1 models the commonly occurring
case of hierarchical roles, and RBAC3 consolidates all of these. We conclude this section by
discussing some salient aspects of RBAC96.

Users and Sessions

The distinction between a user and a session is a fundamental aspect of RBAC and conse-
quently arises in RBAC0. A user is a human being, or other intelligent agent, capable of
autonomous activity in the system. To support the principle of least privilege a user should
be allowed to login to a system with only those roles appropriate for a given occasion.

Many systems will turn on all permissions of a user irrespective of what the user wishes
to accomplish in a particular session. Thus, a user who has powerful permissions (or roles)
that are used only rarely when needed �nds that these permissions are turned on all the
time. It is possible to set up separate accounts, one in which the usual permissions are
turned on and another in which the powerful permissions are turned on. Assigning multiple
accounts to the same user introduces problems with respect to auditing, accountability and
constraints such as separation of duties. It is not a desirable general-purpose solution but

15

can be employed in the short term to simulate RBAC on existing platforms.

In RBAC0 the distinction between users and sessions is useful only if users exercise
discipline regarding the roles they normally invoke. With constraints it may not be possible
for a user to activate all their roles simultaneously. Consider a constraint that stipulates
two roles which can be assigned to the same user but cannot be simultaneously activated
in a session. For instance, a user may be quali�ed to be a pilot and a navigator but at any
time can activate at most one of these roles. In presence of such constraints a user cannot
establish a single session with all the user's roles activated.

An important property of a session is that the user associated with a session cannot
change. In many applications there are long-lived sessions where one user hands over to
another without a logout and login. This preserves the integrity of the computing activity
being performed in the session. We feel this problem is an artifact of existing system
architectures. Continuity of activity across multiple security sessions should be possible
in properly engineered systems. Also our models are conceptual models seeking to capture
what needs to be achieved. In implementations on speci�c platforms we will need to simulate
the requirements with the mechanisms available.

The RBAC96 models do not address the issues of idle session termination and lockout.
In practice this is an important issue. In our conceptual framework termination and lockout
is most easily modeled as a constraint and belongs in RBAC1. As a practical matter it would
be hard to e�ectively do RBAC0 without bringing in at least a small number of constraints
of this nature.

Changing the roles activated in a session is a security sensitive act and should be ac-
knowledged to the security system via a so-called trusted path which guarantees that the
user is making the request rather than some program acting on the user's behalf. Such
changes can be regulated by constraints in RBAC1. For instance, certain roles may not
be dynamically added but can only be acquired when a session is created. RBAC0 allows
dynamic changing of roles in a session because of two reasons. From a conceptual viewpoint
constraints belong in RBAC1 and higher, and should not be present in RBAC0. We could
still de�ne RBAC0 to disallow all changes in a session's roles. We felt this is impractical
and too restrictive for a base model.

RBAC96 does not address how one session might create another session. This issue is
discussed in [Tho91]. RBAC96 takes the view that a user creates a session and in absence
of other constraints can change the roles of this session as the user pleases. However, it is
possible for one session to create another session with di�erent roles under program control
rather than under direct user control. Thomsen uses a domain transition table to authorize
this. This issue needs further work in RBAC96.

Permissions

It is di�cult to identify the nature of permissions precisely in an abstract general purpose
model such as RBAC96. Permissions tend to be implementation dependent. In lattice-
based access control models [San93] it is possible to abstract the essential operations into
read and write. This is because these models are focussed on one-directional information

ow in a lattice of security labels.

16

RBAC models are policy neutral. Hence the nature of permissions has to be open ended.
In applying RBAC to a particular system the interpretation of permissions is among the
most important steps to be performed.

We deliberately decided to exclude so-called negative permissions from RBAC96. Nega-
tive permissions deny rather than confer access. They are used in some discretionary access
control models to disallow a user from obtaining a permission from some alternate source.
The use of constraints in RBAC is a much more useful mechanism to achieve the same
result. The literature on negative permissions is fraught with problems concerning their
interaction and relative strength with respect to positive permissions. In the presence of
role hierarchies this could become very complicated and arcane. We would be very reluctant
to add negative permissions into a complex model such as RBAC96.

The scope of RBAC is also consciously limited to classical permissions. Sequencing or
temporal dependencies between permissions are important in emerging applications such as
work
ow [San88, San91, TS94, TS97]. We decided to limit the scope of RBAC to exclude
these for two reasons. Firstly, these are not yet well understood and much further basic
research is required for this purpose. Secondly, RBAC must have a well-delineated scope
otherwise it will be an amorphous concept which can be taken to include all kinds of security
and authorization issues.

Model Conformance

What does it mean for a system to conform to RBAC96? RBAC96 is best viewed as a family
of reference models which play a dual role. On one hand RBAC96 provides a framework for
analyzing the capabilities of existing systems to assess how well and how extensively they
can support RBAC. RBAC96 also provides guidance to vendors and developers regarding
access controls to be implemented in future systems.

It is not necessary for a system to completely conform to RBAC0 before it includes
features of RBAC1 or RBAC2. Many existing systems do not distinguish between users and
sessions. We would say these systems have aspect of RBAC0, RBAC1 and RBAC2, but are
also missing other aspects of RBAC0. These systems essentially have built-in constraints
that all roles must be turned on in a session and none can be dropped. Other systems have
hard-wired constraints, such as a session can only have one role at a time. Such systems
cannot accommodate RBAC0, because they do too much without any choice in the matter.
But we can still place them within the RBAC96 family.

3 THE ARBAC97 ADMINISTRATIVE MODELS

So far we have assumed that all components of RBAC are under direct control of a single
security o�cer. In large systems the number of roles can be in the hundreds or thousands.
Managing these roles and their interrelationships is a formidable task that often is highly
centralized and delegated to a small team of security administrators. Because the main
advantage of RBAC is to facilitate administration of permissions, it is natural to ask how
RBAC can be used to manage RBAC itself. We believe that the use of RBAC for managing

17

RBAC will be an important factor in the success of RBAC. Decentralizing the details of
RBAC administration without loosing central control over broad policy is a challenging goal
for system designers and architects.

We mention some approaches to access control management that have been discussed
in the literature. ISO has developed a number of security management related standards
and documents. These can be approached via the top-level System Management Overview
document [ISO]. The ISO model is object-oriented and includes a hierarchy based on
containment (a directory contains �les and a �le contains records). Roles could be integrated
into the ISO approach.

There is a long tradition of models for propagation of access rights, where the right
to propagate rights is controlled by special control rights. Among the most recent and
most developed of these is Sandhu's typed access matrix model [San92]. While it is often
di�cult to analyze the consequences of even fairly simple rules for propagation of rights,
these models indicate that simple primitives can be composed to yield very
exible and
expressive systems.

One example of work on managing RBAC is by Mo�et and Sloman [MS91] who de�ne a
fairly elaborate model based on role domains, owners, managers, and security administra-
tors. In their work authority is not controlled or delegated from a single central point, but
rather is negotiated between independent managers who have only a limited trust in each
other.

Our management model for RBAC is illustrated in �gure 4. The top half of this �gure
is essentially the same as �gure 1(b). The constraints in �gure 4 apply to all components.
The bottom half of �gure 4 is a mirror image of the top half for administrative roles and
administrative permissions. It is intended that administrative roles AR and administrative
permissions AP be respectively disjoint from the regular roles R and permissions P . The
model shows that permissions can only be assigned to roles and administrative permissions
can only be assigned to administrative roles. This is a built-in constraint, stated formally
as follows.

De�nition 4 Administrative permissionsAP authorize changes to the various components
that comprise RBAC0, RBAC1, RBAC2 or RBAC3 whereas regular permissions P do not.
Administrative permissions are disjoint from regular permissions, i.e., AP \P = ;. Admin-
istrative permissions and regular permissions can only be assigned to administrative roles
AR and regular roles R respectively. Administrative roles are disjoint from regular roles,
i.e., AR \R = ;. 2

The top half of �gure 4 can range in sophistication across RBAC0, RBAC1, RBAC2, and
RBAC3. The bottom half can similarly range in sophistication across ARBAC0, ARBAC1,
ARBAC2, and ARBAC3, where the A denotes administrative. In general we would expect
the administrative model to be simpler than the RBAC model itself. Thus ARBAC0 can
be used to manage RBAC3, but there seems to be no point in using ARBAC3 to manage
RBAC0.

It is also important to recognize that constraints can cut across both top and bottom
halves of �gure 4. We have already asserted a built-in constraint that permissions can only
be assigned to roles and administrative permissions can only be assigned to administrative

18

HIERARCHY

ROLE

RH

SESSIONS

S

ADMINIS-

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

RH

ROLE

HIERARCHY

ADMINISTRATIVE

ARH

PERMISS-

IONS

P
PERMISSION

ASSIGNMENT

PA

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

ASSIGNMENT

ADMIN.

PERMISS-

IONS

AP

CONSTRAINTS
U

USERS

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

ADMINISTRATIVE

AUA

many-to-many

one-to-many

Figure 4: RBAC Administrative Model

19

roles. If administrative roles are mutually exclusive with respect to regular roles, we will
have a situation where security administrators can manage RBAC but not use any of the
privileges themselves.

How about management of the administrative hierarchy? In principle one could con-
struct a second level administrative hierarchy to manage the �rst level one and so on. We
feel that even a second level of administrative hierarchy is unnecessary. Hence the admin-
istration of the administrative hierarchy is left to a single chief security o�cer. This is
reasonable for a single organization or a single administrative unit within an organization.
The issue of how these units interact is not directly addressed in our model. More generally
administrative roles could themselves manage administrative roles.

One of the main issues in a management model is how to scope the administrative
authority vested in administrative roles. To illustrate this consider the hierarchies shown
in �gure 3(a). The administrative hierarchy of �gure 3(b) shows a single chief security
o�cer role (CSO), which is senior to the three security o�cer roles SO1, SO2, and SO3.
The scoping issue concerns which roles of �gure 3(a) can be managed by which roles of
�gure 3(b). Let us say the CSO role can manage all roles of �gure 3(a). Suppose SO1
manages task T1. In general we do not want SO1 to automatically inherit the ability to
manage the junior role P also. So the scope of SO1 can be limited exclusively to T1.
Similarly, the scope of SO2 can be limited to T2. Assume SO3 can manage the entire
subproject consisting of S3, T3, T4, and P3. The scope of SO3 is then bounded by S3 at
the top and P3 at the bottom.

In general, each administrative role will be mapped to some subset of the role hierarchy it
is responsible for managing. There are other aspects of management that need to be scoped.
For example, SO1 may only be able to add users to the T1 role but their removal requires
the CSO to act. More generally, we need to scope not only the roles an administrative
role manages, but also the permissions and users that role manages. It is also important
to control changes in the role hierarchy itself. For example, because SO3 manages the
subhierarchy between S3 and P3, SO3 could be authorized to add additional tasks to that
subproject.

As we have seen there are many components to RBAC. RBAC administration is therefore
multi-faceted. In particular we can separate the issues of assigning users to roles, assigning
permissions to roles, and assigning roles to roles to de�ne a role hierarchy. These activities
are all required to bring users and permissions together. However, in many cases, they are
best done by di�erent administrators or administrative roles. Assigning permissions to roles
is typically the province of application administrators. Thus a banking application can be
implemented so credit and debit operations are assigned to a teller role, whereas approval
of a loan is assigned to a managerial role. Assignment of actual individuals to the teller and
managerial roles is a personnel management function. Assigning roles to roles has aspects
of user-role assignment and role-permission assignment. Role-role relationships establish
broad policy. Control of these relationships would typically be relatively centralized in the
hands of a few security administrators.

In this section we describe a model for role-based administration of RBAC. Our model
is called ARBAC97 (administrative RBAC '97). It has three components as follows.

20

1. The user-role assignment component of ARBAC97 is called URA97 (user-role as-
signment '97).

2. The permission-role assignment component of ARBAC97 is a dual2 of URA97
and is called PRA97 (permission-role assignment '97).

3. The role-role assignment component of ARBAC97 itself has several components
which are determined by the kind of roles that are involved. We defer discussion of
the role-role assignment model till section 3.3.

3.1 URA97 for User-Role Assignment

The URA97 model was originally de�ned by Sandhu and Bhamidipati [SB97], who also
developed an Oracle implementation of this model. We use the hierarchies of �gures 5(a)
and 5(b) in our running example through this section. Figure 5(a) shows the regular roles
in an engineering department. There is a junior-most role E to which all employees belong.
The engineering department has a junior-most role ED and senior-most role DIR. In between
there are roles for two projects within the department, project 1 on the left and project 2 on
the right. Each project has a senior-most project lead role (PL1 and PL2), a junior-most
engineer role (E1 and E2), and in between two incomparable roles, production engineer
(PE1 and PE2) and quality engineer (QE1 and QE2). Figure 5(b) shows the administrative
role hierarchy with the senior security o�cer (SSO) role at the top, and two project security
o�cer roles (PSO1 and PSO2) and a department security o�cer (DSO) role.

URA97 is concerned with administration of the user-assignment relation UA which
relates users to roles. Authorization to modify this relation is controlled by administrative
roles. Thus members of the administrative roles in �gure 5(b) are authorized to modify
membership in the roles of �gure 5(a). Assignment of user to administrative roles is outside
the scope of URA97 and is assumed to be done by the chief security o�cer.

There are two aspects to decentralization of user-role assignment. We need to specify the
roles whose membership can be modi�ed by an administrative role. We also need to specify
a population of users eligible for membership. For example, URA97 will let us specify that
the administrative role PSO1 can assign users to the roles PE1, QE1 and E1, but these
users must previously be members of the role ED. The idea is that PSO1 has freedom to
assign users to roles in project 1 (excepting the senior-most role PL1) but these users must
already be members of the engineering department. This is an example of a prerequisite
role. More generally URA97 allows for a prerequisite condition as follows.

De�nition 5 A prerequisite condition is a boolean expression using the usual ^ and _
operators on terms of the form x and x where x is a regular role (i.e., x 2 R). For a given
set of roles R let CR denotes all possible prerequisite conditions that can be formed using
the roles in R. A prerequisite condition is evaluated for a user u by interpreting x to be
true if (9x0 � x)(u; x0) 2 UA and x to be true if (8x0 � x)(u; x0) 62 UA. 2

2In our work we have often observed a duality between user-role and permission-role relationships. For
example, every constraint on user-role relationships has a dual counterpart with respect to permission-role
relationships, and vice versa. We see this duality exhibited here too.

21

(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Engineer 1 (E1)

Project lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

(a) Roles

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)

Department Security Officer (DSO)

Senior Security Officer (SSO)

(b) Administrative Roles

Figure 5: Example Role and Administrative Role Hierarchies

22

Administrative Role Prerequisite Condition Role Range

PSO1 ED [E1, PL1)
PSO2 ED [E2, PL2)
DSO ED ^ PL1 [PL2, PL2]
DSO ED ^ PL2 [PL1, PL1]

(a) can-assign

Administrative Role Role Range

PSO1 [E1, PL1)
PSO2 [E2, PL2)
DSO (ED, DIR)

(b) can-revoke

Figure 6: Example of can-assign and can-revoke

De�nition 6 User-role assignment and revocation are respectively authorized in URA97
by the following relations, can-assign � AR� CR� 2R and can-revoke � AR� 2R. 2

The meaning of can-assign(x; y; Z) is that a member of the administrative role x (or a
member of an administrative role that is senior to x) can assign a user whose current
membership, or non-membership, in regular roles satis�es the prerequisite condition y to be
a member of regular roles in range Z.3 The meaning of can-revoke(x; Y) is that a member
of the administrative role x (or a member of an administrative role that is senior to x) can
revoke membership of a user from any regular role y 2 Y .

Figure 6 illustrates these relations. Role sets are speci�ed in URA97 by the following
range notation.

[x; y] = fr 2 R j x � r ^ r � yg
(x; y] = fr 2 R j x > r ^ r � yg

[x; y) = fr 2 R j x � r ^ r > yg
(x; y) = fr 2 R j x > r ^ r > yg

By �gure 6(a) PSO1 can assign users in ED to the roles E1, PE1 and QE1, and similarly
for PSO2 with respect to E2, PE2 and QE2. DSO can assign a user in ED to PL1 provided
that user is not already in PL2, and similarly for PL2 with respect to PL1.

A notable aspect of revocation in URA97 is that revocation is independent of assignment.
If Alice, by means of some administrative role, can revoke Bob's membership in a regular
role the revocation takes e�ect independent of how Bob came to be a member of that
regular role. This is consistent with RBAC philosophy where granting and revoking of
membership is done for organizational reasons and not merely at the discretion of individual
administrators.

3User-role assignment is subject to additional constraints, such as mutually exclusive roles or maximum
cardinality, that may be imposed. The assignment will succeed if and only if it is authorized by can-assign

and it satis�es all relevant constraints.

23

Weak and Strong Revocation

The revocation operation in URA97 is said to be weak because it applies only to the role
that is directly revoked. Suppose Bob is a member of PE1 and E1. If Alice revokes Bob's
membership from E1, he continues to be a member of the senior role PE1 and therefore
can use the permissions of E1. Various forms of strong revocation can be considered as
embellishments to URA97. Strong revocation cascades upwards in the role hierarchy. If
Alice has administrative role PSO1 and she strongly revokes Bob's membership from E1 as
per �gure 6, his membership in PE1 is also revoked. However, if Charles is a member of
E1 and PL1, and Alice strongly revokes Charles' membership in E1 the cascaded revoke is
outside of Alice's range and is disallowed. The question remains whether or not Charles'
membership in E1 and PE1 should be revoked even though the cascaded revoke from PL1
failed? It seems appropriate to allow both options depending upon Alice's choice. In
general URA97 treats strong revocation as a series of weak revocations each of which must
be individually authorized by can-revoke. In this way we keep the basic URA97 model
simple while allowing for more complex revocation operations to be de�ned in terms of
weak revocation. At the same time we feel it is important to support strong revocation.

3.2 PRA97 for Permission-Role Assignment

PRA97 is concerned with role-permission assignment and revocation. From the perspective
of a role, users and permissions have a similar character. They are essentially entities that
are brought together by a role. Hence, we propose PRA97 to be a dual of URA97. The
notion of a prerequisite condition is identical to that in URA97 except the boolean expression
is now evaluated for membership and non-membership of a permission in speci�ed roles.

De�nition 7 Permission-role assignment and revocation are respectively authorized by the
following relations, can-assignp � AR� CR� 2R and can-revokep � AR� 2R. 2

The meaning of can-assignp(x; y; Z) is that a member of the administrative role x (or a
member of an administrative role that is senior to x) can assign a permission whose current
membership, or non-membership, in regular roles satis�es the prerequisite condition y to
regular roles in range Z.4 The meaning of can-revokep(x; Y) is that a member of the
administrative role x (or a member of an administrative role that is senior to x) can revoke
membership of a permission from any regular role y 2 Y .

Figure 7 shows examples of these relations. The DSO is authorized to take any per-
mission assigned to the DIR role and make it available to PL1 or PL2. Thus a permission
can be delegated downward in the hierarchy. PSO1 can assign permissions from PL1 either
PE1 or QE1, but not to both. The remaining rows in �gure 7(a) are similarly interpreted.

Figure 7(b) authorizes DSO to revoke permissions from any role between ED and DIR.
PSO1 can revoke permissions from PE1 and QE2, and similarly for PSO2.

Revocation in PRA97 is weak so permissions may still be inherited after revocation.
Strong revocation can be de�ned in terms of weak revocation as in URA97. Strong revo-

4Permission-role assignment may be subject to additional constraints. In other words can-assignp(x; y; Z)
is a necessary but not su�cient condition.

24

Administrative Role Prerequisite Condition Role Range

DSO DIR [PL1, PL1]
DSO DIR [PL2, PL2]
PSO1 PL1 ^ QE1 [PE1, PE1]
PSO1 PL1 ^ PE1 [QE1, QE1]
PSO2 PL2 ^ QE2 [PE2, PE2]
PSO2 PL2 ^ PE2 [QE2, QE2]

(a) can-assignp

Administrative Role Role Range

DSO (ED, DIR)
PSO1 [QE1, QE1]
PSO1 [PE1, PE1]
PSO2 [QE2, QE2]
PSO2 [PE2, PE1]

(b) can-revokep

Figure 7: Example of can-assignp and can-revokep

cation of a permissions cascades down the role hierarchy, in contrast to cascading up of
revocation of user membership.

3.3 RRA97 for Role-Role Assignment

Finally, we consider the issue of role-role assignment. Our treatment is informal and prelim-
inary at this point because the model is still evolving. Our focus is on the general direction
and intuition.

For role-role assignment we distinguish three kinds of roles, roughly speaking as follows.

1. Abilities are roles that can only have permissions and other abilities as members.

2. Groups are roles that can only have users and other groups as members.

3. UP-Roles are roles that have no restriction on membership, i.e., their membership
can include users, permissions, groups, abilities and other UP-roles.

The term UP-roles signi�es user and permission roles. We use the term role to mean all
three kinds of roles or to mean UP-roles only, as determined by context. The three kinds
of roles are mutually disjoint and are identi�ed respectively as A, G, and UPR.

The main reason to distinguish these three kinds of roles is that di�erent administrative
models apply to establishing relationships between them. The distinction was motivated in
the �rst place by abilities. An ability is a collection of permissions that should be assigned as

25

a single unit to a role. For example the ability to open an account in a banking application
will encompass many di�erent individual permissions. It does not make sense to assign
only some of these permissions to a role because the entire set is needed to do the task
properly. The idea is that application developers package permissions into collections called
abilities which must be assigned together as a unit to a role. The function of an ability
is to collect permissions together so that administrators can treat these as a single unit.
Assigning abilities to roles is therefore very much like assigning permissions to roles. For
convenience it is useful to organize abilities into a hierarchy (i.e., partial order). Hence the
PRA97 model can be adapted to produce the very similar ARA97 model for ability-role
assignment.

Once the notion of notion of abilities is introduced, by duality there should be a similar
concept on the user side. A group is a collection of users who are assigned as a single unit to a
role. Such a group can be viewed as a team which is a unit even though its membership may
change over time. Groups can also be organized in a hierarchy. For group-role assignment
we adapt the URA97 model to produce the GRA97 model for group-role assignment.

This leads to the following models.

De�nition 8 Ability-role assignment and revocation are respectively authorized in ARA97
by can-assigna � AR� CR� 2UPR and can-revokea � AR� 2UPR. 2

De�nition 9 Group-role assignment and revocation are respectively authorized in GRA97
by can-assigng � AR� CR� 2UPR and can-revokeg � AR� 2UPR. 2

For these models the prerequisite conditions are interpreted with respect to abilities and
groups respectively. Membership of an ability in a UP-role is true if the UP-role dominates
the ability and false otherwise. Conversely, membership of a group in a UP-role is true if
the UP-role is dominated by the group and false otherwise.

Assigning an ability to an UP-role is mathematically equivalent to making the UP-role
an immediate senior of the ability in the role-role hierarchy. Abilities can only have UP-
roles or abilities as immediate seniors and can only have abilities as immediate juniors. In
a dual manner, assigning a group to an UP-role is mathematically equivalent to making
the UP-role an immediate junior of the group in the role-role hierarchy. Groups can only
have UP-roles or groups as immediate juniors and can only have groups as immediate
seniors. With these constraints the ARA97 and GRA97 models are essentially identical to
the PRA97 and URA97 models respectively.

This leaves us with the problem of managing relationships between UP-roles.5 Consider
�gure 5(a) again. We would like the DSO to con�gure and change the hierarchy between
DIR and ED. Similarly, we would like PSO1 to manage the hierarchy between PL1 and E1,
and likewise for PSO2 with respect to PL2 and E2. The idea is that each department and
each project has autonomy in constructing its internal role structure.

5Strictly speaking we also have to deal with administration of group-group and ability-ability relation-
ships. These can be handled in the same way as relationships between UP-roles to analogously give us the
G-RRA97 and A-RRA97 models.

26

PE1

DIR

PL1

E1

QE1

PL2

QE2

ED

E2

PE2

X

Y

E

Figure 8: Out of Range Impact

Administrative Role UP-Role Range

PSO1 (E1, PL1)
DSO (ED, DIR)

Figure 9: Example of can-modify

De�nition 10 Role creation, role deletion, role-role edge insertion, role-role edge deletion
are all authorized in UP-RRA97 by can-modify : AR! 2UPR. 2

The meaning of can-modify(x; Y) is that a member of the administrative role x (or a member
of an administrative role that is senior to x) can create and delete roles in the range Y,
except for the endpoints of Y , and can modify relationships between roles in the range Y .
This authority is, however, tempered by constraints that we discuss below.

Figure 9 illustrates an example of can-modify relative to the hierarchies of �gure 5.
By convention the UP-role ranges are shown as open intervals since the endpoints are not
included. DSO can create, delete and alter relationships between all roles in the engineering
department (except the endpoints ED and DIR). When a DSO creates a new role it will be
senior to ED and junior to DIR, and will remain so (unless some more senior administrator
changes this relationship). PSO1 has similar authority with respect to roles in project 1.

27

Restrictions on can-modify

The authority conferred by can-modify is constrained by global consistency requirements.
It is not possible to change pieces of the role hierarchy in arbitrary ways without impacting
larger relationships. Here we identify two con
icts that arise and explain how RRA97 deals
with them.

Suppose DSO is given the authority to create and delete edges and roles in the hierarchy
between DIR and ED. If PL1 gets deleted �gures 6 and 7 will be left with dangling references
to a non-existent role. To avoid this situation we require that roles that are referenced in
any can-assign or can-revoke relation cannot be deleted. In this way the DSO's power to
delete roles is restricted to maintain global consistency of the authorizations.

The second problem arises if the DSO introduces roles X and Y as shown in �gure 8.
Now suppose PSO1 has authority to create and delete edges and roles in the hierarchy
between PL1 and E1. If PSO1 makes PE1 junior to QE1 the e�ect is to indirectly make
Y junior to X. Now PSO1 was given authority in the range (PL1,E1) but has e�ectively
introduced a relationship between X and Y. There are several approaches to resolving this
issue. We can prevent the DSO from introducing X and Y as shown, because this violates
the range integrity of (PL1,E1) with respect to PSO1. We can allow �gure 8 to happen and
prevent PSO1 from later making PE1 junior to QE1. Or we can tolerate the possibility of
PSO1 a�ecting UP-role to UP-role relationships that are outside the authorized range of
(E1, PL1). RRA97 allows all three possibilities.

There may be other issues that will arise as we evolve this model. Our general principle
for decentralized administration of role-role relationships is a sound one. We wish to give
administrative roles autonomy within a range but only so far as the global consequences
of the resulting actions are acceptable. To do so we need to disallow some operations
authorized by the range, thereby tempering the administrative role's authority.

3.4 Discussion

In this section we have described the motivation, intuition and outline of a new model
for RBAC administration called ARBAC97 (administrative RBAC '97). ARBAC97 has
three components: URA97 (user-role assignment '97), PRA97 (permission-role assignment
'97) and RRA97 (role-role assignment '97). URA97 was recently de�ned by Sandhu and
Bhamidipati [SB97]. ARBAC97 incorporates URA97, builds upon it to de�ne PRA97 and
some components of RRA97, and introduces additional concepts in developing RRA97.

RRA97 itself consists of three components. ARA97 and GRA97 deal with ability-role
assignment and group-role assignment respectively, and are very similar to PRA97 and
URA97 respectively. The component dealing with role-role assignment is still evolving but
we have identi�ed the basic intuition and important issues that need to be dealt with.

An interesting property of ARBAC97 is that it allows multiple user membership in a
chain of senior to junior roles. Thus Alice can be a member of PE1, ED and E simulta-
neously in �gure 5(a), that is, (Alice,PE1)2UA, (Alice,ED)2UA and (Alice,E)2UA. There
are models in the literature that prohibit this, so we could only have (Alice,PE1)2UA.
The net e�ect regarding the permissions of Alice is identical in both cases. However, there

28

is substantial di�erence when we look at the administrative model. In ARBAC97 Alice's
membership in PE1, ED and E could be achieved by di�erent administrators and could
be revoked independently on one another. In fact prior membership in a prerequisite role
could lead to later membership in more senior roles. We feel this is a more
exible model.
Insisting that Alice can only be in a single role in a senior to junior chain of roles has
dramatic impact on revocation and decentralized user-role assignment. Similar comments
apply to permission-role assignment.

ARBAC97 does not address all issues of RBAC administration. For example, it does
not talk about creation and deletion of users and permissions. It also does not address
the management of constraints. Another issue omitted in ARBAC97 is delegation of roles,
whereby one user can authorize another to represent the former in the capacity of one or
more roles. Delegation of roles to automated agents acting on behalf of a user is also outside
the scope of ARBAC97. Clearly there are many interesting issues in management of RBAC
that remain to be investigated.

4 ROLES AND LATTICES

An important characteristic of RBAC is that it is policy neutral. RBAC provides a means for
articulating policy rather than embodying a particular security policy. The policy enforced
in a particular system is the net result of the precise con�guration and interactions of various
RBAC components as directed by the system owner. Moreover, the access control policy
can evolve incrementally over the system life cycle. In large systems it is almost certain
to do so. The ability to modify policy incrementally to meet the changing needs of an
organization is an important bene�t of RBAC.

Classic lattice-based access control (LBAC) models [San93] on the other hand are specif-
ically constructed to incorporate the policy of one-directional information
ow in a lattice.
There is nonetheless strong similarity between the concept of a security label and a role.
In particular, the same user cleared to say Secret can on di�erent occasions login to a sys-
tem at Secret and Unclassi�ed levels. In a sense the user determines what role (Secret or
Unclassi�ed) should be activated in a particular session.

This leads us naturally to ask whether or not LBAC can be simulated using RBAC.
If RBAC is policy neutral and has adequate generality it should indeed be able to do so.
Particularly, because the notion of a role and the level of a login session are so similar. This
question is theoretically signi�cant because a positive answer would establish that LBAC
is just one instance of RBAC thereby relating two distinct access control models that have
been developed with di�erent motivations. A positive answer is also practically signi�cant,
because it implies that the same system can be con�gured to enforce RBAC in general and
LBAC in particular. This addresses the long held desire of multi-level security practitioners
that technology which meets needs of the larger commercial marketplace be applicable
to LBAC. The classical approach to ful�lling this desire has been to argue that LBAC has
applications in the commercial sector. So far this argument has not been terribly productive.
RBAC, on the other hand, is speci�cally motivated by needs of the commercial sector. Its
customization to LBAC might be a more productive approach to dual-use technology.

29

In this section we show how several variations of LBAC are easily accommodated in
RBAC by con�guring a few RBAC components.6 Our constructions show that the concepts
of role hierarchies and constraints are critical to achieving this result. Changes in the role
hierarchy and constraints lead to di�erent variations of LBAC.

4.1 Lattice-Based Access Controls

Lattice based access control (LBAC) enforces one directional information
ow in a lattice
of security labels. LBAC is also known as mandatory access control (MAC) or multilevel
security.7 LBAC can be applied for con�dentiality, integrity, con�dentiality and integrity
together, or for aggregation policies such as Chinese Walls [San93]. The mandatory access
control policy is expressed in terms of security labels attached to subjects and objects. A
label on an object is called a security classi�cation, while a label on a user is called a security
clearance. It is important to understand that a Secret user may run the same program, such
as a text editor, as a Secret subject or as an Unclassi�ed subject. Even though both subjects
run the same program on behalf of the same user, they obtain di�erent privileges due to
their security labels. It is usually assumed that the security labels on subjects and objects,
once assigned do not change.

An example of a security lattice is shown in �gure 10. Information is only permitted
to
ow upward in the lattice. In this example, H and L respectively denote high and low,
and M1 and M2 are two incomparable labels intermediate to H and L. This is a typical
con�dentiality lattice where information can
ow from low to high but not vice versa. The
labels in the lattice are partially ordered by the dominance relation written �, for example,
H�L in our example. Lattices also have a least upper bound operator. Our constructions
apply to partially ordered security labels in general so this operator is not relevant.

The speci�c mandatory access rules usually speci�ed for a lattice are as follows, where
� signi�es the security label of the indicated subject or object.

� (Simple Security) Subject s can read object o only if �(s) � �(o)

� (Liberal ?-property) Subject s can write object o only if �(s) � �(o)

The ?-property is pronounced as the star-property. For integrity reasons sometimes a
stricter form of the ?-property is stipulated. The liberal ?-property allows a low subject to
write a high object. This means that high data may be maliciously destroyed or damaged
by low subjects. To avoid this possibility we can employ the strict ?-property given below.

� (Strict ?-property) Subject s can write object o only if �(s) = �(o)

6It should be noted that RBAC will only prevent overt
ows of information. This is true of any access
control model, including LBAC. Information
ow contrary to the one-directional requirement in a lattice by
means of so-called covert channels is outside the purview of access control per se. Neither LBAC nor RBAC
addresses the covert channel issue directly. Techniques used to deal with covert channels in LBAC can be
used for the same purpose in RBAC.

7LBAC is typically applied in addition to classical discretionary access controls (DAC) [SS94] but for our
purpose we will focus only on the MAC component.

30

M1 M2

H

L

Figure 10: A Partially Ordered Lattice

The liberal ?-property is also referred to as write-up and the strict ?-property as non-write-
up or write-equal. There are also variations of LBAC where the one-directional information

ow is partly relaxed to achieve selective downgrading of information or for integrity appli-
cations [Bel87, Lee88, Sch88].

We now show how these two variations of LBAC can be simulated in RBAC. It turns out
that we can achieve this by suitably changing the role hierarchy and de�ning appropriate
constraints. This con�rms that role hierarchies and constraints are central to de�ning policy
in RBAC.

4.2 Basic Lattices

Consider the example lattice of �gure 10 with the liberal ?-property. Subjects with labels
higher up in the lattice have more power with respect to read operations but have less
power with respect to write operations. Thus this lattice has a dual character. In role
hierarchies subjects (sessions) with roles higher in the hierarchy always have more power
than those with roles lower in the hierarchy. To accommodate the dual character of a
lattice for LBAC we will use two dual hierarchies in RBAC, one for read and one for write.
These two role hierarchies for the lattice of �gure 10 are shown in �gure 11(a). Each lattice
label x is modeled as two roles xR and xW for read and write at label x respectively. The
relationship among the four read roles and the four write roles is respectively shown on the
left and right hand sides of Figure 11(a). The duality between the left and right lattices is
obvious from the diagrams.

To complete the construction we need to enforce appropriate constraints to re
ect the
labels on subjects in LBAC. Each user in LBAC has a unique security clearance. This is
enforced by requiring that each user in RBAC is assigned to exactly one role xR determined
by the user's clearance x. Each user is also assigned to all the maximal write roles. In this
case there is one maximal write role LW. An LBAC user can login at any label dominated by
the user's clearance. This requirement is captured in RBAC by requiring that each session
has exactly two matching roles yR and yW. The condition that x � y, that is the user's

31

HR

LR

M1R M2R M1W M2W

HW

LW

(a) Liberal ?-Property

HR

LR

M1R M2R HW LW M2WM1W

(b) Strict ?-Property

Figure 11: Role Hierarchies for the Lattice of Figure 10

32

clearance dominates the label of any login session established by the user, is not explicitly
required because it is directly imposed by the RBAC model anyway.

LBAC is enforced in terms of read and write operations. In RBAC this means our
permissions are read and writes on individual objects written as (o,r) and (o,w) respectively.
An LBAC object has a single sensitivity label associated with it. This is expressed in
RBAC by requiring that each pair of permissions (o,r) and (o,w) be assigned to exactly one
matching pair of xR and xW roles respectively. By assigning permissions (o,r) and (o,w) to
roles xR and xW respectively, we are implicitly setting the sensitivity label of object o to
x.

The above construction is formalized below.

Example 1 (Liberal ?-Property)

� R = fHR, M1R, M2R, LR, HW, M1W, M2W, LWg

� RH as shown in �gure 11(a)

� P = f(o,r), (o,w) j o is an object in the systemg

� Constraint on UA: Each user is assigned to exactly one role xR and to all maximal
write roles (in this case being the single role LW)

� Constraint on sessions: Each session has exactly two roles yR and yW

� Constraints on PA:

{ (o,r) is assigned to xR i� (o,w) is assigned to xW

{ (o,r) is assigned to exactly one role xR 2

The set of permissions P remains the same in all our examples so we will omit its explicit
de�nition in subsequent examples.

Variations in LBAC can be accommodated by modifying this basic construction in
di�erent ways. In particular, the strict ?-property retains the hierarchy on read roles but
treats write roles as incomparable to each other as shown in �gure 11(b).

Example 2 (Strict ?-Property) Identical to example 1 except

� RH is as shown in �gure 11(b)

� each user is assigned in UA to all roles of form yW (since all of these are now maximal
roles) 2

Now the permission (o,w) is no longer inherited by other roles as is the case in example 1.
Extensions of this construction to lattices with trusted write range are given in [San96].

33

HS

LS

LI

HI

(a) Two Independent Lattices

HS-HI LS-LI

HS-LI

LS-HI

(b) One Composite Lattice

Figure 12: Con�dentiality and Integrity Lattices

4.3 Composite Con�dentiality and Integrity Roles

LBAC was �rst formulated for con�dentiality purposes. It was subsequently observed that
if high integrity is at the top of the lattice and low integrity at the bottom then information

ow should be downward rather than upward (as in con�dentiality lattices). In [San93] it
is argued that it is simpler to �x the direction of information
ow and put high integrity
at the bottom and low integrity at the top in integrity lattices. Because the con�dentiality
models were developed earlier we might as well stay with lattices in which information
ow
is always upwards.

Figure 12(a) shows two independent lattices. The one on the left has HS (high secrecy)
on the top and LS (low secrecy) on the bottom. The one on the right has LI (low integrity) on
the top and HI (high integrity) on the bottom. In both lattices information
ow is upward.
The two lattices can be combined into the single composite lattice shown in �gure 12(b).8

One complication in combining con�dentiality and integrity lattices (or multiple lattices
in general) is that these lattices may be using di�erent versions of the ?-property. We
have discussed earlier that the strict ?-property is often used in con�dentiality lattices due

8It is always possible to mathematically combine multiple lattices into a single lattice.

34

HSR-HIR LSR-LIR

HSR-LIR

LSR-HIR

LSW-HIW

HSW-HIW LSW-LIW

HSW-LIW

(a) Liberal Con�dentiality and Liberal Integrity

HSR-HIR LSR-LIR

HSR-LIR

LSR-HIR

LSW-HIW

LSW-LIW

HSW-HIW

HSW-LIW

(b) Strict Con�dentiality and Liberal Integrity

HSR-HIR LSR-LIR

HSR-LIR

LSR-HIR

HSW-HIW LSW-HIW HSW-LIWLSW-LIW

(c) Strict Con�dentiality and Strict Integrity

Figure 13: Composite Con�dentiality and Integrity Roles

35

to integrity considerations. In integrity lattices there is no similar need to use the strict
?-property, and one would expect to see the liberal ?-property instead.

Consider the composite lattice of �gure 12(b).9 The RBAC realization of three combi-
nations of liberal or strict ?-properties are shown in �gure 13.10 Since the simple security
property does not change we have a similar role hierarchy for the read roles shown on the
left hand side of the three role hierarchies of �gures 13(a), (b) and (c). In each case the
hierarchy for the write roles needs to be adjusted as shown on the right hand side of each
of these �gures. The constructions are formally described below.

Example 3 (Liberal Con�dentiality and Liberal Integrity ?-Property)

� R = fHSR-LIR, HSR-HIR, LSR-LIR, LSR-HIR, HSW-LIW, HSW-HIW, LSW-LIW,
LSW-HIWg

� RH as shown in �gure 13(a)

� Constraint on UA: Each user is assigned to exactly one role xSR-yIR and all maximal
write roles.

� Constraint on sessions: Each session has exactly two roles uSR-vIR and uSW-vIW

� Constraints on PA:

{ (o,r) is assigned to xSR-yIR i� (o,w) is assigned to xSW-yIW

{ (o,r) is assigned to exactly one role xSR-yIR 2

Example 4 (Strict Con�dentiality and Liberal Integrity ?-Property) Identical to example 3
except that RH is as shown in �gure 13(b). 2

Example 5 (Strict Con�dentiality and Strict Integrity ?-Property) Identical to example 3
except that RH is as shown in �gure 13(c). 2

The constructions indicate how a single pair of roles can accommodate lattices with
di�erent variations of the ?-property. The construction can clearly be generalized to more
than two lattices.

4.4 Discussion

In this section we have shown how di�erent variations of lattice based access controls
(LBAC) can be simulated in role-based access control (RBAC). RBAC is itself policy neu-
tral but can be easily con�gured to specify a variety of policies as we have shown. The main
components of RBAC that need to be adjusted for di�erent LBAC variations are the role
hierarchy and constraints. This attests to the
exibility and power of RBAC.

9Similar constructions for the distinct lattices of �gure 12(a) are given in [San96].
10The fourth combination of liberal con�dentiality and strict integrity could be easily constructed but is

rather unlikely to be used in practice so is omitted.

36

A practical consequence of our results is that it might be better to develop systems that
support general RBAC and specialize these to LBAC. RBAC has much broader applicability
than LBAC, especially in the commercial sector. LBAC can be realized as a particular
instance of RBAC. This approach provides the added bene�t of greater
exibility for LBAC,
for which we have seen there are a number of variations of practical interest. In LBAC
systems these variations so far require the rules to be adjusted in the implementation.
RBAC provides for adjustment by con�guration of role hierarchies and constraints instead.

5 THREE-TIER ARCHITECTURE

In this section we present a conceptual framework, or reference architecture, for speci-
fying and enforcing RBAC. Our framework has three tiers in loose analogy to the well-
known ANSI/SPARC architecture for database systems [Te78], illustrated in �gure 14. Al-
though we take our inspiration from the database domain, we emphasize that our proposed
RBAC architecture is germane to applications and systems in general and is not limited to
databases per se.

Our reference architecture is motivated by two main considerations. Firstly, a number
of RBAC features have been incorporated in commercial products, and more such products
can be expected to appear in future. Vendors tend to integrate RBAC facilities in products
in di�erent ways, because of the economics of integrating such features into existing product
lines. Over time the emergence of standards may impose some order in this arena, but the
near term is likely to display a divergence of approaches. Even as standards emerge, we can
expect a diversity of support for RBAC due to the longevity of legacy systems.

Secondly, in large organizations there will be a large number of roles and complex
relationships between the roles and permissions authorized by them. In most contexts
it would be appropriate to take a simpli�ed view appropriate for the task at hand. For
example, in some situations all members of a particular department can be treated as
belonging to a single role; whereas in other situations more re�ned roles such as managers,
technical sta� and administrative sta� need to be distinguished.

The central tier of our architecture resides in a single community view of RBAC as
it applies to the entire organization in question. This community view will typically be
large and complex re
ecting the reality of modern organizations. The specialized context-
speci�c views of RBAC tailored to particular applications and situations are accommodated
in multiple user views that reside above the central tier. The views of RBAC embodied
in di�erent products are embodied in multiple implementation views residing below the
implementation tier. Figure 15 illustrates these three tiers. The central tier serves as the
focal point for mapping the external user views to the internal implementation views.

5.1 The Three Tiers

The ANSI/SPARC report [Te78] described a three-tier architecture for a database, consist-
ing of:

1. the external or user view which is concerned with the way data is viewed by end users,

37

2. the conceptual or community view which amalgamates diverse external views into a
consistent and uni�ed composite, and

3. the internal or implementation view which is concerned with the way that data is
actually stored.

This database architecture is shown in �gure 14.

Note that there are multiple external views, but only a single conceptual and a single
internal view. This three-tier approach to database systems has stood the test of time, and
is remarkably independent of the particular data model being used.

We believe a similar approach is suitable for developing a common framework or refer-
ence architecture for RBAC. RBAC is concerned with the meaning and control of access
control data (i.e., data used to control access to the actual data of the organization). In
other words we are concerned with a special purpose database system. It is therefore sen-
sible to adapt the approach used for general-purpose database systems. However, there is
one signi�cant di�erence. In database systems, it is intended that the implementation will
eventually be on a particular database management platform. Consequently, the internal or
implementation view is closely tied to the particular platform that is selected. With RBAC
we do not have the luxury of assuming a homogeneous implementation environment. In-
stead we must confront the reality of heterogeneous implementations up front. This leads us
to modify the three-tier ANSI/SPARC architecture by introducing multiple internal views,
corresponding to di�erent platforms on which the implementation is done. This RBAC
reference architecture is shown in �gure 15.

Our three-tiered approach to RBAC therefore consists of multiple external views, a
single conceptual view, and multiple implementation views.

Next, let us consider the appropriate model for each of these tiers. We again turn to
the ANSI/SPARC architecture for inspiration. There is a conspicuous di�erence between
the models used at the implementation and conceptual tiers. We expect a similar di�erence
in our RBAC reference architecture. Why is this so? We expect the model used at the
conceptual level to have richer constructs and primitives, because it is intended to express
a composite system-wide view of RBAC. Practical considerations will inevitably dictate
that not all these features can be directly supported in an implementation. Hence the
implementation models will be simpler and less user-friendly. Moreover, we expect a range
of sophistication from rather primitive mechanisms (say on a vanilla UNIX platform) at
one end to very elaborate ones (say on an object-oriented database management system) at
the other. Note that this viewpoint lets us accommodate legacy systems co-existing with
newer ones. It should also be clear that the e�ort required to translate a conceptual view
will be less or greater depending upon the sophistication of the implementation platform
being targeted. In some cases, a translation may not even be feasible (or practical) without
enhancement of the target platform.

The di�erence between the conceptual and external tiers is less marked. Whether or
not there should be any di�erence is open to debate. For relational databases, both tiers
are often identical and directly based on the relational data model. However, sometimes
a richer model such as the entity-relationship model is used for the external view while a
relational model is used at the conceptual view. We anticipate a similar situation in the

38

... ...

Internal or Implementation View

Conceptual or Community View

External or User Views

Figure 14: ANSI/SPARC Database Architecture

... ...

... ...

Conceptual or Community View

External or User Views

Internal or Implementation Views

Figure 15: A Three Tier Architecture for RBAC

39

... ... Aggregation

RefinementConceptual or Community View

External or User Views

Figure 16: Harmonizing the Top Two Tiers

RBAC reference architecture. Based on the historical experience with the ANSI/SPARC
architecture, it might well happen that initially the same RBAC model is used at both tiers,
but over time richer models are developed for the external view.

5.2 The Central Tier

The central tier of our reference architecture consists of a single community view of RBAC
applicable to the entire information system and its myriad applications. This community
view is the essential conceptual vehicle for e�ective deployment of enterprise-wide RBAC.
The RBAC96 family of models provides us a
exible and general framework for this tier.

5.3 Harmonizing the Top Two Tiers

Let us now consider the relationship between the top two tiers of the reference architecture,
reproduced in �gure 16. Each external view gives one perspective on the common commu-
nity view, relevant to the particular context at hand. The relationship between the the top
two tiers is one of aggregation and re�nement as indicated in the �gure.

Aggregation is a process by which several distinct roles are combined into a single role,
because the distinction is not relevant in the given context. For example, the community
view might have distinct roles for, say, Undergraduate Students, Master's Students and Doc-
toral Students. In an application where are all students are treated alike, these roles could
be collapsed (i.e., aggregated) into a single Student role. In other applications, which confer
di�erent privileges to the various student roles, this distinction is signi�cant. Re�nement is
simply the opposite operation to aggregation.

Di�erent external views will aggregate di�erent collections of roles from the community
view. Some external views may aggregate the student roles into a single one. Others may
keep the distinction between student roles but aggregate distinct faculty roles into one.

40

Still others may aggregate both or none of the student and faculty roles. Our expectation
is that a relatively small portion of the overall role set from the community view will be
needed more or less intact in a particular external view. Most of the roles will, however, be
aggregated. In other words each external view will see only a small part of the roles set in
all its detail.

So long as entire roles are being aggregated or re�ned, the mapping between the top two
tiers is relatively simple. There may be situations where the role relevant to the external
view does not come about so cleanly by aggregation. For example, suppose the community
view has roles A and B, whereas the external view requires a role which has some (but not
all) members of A and some (but not all) members of B. We identify below some techniques
for accommodating such an external view.

� One could modify the community view to create a new role C and explicitly assign
those members of A and B who should belong to this role. This treats A, B and C

as unrelated roles.

� One could modify the community view to partition A into A1 and A2 (with A1\A2 =
;), and B into B1 and B2 (with B1 \B2 = ;) so that the aggregate role C = A1 [B1

can be de�ned in the desired external view. This would require external views which
use A to now treat A as an aggregate of A1 and A2, instead of being a role form the
community view. Similarly, for external views which use role B.

� We could allow aggregation which can select the appropriate subsets of A and B, based
on some condition for identifying members who should belong to the aggregated role
C. This will complicate the aggregation operation and might dilute the central role
of the conceptual view.

This list is not intended to be exhaustive. The point is that various alternatives are avail-
able as the community and external views adapt to the ever changing demands of the
applications. One needs a systematic methodology for dealing with such changes.

5.4 Harmonizing the Bottom Two Tiers

Now consider harmonization of the bottom two tiers, shown in �gure 17. Each of the
implementation views will aggregate roles from the community view. The aggregation done
here will constrain which external views can be hosted on which implementation views.
An implementation view that aggregates distinct student roles into a single role obviously
cannot support an external view that requires this distinction to be maintained. In an ideal
situation the implementation view may do no aggregation, in which case it could support
all the external views. In practice, however, one would expect considerable aggregation
to occur; if only because of legacy systems which have directly built in the external view
without consideration of the common community view. Performance considerations may
also require such aggregation to occur. Note that in both �gures 16 and 17 aggregation is
in the direction away from the central community view, and re�nement is directed towards
this view.

41

...

Refinement

Aggregation

Implicit

Mechanisms

Mechanisms

Explicit

Conceptual or Community View

Internal or Implementation Views

Conceptual or Community View

Internal or Implementation Views

Conceptual or Community View

Figure 17: Harmonizing the Bottom Two Tiers

The second mapping shown in �gure 17 is between implicit and explicit mechanisms.
This mapping recognizes that the implementation platform may not support all the features
of RBAC in the community view. For example, role hierarchies may not be supported.
Suppose there are two roles Faculty and Sta� such that every member of the Faculty role is
automatically a member of the Sta� role (but not vice versa). Thus a new faculty member
need only be enrolled in the Faculty role, and will automatically be enrolled in the Sta�
role. Support for such role inheritance in the community view is highly desirable, but such
support will not be available on every implementation platform. To continue our example,
at the community view it su�ces to enroll a new faculty member into the Faculty role.
However, in the implementation view the new faculty member will need to be enrolled in
both Faculty and Sta� roles. Similarly, a departing faculty member needs to be removed
from the Faculty role in the community view; but in the implementation view requires
removal from both Faculty and Sta� roles.

5.5 Discussion

In this section we have described a three-tiered reference architecture for role-based access
control (RBAC), and have identi�ed some of the issues that need to be addressed in making
this framework a reality. We note that the appeal of RBAC is in the simpli�cation of the
management of authorizations. For example, maintaining cognizance of the permission set
of an individual and the consequence of assigning particular role sets to a user is vital. It is
also important for a security administrator to know exactly what authorization is implied
by a role. This is particularly so when roles can be composed of other roles. Moreover, as
new roles and transactions are introduced the security administrator needs tools to assist
in their integration into the existing system. Future work in RBAC should identify useful
tools for security administration and point the way toward designing these. We feel the
central role of the community view in our reference architecture will greatly assist in this

42

objective.

6 CONCLUSION

This article has described the motivations, results and open issues in recent RBAC research
focusing on the RBAC96 family of models, the ARBAC97 administrative models, the
ex-
ibility and power of RBAC in simulating variations of classical lattice-based control, and
a three tier conceptual architecture for enforcing RBAC in large heterogeneous environ-
ments. Although the basic ideas of role-based access control are very simple, we hope to
have convinced the reader that there are a number of interesting technical challenges and
much further research to be done.

In conclusion we would like to note two major areas that need considerable work to fully
realize the potential of RBAC. The �rst area is that of role engineering, that is the discipline
and methodology for con�guring RBAC in an organization, and most importantly designing
the role hierarchy. The second area is role transition meaning the means for moving towards
RBAC in coexistence with legacy modes of access control.

Acknowledgment

This work was funded in part by contracts 50-DKNA-4-00122 and 50-DKNB-5-00188 from
the National Institute of Standards and Technology through SETA Corporation, and by
grant CCR-9503560 from the National Science Foundation through George Mason Univer-
sity. The author acknowledges the assistance of the following people in conducting this
research: Venkata Bhamidipati, Edward Coyne, Hal Feinstein, Srinivas Ganta and Charles
Youman. The author also acknowledge the following people for useful discussions on these
topics: John Barkley, David Ferraiolo, Serban Gavrila and Roshan Thomas.

References

[Bal90] Robert W. Baldwin. Naming and grouping privileges to simplify security man-
agement in large database. In Proceedings of IEEE Symposium on Research in

Security and Privacy, pages 61{70, Oakland, CA, April 1990.

[Bel87] D.E. Bell. Secure computer systems: A network interpretation. In Proceedings

of 3rd Annual Computer Security Application Conference, pages 32{39, 1987.

[Com96] Common Criteria Editorial Board. Common Criteria for Information Technol-
ogy Security, January 1996. Version 1.0.

[FGL93] David F. Ferraiolo, Dennis M. Gilbert, and Nickilyn Lynch. An examination
of federal and commercial access control policy needs. In Proceedings of NIST-

NCSC National Computer Security Conference, pages 107{116, Baltimore, MD,
September 20-23 1993.

43

[FK92] David Ferraiolo and Richard Kuhn. Role-based access controls. In Proceedings

of 15th NIST-NCSC National Computer Security Conference, pages 554{563,
Baltimore, MD, October 13-16 1992.

[Gui95] Luigi Guiri. A new model for role-based access control. In Proceedings of

11th Annual Computer Security Application Conference, pages 249{255, New
Orleans, LA, December 11-15 1995.

[HDT95] M.-Y. Hu, S.A. Demurjian, and T.C. Ting. User-role based security in
the ADAM object-oriented design and analyses environment. In J. Biskup,
M. Morgernstern, and C. Landwehr, editors, Database Security VIII: Status

and Prospects. North-Holland, 1995.

[ISO] ISO/IEC 10040. Information Technology { Open Systems Interconnection {
Systems Management Overview.

[Jon93] Dirk Jonscher. Extending access controls with duties|realized by active mech-
anisms. In B. Thuraisingham and C.E. Landwehr, editors, Database Security

VI: Status and Prospects, pages 91{111. North-Holland, 1993.

[Lee88] T.M.P. Lee. Using mandatory integrity to enforce \commercial" security. In
Proceedings of IEEE Symposium on Security and Privacy, pages 140{146, Oak-
land, CA, May 1988.

[MD94] Imtiaz Mohammed and David M. Dilts. Design for dynamic user-role-based
security. Computers & Security, 13(8):661{671, 1994.

[MS91] Jonathan D. Mo�ett and Morris S. Sloman. Delegation of authority. In I. Kr-
ishnan and W. Zimmer, editors, Integrated Network Management II, pages 595{
606. Elsevier Science Publishers B.V. (North-Holland), 1991.

[NO95] Matunda Nyanchama and Sylvia Osborn. Access rights administration in role-
based security systems. In J. Biskup, M. Morgernstern, and C. Landwehr,
editors, Database Security VIII: Status and Prospects. North-Holland, 1995.

[Not97] L. Notargiacomo. Role-based access control in ORACLE7 and Trusted ORA-
CLE7. In Proceedings of the 1st ACM Workshop on Role-Based Access Control.
ACM, 1997.

[San88] Ravi S. Sandhu. Transaction control expressions for separation of duties. In
Proceedings of 4th Annual Computer Security Application Conference, pages
282{286, Orlando, FL, December 1988.

[San91] Ravi S. Sandhu. Separation of duties in computerized information systems.
In S. Jajodia and C.E. Landwehr, editors, Database Security IV: Status and

Prospects, pages 179{189. North-Holland, 1991.

[San92] Ravi S. Sandhu. The typed access matrix model. In Proceedings of IEEE
Symposium on Research in Security and Privacy, pages 122{136, Oakland, CA,
May 1992.

44

[San93] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9{
19, November 1993.

[San96] Ravi S. Sandhu. Role hierarchies and constraints for lattice-based access con-
trols. In Elisa Bertino, editor, Proc. Fourth European Symposium on Research

in Computer Security. Springer-Verlag, Rome, Italy, 1996. Published as Lecture
Notes in Computer Science, Computer Security{ESORICS96.

[SB97] Ravi Sandhu and Venkata Bhamidipati. Role-based administration of user-role
assignment: The URA97 model and its Oracle implementation. In T. Y. Lin
and Xiaolei Qian, editors, Database Security XI: Status and Prospects. North-
Holland, 1997.

[SBC+97] Ravi Sandhu, Venkata Bhamidipati, Edward Coyne, Srinivas Ganta, and
Charles Youman. The arbac97 model for role-based administration of roles:
Preliminary description and outline. In Proceedings of the 2nd ACM Workshop

on Role-Based Access Control. ACM, 1997.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-based access control models. IEEE Computer, 29(2):38{47, February 1996.

[Sch88] W.R. Schockley. Implementing the Clark/Wilson integrity policy using cur-
rent technology. In Proceedings of NIST-NCSC National Computer Security

Conference, pages 29{37, 1988.

[SF94] Ravi S. Sandhu and Hal L. Feinstein. A three tier architecture for role-based
access control. In Proceedings of 17th NIST-NCSC National Computer Security

Conference, pages 34{46, Baltimore, MD, October 11-14 1994.

[SS94] Ravi Sandhu and Pierangela Samarati. Access control: Principles and practice.
IEEE Communications, 32(9):40{48, 1994.

[Te78] D.C. Tsichritizis and A. Klug (editors). The ANSI/X3/SPARC DBMS frame-
work: Report of the study group on data base management system. Information

Systems, 3, 1978.

[Tho91] D.J. Thomsen. Role-based application design and enforcement. In S. Jajodia
and C.E. Landwehr, editors, Database Security IV: Status and Prospects, pages
151{168. North-Holland, 1991.

[TS94] Roshan Thomas and Ravi S. Sandhu. Conceptual foundations for a model of
task-based authorizations. In Proceedings of IEEE Computer Security Founda-

tions Workshop 7, pages 66{79, Franconia, NH, June 1994.

[TS97] Roshan Thomas and Ravi Sandhu. Task-based authorization controls (tbac):
Models for active and enterprise-oriented authorization management. In T. Y.
Lin and Xiaolei Qian, editors, Database Security XI: Status and Prospects.
North-Holland, 1997.

45

[vSvdM94] S. H. von Solms and Isak van der Merwe. The management of computer security
pro�les using a role-oriented approach. Computers & Security, 13(8):673{680,
1994.

46

