Role-Based Administration of User-Role Assignment;:
The URA97 Model and its Oracle Implementation

Ravi Sandhu and Venkata Bhamidipati

Laboratory for Information Security Technology, ISSE Department, Mail Stop 4A4
George Mason University, Fairfax, VA 22033, sandhu@isse.gmu.edu

Abstract In role-based access control (RBAC) permissions are associated with roles, and
users are made members of appropriate roles thereby acquiring the roles’ permissions. The
principal motivation behind RBAC is to simplify administration. An appealing possibility is
to use RBAC itself to manage RBAC, to further provide administrative convenience. In this
paper we investigate one aspect of RBAC administration concerning assignment of users
to roles. We define a role-based administrative model, called URA97 (user-role assignment
'97), for this purpose and describe its implementation in the Oracle database management
system. Although our model is quite different from that built into Oracle, we demonstrate
how to use Oracle stored procedures to implement it.

1 INTRODUCTION

Role-based access control (RBAC) has recently received considerable attention as a promis-
ing alternative to traditional discretionary and mandatory access controls (see, for exam-
ple, [FK92, FCK95, Gui95, GI96, MD94, HDT95, NO95, SCFY96, vSvdM94, YCS97]). In
RBAC permissions are associated with roles, and users are made members of appropri-
ate roles thereby acquiring the roles’ permissions. This greatly simplifies management of
permissions. Roles are created for the various job functions in an organization and users
are assigned roles based on their responsibilities and qualifications. Users can be easily
reassigned from one role to another. Roles can be granted new permissions as new applica-
tions and systems are incorporated, and permissions can be revoked from roles as needed.
Role-role relationships can be established to lay out broad policy objectives.

In large enterprise-wide systems the number of roles can be in the hundreds or thousands,
and users can be in the tens or hundreds of thousands, maybe even millions. Managing
these roles and users, and their interrelationships is a formidable task that often is highly
centralized and delegated to a small team of security administrators. Because the main
advantage of RBAC is to facilitate administration of permissions, it is natural to ask how
RBAC itself can be used to manage RBAC. We believe the use of RBAC for managing RBAC
will be an important factor in the long-term success of RBAC. Decentralizing the details
of RBAC administration without loosing central control over broad policy is a challenging
goal for system designers and architects.

As we will see there are many components to RBAC. RBAC administration is therefore
multi-faceted. In particular we can separate the issues of assigning users to roles, assigning
permissions to roles, and assigning roles to roles to define a role hierarchy. These activities
are all required to bring users and permissions together. However, in many cases, they are
best done by different administrators (or administrative roles). Assigning permissions to
roles is typically the province of application administrators. Thus a banking application can
be implemented so credit and debit operations are assigned to a teller role, whereas approval
of a loan is assigned to a managerial role. Assignment of actual individuals to the teller and
managerial roles is a personnel management function. Assigning roles to roles has aspects
of user-role assignment and role-permission assignment. Role-role relationships establish
broad policy. Control of these relationships would typically be relatively centralized in the
hands of a few security administrators.

In this paper we have focussed our attention exclusively on user-role assignment. We
recognize that a comprehensive administrative model for RBAC must account for all three
issues mentioned above, among others. However, user-role assignment is a particularly
critical administrative activity. We feel it is the right one to focus on in taking our first
step towards what will eventually evolve into a comprehensive administrative model.

In large systems user-role assignment is likely to be the first administrative function
that is decentralized and delegated to the hands of users rather than security or system
administrators. Assigning people to tasks is a normal managerial function. Assigning users
to roles should be a natural part of assigning users to tasks. Empowering managers to do
this routinely is one way of making security an enabling user-friendly technology rather
than an intrusive and cumbersome nuisance as it all too often turns out to be. A manager
who can assign a user to perform certain tasks should not have to ask someone else to enroll
this user in appropriate roles. This should happen transparently and conveniently.

A user-role assignment model can also be used for managing user-group assignment
and therefore has applicability beyond RBAC. The difference between roles and groups
was hotly debated at the First ACM Workshop on RBAC [San97b]. Workshop attendees
arrived at the consensus that a group is a named collection of users (and possibly other
groups). Groups serve as a convenient shorthand notation for collections of users and that
is the main motivation for introducing them. Roles are similar to groups in that they can
serve as a shorthand for collections of users, but they go beyond groups in also serving as
a shorthand for a collection of permissions. Assigning users to roles or users to groups are
therefore essentially the same function. Assigning permissions to roles and permissions to
groups, on the other hand, can have rather different characteristics. We need not get into
this latter issue here since our focus is on user-role, or equivalently user-group, assignment.

In this paper we propose a model for the assignment of users to roles by means of
administrative roles and permissions. For ease of reference we call this model as URA97
(user-role assignment 1997). URA97 imposes strict limits on individual administrators
regarding which users can be assigned to which roles. We then describe an implementation of
URAY7 in the Oracle database management system [KL95, Feu95]. Oracle’s administrative
model for user-role assignment is very different from URA97. Nevertheless, we show how
to use Oracle’s stored procedures to implement URA97.

The principal contribution of URA97 is to provide a concrete example of what is meant

by role-based administration of user-role assignment. Another central contribution of this
paper is to demonstrate that an existing popular product, namely Oracle, provides the
necessary base mechanisms and extensibility to program the behavior of URA97. URA97 is
defined in context of the family of RBAC96 family of models due to Sandhu et al [SCFY96].
However, it applies to almost any RBAC model, including [FCK95, Gui95, GI96, HDT95,
NO95], because user-role assignment is a basic administrative feature which will be required
in any RBAC model.

The rest of this paper is organized as follows. We begin by reviewing the RBAC96 family
of models in section 2. In section 3 we define the administrative model called URA97 for
user-role assignment which itself is role-based. This is followed by a quick review of relevant
RBAC features of Oracle in section 4. Our implementation of URA97 in Oracle is described
in section 5. Section 6 concludes the paper.

2 THE RBAC96 MODELS

A general family of RBAC models called RBAC96 was defined by Sandhu et al [SCFY96].
Figure 1 illustrates the most general model in this family. In figure 1 a single headed arrow
indicates a one to one relationship and a double headed arrow indicates a many to many
relationship. For simplicity we overload the term RBAC96 to refer to the family of models
as well as its most general member.

The top half of the figure shows roles and permissions in the system that regulate ac-
cess to data and resources. The bottom half shows administrative roles and administrative
permissions. RBACY96 is based on five sets of entities called users (U), roles (R), and per-
missions (P), and their administrative counterparts called administrative roles (AR) and
administrative permissions (AP). It is required that administrative roles and administra-
tive permissions be respectively disjoint from the regular (i.e., non-administrative) roles
and permissions. Moreover regular permissions can only be assigned to regular roles and
administrative permissions can only be assigned to administrative roles.

Intuitively, a user is a human being or an autonomous agent, a role is a job function
or job title within the organization with some associated semantics regarding the authority
and responsibility conferred on a member of the role, and a permission is an approval of a
particular mode of access to one or more objects in the system. Administrative permissions
control operations which modify the components of RBAC, such as adding new users and
roles and modifying the user assignment and permission assignment relations. Regular
permissions on the other hand control operations on the data and resources and do not
permit administrative operations. We loosely use the term role to include both regular and
administrative roles, making this distinction precise whenever appropriate. Similarly for
the term permission.

The user assignment (UA) and permission assignment (PA and AP A) relations of Fig-
ure 1 are many-to-many, as indicated by double-headed arrow. A user can be a member of
many roles, and a role can have many users. Similarly, a role can have many permissions,
and the same permission can be assigned to many roles. There is a partially ordered role
hierarchy RH, also written as >, where x > y signifies that role x inherits the permissions

RH

ROLE PA
HIERARCHY

PERMISSION
ASSIGNMENT

UA

PERMISS-
IONS

USER
ASSIGNMENT

A

77777 CONSTRAINTS

%

AP
UA AR
ADMINIS- ADMIN.
—_—==
USER TRATIVE PERMISS-
ASSIGNMENT ROLES APA IONS

ARH
ADMINISTRATIVE
ADMINISTRATIVE PERMISSION
ROLE ASSIGNMENT
HIERARCHY

Figure 1: The RBAC96 Model

assigned to role y. Equivalently z > y signifies a user who is a member of z is also implicitly
a member of y. If x > y we say z is senior to y or equivalently y is junior to z. Inheritance
along the role hierarchy is transitive and multiple inheritance is allowed in partial orders.
There is similarly a partially ordered administrative role hierarchy ARH.

Each session in figure 1 relates one user to possibly many roles. Intuitively, a user
establishes a session and activates some subset of roles that he or she is a member of (directly
or indirectly by means of the role hierarchy). The double-headed arrows from a session to
R and AR indicate that multiple roles and administrative roles can be simultaneously
activated. The permissions available to the user are the union of permissions from all
roles activated in that session. Each session is associated with a single user, as indicated
by the single-headed arrow from the session to U. This association remains constant for
the life of a session. A user may have multiple sessions open at the same time, each in a
different window on the workstation screen for instance. Each session may have a different
combination of active roles. The concept of a session equates to the traditional notion of a
subject in access control. A subject (or session) is a unit of access control, and a user may
have multiple subjects (or sessions) with different permissions active at the same time.

Finally, figure 1 shows a collection of constraints. Constraints can apply to any of
the preceding components. An example of constraints is mutually disjoint roles, such as

purchasing manager and accounts payable manager, where the same user is not permitted
to be a member of both roles. Another example is a limit on the maximum number of users
that can be members of some role.

The following definition formalizes the above discussion.

Definition 1 The RBAC96 model has the following components:

U is a set of users,
R and AR are disjoint sets of roles and administrative roles respectively,
P and AP are disjoint sets of permissions and administrative permissions,

UA CU x (RUAR), is a many-to-many user to role, and administrative role, assign-
ment relation,

PAC PxRand APA C AP x AR, are respectively many-to-many permission to role
assignment and administrative permission to administrative role assignment relations,

RH C Rx R and ARH C AR x AR, are respectively partially ordered role and
administrative role hierarchies (written as > in infix notation),

S is a set of sessions,

user : S — U, is a function mapping each session s; to the single user user(s;) and is
constant for the session’s lifetime,

roles : S — 2FYAR ig 5 function mapping each session s; to a set! of roles and
administrative roles roles(s;) C {r | (3’ > r)[(user(s;),r’) € UA]} (which can change
within a single session) so that session s; has the permissions U,cpqres(s;) 1P | (3" <
r)[(p,r") € PAU APA]}, and

there is a collection of constraints stipulating which values of the various components
enumerated above are allowed or forbidden. O

Motivation and discussion about various design decisions made in developing this family
of models is given in [SCFY96, San97a]. It is worth emphasizing that RBAC96 distinguishes
roles and permissions from administrative roles and permissions respectively, where the lat-
ter are used to manage the former. How are administrative permissions and roles managed
in turn? One could consider a second level of administrative roles and permissions to manage
the first level ones and so on. We feel such a progression of administration is unnecessary.
Administration of administrative roles and permissions is under control of the chief security
officer or delegated in part to administrative roles.

!Recall that 2% is the set of all subsets of X, also called the power set of X.

3 THE URA97 ADMINISTRATIVE MODEL

RBAC has many components as described in the previous section. Administration of RBAC
involves control over each of these components including creation and deletion of roles,
creation and deletion of permissions, assignment of permissions to roles and their removal,
creation and deletion of users, assignment of users to roles and their removal, definition and
maintenance of the role hierarchy, definition and maintenance of constraints and all of these
in turn for administrative roles and permissions. A comprehensive administrative model
would be quite complex and difficult to develop in a single step.

Fortunately administration of RBAC can be partitioned into several areas for which
administrative models can be separately and independently developed to be later integrated.
In particular we can separate the issues of assigning users to roles, assigning permissions
to roles and defining the role hierarchy. In many cases, these activities would be best
done by different administrators. Assigning permissions to roles is typically the province
of application administrators. Thus a banking application can be implemented so credit
and debit operations are assigned to a teller role, whereas approval of a loan is assigned
to a managerial role. Assignment of actual individuals to the teller and managerial roles
is a personnel management function. Design of the role hierarchy relates to design of the
organizational structure and is the function of a chief security officer under guidance of a
chief information officer.

In this paper our focus is exclusively on user-role assignment. As discussed in section 1
this is likely to the first and most widely decentralized administrative task in RBAC. In the
RBAC96 framework of figure 1 control of UA is vested in the administrative roles AR. For
simplicity we limit our scope to assignment of users to regular roles. Assignment of users
to administrative roles is centralized under the chief security officer. In general the chief
security officer has complete control over all aspects of RBAC96.

In the rest of this section we develop a model called URA97 in which RBAC is used
to manage user-role assignment. We define URA97 in two steps dealing with granting
a user membership in a role and revoking a user’s membership. URA97 is deliberately
designed to have a very narrow scope. For example creation of users and roles is outside
its scope. In spite of its simplicity URA97 is quite powerful and goes much beyond existing
administrative models for user-role assignment, such as the one implemented in Oracle. Tt
is also applicable beyond RBAC to user-group assignment.

3.1 URA97 Grant Model

In the simplest case user-role assignment can be completely centralized in a single chief se-
curity officer role. This is readily implemented in existing systems such as Oracle. However,
this simple approach does not scale to large systems. Clearly it is desirable to decentralize
user-role assignment to some degree.

In several systems, including Oracle, it is possible to designate a role, say, junior security
officer (JSO) whose members have administrative control over one or more regular roles,
say, A, B and C. Thus limited administrative authority is delegated to the JSO role. Un-
fortunately these systems typically allow the JSO role to have complete control over roles

A, B and C. A member of JSO can not only add users to A, B and C but also delete users
from these roles and add and delete permissions. Moreover, there is no control on which
users can be added to the A, B and C roles by JSO members. Finally, JSO members are
allowed to assign A, B and C as junior to any role in the existing hierarchy (so long as
this does not introduce a cycle). All this is consistent with classical discretionary thinking
whereby member of JSO are effectively designated as “owners” of the A, B and C roles,
and therefore are free to do whatever they want to these roles.

In URA97 our goal is to impose restrictions on which users can be added to a role
by whom, as well as to clearly separate the ability to add and remove users from other
operations on the role. The notion of a prerequisite condition is a key part of URA97.

Definition 2 A prerequisite condition is a boolean expression using the usual A and V
operators on terms of the form 2 and T where z is a regular role (i.e., x € R). A prerequisite
condition is evaluated for a user u by interpreting = to be true if (32’ > z)(u,z') € UA and
T to be true if (Va' > z)(u,z’) € UA. For a given set of roles R let CR denotes all possible
prerequisite conditions that can be formed using the roles in R. O

In the trivial case a prerequisite condition can be a tautology which is always true. The
simplest non-trivial case of a prerequisite condition is test for membership in a single role,
in which situation that single role is called a prerequisite role.

User-role assignment is authorized in URA97 by the following relation.

Definition 3 The URA97 model controls user-role assignment by means of the relation
can-assign C AR x CR x 2%, O

The meaning of can-assign(z,y, {a,b,c}) is that a member of the administrative role x (or
a member of an administrative role that is senior to z) can assign a user whose current
membership, or non-membership, in regular roles satisfies the prerequisite condition y to
be a member of regular roles a, b or c.?

To appreciate the motivation behind the can-assign relation consider the role hierarchy
of figure 2 and the administrative role hierarchy of figure 3. Figure 2 shows the regular
roles that exist in a engineering department. There is a junior-most role E to which all
employees in the organization belong. Within the engineering department there is a junior-
most role ED and senior-most role DIR. In between there are roles for two projects within
the department, project 1 on the left and project 2 on the right. Each project has a senior-
most project lead role (PL1 and PL2) and a junior-most engineer role (E1 and E2). In
between each project has two incomparable roles, production engineer (PE1 and PE2) and
quality engineer (QE1 and QE2).

Figure 2 suffices for our purpose but this structure can, of course, be extended to dozens
and even hundreds of projects within the engineering department. Moreover, each project
could have a different structure for its roles. The example can also be extended to multiple
departments with different structure and policies applied to each department.

2User-role assignment is subject to constraints, such as mutually exclusive roles or maximum cardinality,
that may be imposed. The assignment will succeed if and only if it is authorized by can-assign and it satisfies
all relevant constraints.

Director (DIR)

Project lead 1 (PL1) Project lead 2 (PL2)

Progucti on Qt_lal ity Production / Qudlity
Engineer 1 Engineer 1 Engineer 2 Engineer 2
(PED) (QE1) (PE2) \ (QE2)

Engineer 1 (E1) Engineer 2 (E2)

Project 1 Project 2
Engineering Department (ED)

Employee (E)

Figure 2: An Example Role Hierarchy
Senior Security Officer (SSO)
Department Security Officer (DSO)

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)

Figure 3: An Example Administrative Role Hierarchy

Figure 3 shows the administrative role hierarchy which co-exists with figure 2. The
senior-most role is the senior security officer (SSO). Our main interest is in the adminis-
trative roles junior to SSO. These consist of two project security officer roles (PSO1 and
PS0O2) and a department security officer (DSO) role with the relationships illustrated in
the figure.

The role structure shown in Figure 2 becomes a project oriented if the users are assigned
to roles in a single project. If the users are assigned to roles from multiple projects then the
structure is of matrix-form and If the users are assigned to same functional role in different
projects then the structure is of functional oriented.

3.1.1 Prerequisite Roles

For sake of illustration we define the can-assign relation shown in table 1(a). This example
has the simplest prerequisite condition of testing membership in a single role known as the
prerequisite role.

The PSO1 role has partial responsibility over project 1 roles. Let Alice be a member of
the PSO1 role and Bob a member of the ED role. Alice can assign Bob to any of the El,
PE1 and QE1 roles, but not to the PL1 role. Also if Charlie is not a member of the ED role,
then Alice cannot assign him to any project 1 role. Hence, Alice has authority to enroll
users in the E1, PE1 and QE1 roles provided these users are already members of ED. Note
that if Alice assigns Bob to PE1 he does not need to be explicitly assigned to E1, since E1
permissions will be inherited via the role hierarchy. The PSO2 role is similar to PSO1 but
with respect to project 2. The DSO role inherits the authority of PSO1 and PSO2 roles
but can further add users who are members of ED to the PL1 and PL2 roles. The SSO
role can add users who are in the E role to the ED role, as well as add users who are in the
ED role to the DIR role. This ensures that even the SSO must first enroll a user in the ED
role before that user is enrolled in a role senior to ED. This is a reasonable specification
for can-assign. There are, of course, lots of other equally reasonable specifications in this
context. This is a matter of policy decision and our model provides the necessary flexibility.

In general, one would expect that the role being assigned is senior to the role previously
required of the user. That is, if we have can-assign(a,b,C) then b is junior to all roles
¢ € C. We believe this will usually be the case, but we do not require it in the model. This
allows URA97 to be applicable to situations where there is no role hierarchy or where such
a constraint may not be appropriate.

The notation of table 1(a) has benefited from the administrative role hierarchy. Thus
for the DSO we have specified the role set as {PL1, PL2} and the other values are inherited
from PSO1 and PSO2. Similarly for the SSO. Nevertheless explicit enumeration of the role
set is unwieldy, particularly if we were to scale up to dozens or hundreds of projects in the
department. Moreover, explicit enumeration is not resilient with respect to changes in the
role hierarchy. Suppose a third project is introduced in the department, with roles E3, PE3,
QE3, PL3 and PSO3 analogous to corresponding roles for projects 1 and 2. We can add
the following row to table 1(a).

‘ Administrative Role | Prerequisite Role ‘ Role Set ‘

PSO1 ED {E1, PE1, QE1}
PSO2 ED {E2, PE2, QE2}
DSO ED {PL1, PL2}
SSO E {ED}

SSO ED {DIR}

(a) Subset Notation

‘ Administrative Role ‘ Prerequisite Role ‘ Role Range ‘

PSO1 ED [E1, PLI)
PSO2 ED [E2, PL2)
DSO ED (ED, DIR)
SSO E [ED, ED]
SSO ED (ED, DIR]

(b) Range Notation

Table 1: Example of can-assign with Prerequisite Roles

‘ Administrative Role ‘ Prerequisite Role ‘ Role Set ‘
\ PSO3 \ ED | {E3, PE3, QE3} |

This is a reasonable change to require when the new project and its roles are introduced
into the regular and administrative role hierarchies. However, we also need to modify the
row for DSO in table 1(b) to include PL3.

3.1.2 Range Notation

Consider instead the range notation illustrated in table 1(b). Table 1(b) shows the same
role sets as table 1(a) but defines these sets by identifying a range within the role hierarchy
of figure 1(a) by means of the familiar closed and open interval notation.

Definition 4 Role sets are specified in the URA97 model by the notation below

[,y = {reR|xz>rAr>y}
(z,y) = {reR|xz>rAr>y}
[,y) = {reR|xz>rAr>y}
(x,y) = {reR|xz>rAr>y}

a

This notation is resilient to modifications in the role hierarchy such as addition of a third
project which requires addition of the following row to table 1(b).

10

‘ Administrative Role ‘ Prerequisite Role ‘ Role Range ‘
\ PSO3 \ ED | [E3, PL3) |

No other change is required since the [ED, DIR) range specified for the DSO will automat-
ically pick up PL3.

The range notation is, of course, not resilient to all changes in the role hierarchy. Dele-
tion of one of the end points of a range can leave a dangling reference and an invalid range.
Standard techniques for ensuring referential integrity would need to be applied when mod-
ifying the range hierarchy. Changes to role-role relationships could also cause a range to
be drastically different from its original meaning. Nevertheless the range notation is much
more convenient than explicit enumeration. There is also no loss of generality in adopting
the range notation since every set of roles can be expressed as a union of disjoint ranges.

Strictly speaking the two specifications of table 1(a) and 1(b) are not precisely identical.
In table 1(a) the DSO role is explicitly authorized to enroll users in PL1 and PL2, and the
inherits the ability to enroll users in other project 1 and 2 roles from PSO1 and PSO2. On
the other hand, in table 1(b) the DSO role is explicitly authorized to enroll users in all
project 1 and 2 roles. As it stands the net effect is the same. However, if modifications
are made to the role hierarchy or to the PSO1 or PSO2 authorizations the effect can be
different. The DSO authorization in table 1(a) can be replaced by the following row to
make table 1(a) more nearly identical to table 1(b).

‘ Administrative Role ‘ Prerequisite Role ‘ Role Set ‘
\ DSO \ ED | {E1, PE1, QE1, PL1, E2, PE2, QE2, PL2} |

Now even if the PSO1 and PSO2 roles of table 1(a) are modified respectively to the role
sets {E1} and {E2}, the DSO role will still retain administrative authority over all project 1
and project 2 roles. Of course, explicit and implicit specifications will never behave exactly
identically under «ll circumstances. For instance, introduction of a new project 3 will
exhibit differences as discussed above. Conversely, the DSO authorization in table 1(b) can
be replaced by the following rows to make table 1(b) more nearly identical to table 1(a).

‘ Administrative Role ‘ Prerequisite Role ‘ Role Range ‘

DSO ED [PL1, PLI]
DSO ED [PL2, PL2]

There is an analogous situation with the SSO role in tables 1(a) and 1(b). Clearly, we must
anticipate the impact of future changes when we specify the can-assign relation.

3.1.3 Prerequisite Conditions

An example of can-assign which uses prerequisite conditions rather than prerequisite roles
is shown in table 2. The authorizations for PSO1 and PSO2 have been changed relative to
table 1.

Let us consider the PSO1 tuples (analysis for PSO2 is exactly similar). The first tuple
authorizes PSO1 to assign users with prerequisite role ED into E1. The second one autho-
rizes PSO1 to assign users with prerequisite condition ED A QE1 to PE1l. Similarly, the

11

‘ Administrative Role | Prerequisite Condition ‘ Role Range ‘

PSO1 ED [E1, E1]

PSO1 ED A QEL [PE1, PEI]
PSO1 ED A PE1 [QE1, QE1]
PSO1 PE1 A QE1 [PL1, PL1]
PSO2 ED [E2, E2]

PSO2 ED A QE2 [PE2, PE2]
PSO2 ED A PE2 [QE2, QE2]
PSO2 PE2 A QE2 [PL2, PL2]
DSO ED (ED, DIR)
SSO E [ED, ED]

SSO ED (ED, DIR]

Table 2: Example of can-assign with Prerequisite Conditions

third tuple authorizes PSO1 to assign users with prerequisite condition ED A PEI to QEL.
Taken together the second and third tuples authorize PSO1 to put a user who is a member
of ED into one but not both of PE1 and QE1. This illustrates how mutually exclusive roles
can be enforced by URA97. PE1 and QE1 are mutually exclusive with respect to the power
of PSO1. However, for the DSO and SSO these are not mutually exclusive. Hence, the
notion of mutual exclusion is a relative one in URA97. The fourth tuple authorizes PSO1
to put a user who is a member of both PE1 and QE1 into PL1. Of course, a user could have

become a member of both PE1 and QE1 only by actions of a more powerful administrator
than PSOL.

In RBAC users are made members of roles because of their job function or task assign-
ment in the interest of the organization. Prerequisite conditions allow us to specify the
requirements that need to be met before granting a role to a user. Generally an employee
who is an engineer is not given access to HR or Pay roll information, he has access to only
his personal information. A person belonging to Pay Roll department has access to infor-
mation of all the employees or employees of the division to which he has been designated.
In real life many large organizations have these kind of specifications and policies in place.
Prerequisite conditions provide capabilities to enforce these policies.

3.2 URA97 Revoke Model

We now turn to consideration of the URA97 revoke model. The objective is to define a
revoke model that is consistent with the philosophy of RBAC. This causes us to depart
from classical discretionary approaches to revocation.

In the classical discretionary approach to revocation there are at least two issues that
introduce complexity and subtlety [GW76, Fag78]. Suppose Alice grants Bob some permis-
sion P. This is done at Alice’s discretion because Alice is either the owner of the object to
which P pertains or has been granted administrative authority on P by the actual owner.

12

Alice can later revoke P from Bob. Now suppose Bob has received permission P from Alice
and from Charlie. If Alice revokes her grant of P to Bob he should still continue to retain
P because of Charlie’s grant. A related issue is that of cascading revokes. Suppose Char-
lie’s grant was in turn obtained from Alice, perhaps Bob’s permission should end up being
revoked by Alice’s action. Or perhaps it should not, because Alice only revoked her direct
grant to Bob but not the indirect one via Charlie which really occurred at Charlie’s discre-
tion. A considerable literature has developed examining the subtleties that arise, especially
when hierarchical groups and negative permissions or denials are brought into play (see, for
example, [Lun88, BSJ93, FWF95, GSF91, RBKW91]).

The RBAC approach to authorization is quite different from the traditional discretionary
one. In RBAC users are made members of roles because of their job function or task assign-
ment in the interest of the organization. Granting of membership in a role is specifically
not done at the grantor’s whim. Suppose Alice makes Bob a member of a role X. In URA97
this happens because Alice is assigned suitable administrative authority over X via some
administrative role Y and Bob is eligible for membership in X due to Bob’s existing role
memberships (and non-memberships) satisfying the prerequisite condition. Moreover, there
are some organizational circumstances which cause Alice to grant Bob this membership.
It is not merely being done at Alice’s personal fancy. Now if at some later time Alice
is removed from the administrative role Y there is clearly no reason to also remove Bob
from X. A change in Alice’s job function should not necessarily undo her previous grants.
Presumably some other administrator, say Dorothy, will take over Alice’s responsibility.
Similarly, suppose Alice and Charlie both grant membership to Bob in X. At some later
time Bob is reassigned to some other project and no longer needs to be a member of role X.
It is not material whether Alice or Charlie or both or Dorothy revokes Bob’s membership.
Bob’s membership in X is being revoked due to a change in organizational circumstances.

To summarize, in classical discretionary access control the source (direct or indirect) of
a permission and the identity of the revoker is typically taken into account in interpreting
the revoke operation.? These issues do not arise in the same way for revocation of user-role
assignment in RBAC. However, there are related subtleties that arise in RBAC concern-
ing the interaction between granting and revocation of user-role membership and the role
hierarchy. We will illustrate these in a moment.

We now introduce our notation for authorizing revocation.

Definition 5 The URA97 model controls user-role revocation by means of the relation
can-revoke C AR x 21, O

The meaning of can-revoke(x,Y) is that a member of the administrative role z (or a member
of an administrative role that is senior to z) can revoke membership of a user from any
regular role y € Y. Y is specified using the range notation of definition 4. We say Y defines
the range of revocation. The precise semantics of revocation in URA97 needs to be carefully
defined to explain its interaction with the role hierarchy.

3This is true more in theory than practice, because many commercial products opt for a simpler semantics
than implied by a strict owner-based discretionary viewpoint.

13

3.2.1 Weak Revocation

In URA97 we define two notions of revocation called weak and strong. Recall that UA is
the user assignment relation.

Definition 6 Let us say a user U is an ezplicit member of role z if (U, z) € UA, and that
U is an implicit member of role z if for some z' >z, (U, z') € UA. 0

Note that a user can simultaneously be an explicit and implicit member of a role.

Weak revocation has an impact only on explicit membership. It has the straightforward
meaning stated below.

Definition 7 [Weak Revocation Algorithm)]

1. Let u have a session with administrative roles A = {ai, a9, ...,ax}, and let u try to
weakly revoke v from role z.

2. If v is not an explicit member of x this operation has no effect, otherwise there are
two cases.

(a) There exists a can-revoke tuple (b,Y’) such that there exists a; € A,a; > b and
reY.

In this case v’s explicit membership in z is revoked.
(b) There does not exist a can-revoke tuple as identified above.

In this case the weak revoke operation has no effect.
O

Let us consider the example of can-revoke shown in table 3 and interpret it in context of
the hierarchies of figures 2 and 3. Let Alice be a member of PSO1, and let this be the only
administrative role she has. Alice is authorized to weakly revoke membership of users from
roles E1. Table 4(a) illustrates whether or not Alice can weakly revoke membership of a
user from role E1. The effect of Alice’s weak revocation of each of these users from El is
shown in table 4(b). There is no effect of weak revocation on Cathy and Eve because they
are not explicit members of E1 role. On the other hand Bob and Dave are removed from
E1 role. Dave however still holds the E1 permissions because of his membership in senior
roles.

3.2.2 Strong Revocation

Strong revocation in URA97 requires revocation of both explicit and implicit membership.
Strong revocation of U’s membership in x requires that U be removed not only from explicit
membership in x, but also from explicit (or implicit) membership in all roles senior to x.
Strong revocation therefore has a cascading effect upwards in the role hierarchy. However,
strong revocation in URA97 takes effect only if all implied revocations upward in the role

14

‘ Administrative Role ‘ Role Range ‘

PSO1 [E1, PLI)
PSO2 [E2, PL2)
DSO (ED, DIR)
SSO [ED, DIR]

Table 3: Example of can-revoke

| User || E1 [PE1 [QEL | PL1 | DIR | Alice can revoke user from E1 |

Bob Yes | No No No No Yes
Cathy || No | Yes | Yes | No | No Yes
Dave Yes | Yes | Yes | Yes | No Yes
Eve No | No No | Yes | Yes Yes

(a) Prior to Weak revocation

| User || E1 [PE1 | QEL | PL1 | DIR | Alice revoke user from E1 |

Bob No | No No No No removed from E1
Cathy || No| Yes | Yes | No | No no effect
Dave No | Yes | Yes | Yes | Yes removed from E1
Eve No | No No | Yes | Yes no effect

(b) After Weak revocation

Table 4: Example of Strong Revocation

15

| User || E1 | PE1 | QEL [PL1 | DIR | Alice can revoke user from El

Bob Yes | Yes | No No No Yes
Cathy || Yes | Yes | Yes | No | No Yes
Dave Yes | Yes | Yes | Yes | No No
Eve Yes | Yes | Yes | Yes | Yes No

(a) Prior to strong revocation

| User || E1 [PE1 [QE1 | PL1 [DIR | Alice revoke user from E1 |

Bob No | No No | No | No removed from E1, PE1
Cathy || No | No No | No | No | removed from E1, PE1, QE1
Dave Yes | Yes | Yes | Yes | Yes no effect

Eve Yes | Yes | Yes | Yes | Yes no effect

(b) After strong revocation

Table 5: Example of Strong Revocation

hierarchy are within the revocation range of the administrative roles that are active in a
session.

Let us consider the example of can-revoke shown in table 3 and interpret it in context of
the hierarchies of figures 2 and 3. Let Alice be a member of PSO1, and let this be the only
administrative role she has. Alice is authorized to strongly revoke membership of users from
roles E1, PE1 and QE1. Table 5(a) illustrates whether or not Alice can strongly revoke
membership of a user from role E1. The effect of Alice’s strong revocation of each of these
users from E1 is shown in table 5(b). Alice is not allowed to strongly revoke Dave and
Eve from E1 because they are members of senior roles outside the scope of Alice’s revoking
authority. If Alice was assigned to the DSO role she could strongly revoke Dave from E1
but still would not be able to strongly revoke Eve’s membership in E1. In order to strongly
revoke Eve from E1, Alice needs to be in the SSO role.

The general rule is that strong revocation takes effect within the revocation range autho-
rized for an administrative role. The precise statement of the strong revocation algorithm
becomes complicated because of the administrative role hierarchy and the possible existence
of several tuples in can-revoke which determine the outcome. In the example above Alice
is allowed to strongly revoke Cathy from E1 because of can-revoke(PSO1, [E1,PL1)). We
should have the same result if the instead of this single can-revoke range for PSO1 we have
two ranges can-revoke(PSO1, [E1,PE1]) and can-revoke(PSO1, [E1,QE1]). Finally, because
of the session concept in RBAC96 we must also pay attention to which roles Alice has
turned on in the particular session. These considerations lead to the following algorithm
for strong revocation.

Definition 8 Strong Revocation Algorithm

16

1. Let u have a session with administrative roles A = {ay,as,...,ar}, and let u try to
strongly revoke v from role z.

2. Find all can-revoke tuples (b1, X1), (b2, X2),...,(by, X},) such that there exists a; €
Aya; > bjand x € Xj for j =1...p.

3. Let X = X1 U X3 U...X, where the union is over the actual roles identified by the
ranges X1, Xo,...,X,.

4. There are two cases.

(a) There exists y & X such that v is a member of y and y > .
In this case u’s strong revocation has no effect.

(b) There does not exist a role y as identified above (therefore all senior roles to x
to which v belongs are in X).

In this case v's membership is revoked from role = and all roles senior to z.

a

In context of our example this algorithm will treat can-revoke(PSO1, [E1,PL1)) as equiva-
lent to can-revoke(PSO1, [E1,PE1]) and can-revoke(PSO1, [E1,QE1]). It is similarly equiv-
alent to can-revoke(PSO1, [E1,El]), can-revoke(PSO1, [PEL,PE1]) and can-revoke(PSO1,
[QE1,QEL)).

The strong revocation algorithm can also be expressed in terms of weak revoke by the
following all-or-nothing transaction.

1. Let u have a session with administrative roles A = {ay,as,...,ar}, and let u try to
strongly revoke v from role z.

2. Find all roles y > x and v is a member of y.
3. Weak revoke v from all such y as if u did this weak revoke.

4. If any of the weak revokes fail then u’s strong revoke has no effect otherwise all weak
revokes succeed.

An alternate approach would be to do only those weak revokes that succeed and ignore the
rest. We decided to go with a cleaner all-or-nothing semantics in URA97.

So far we have looked at the cascading of revocation upward in the role hierarchy.
There is a downward cascading effect that also occurs. Consider Bob in our example who
is a member of E1 and PE1l. Suppose further that Bob is an explicit member of PE1 and
thereby an implicit member of E1. What happens if Alice revokes Bob from PE1? If we
remove (Bob, PE1) from the UA relation, Bob’s implicit membership in E1 will also be
removed. On the other hand if Bob is an explicit member of PE1 and also an explicit
member of E1 then Alice’s revocation of Bob from PE1 does not remove him from E1. The
revoke operations we have defined in URA97 have the following effect.

17

Property 1. Implicit membership in a role a is dependent on explicit member-
ship in some senior role b > a. Therefore when explicit membership of a user
is revoked from b, implicit membership is also automatically revoked on junior
role a unless there is some other senior role ¢ > a in which the user continues to
be an explicit member. (This will require b ¥ c.)

As we have discussed earlier, when a user’s administrative roles are revoked that user’s
assignments and revocations remain in effect because these were done for organizational
reasons and not at the user’s whim. A related issue is what happens when the prerequisite
condition which authorized Alice to assign Bob to a role gets changed. Say that Alice as
PSO1 assigns Bob to PE1, as per the second PSO1 tuple of table 2. Later somehow Bob is
made a member of QE1, perhaps by a user in DSO or SSO role. This assignment negates
the prerequisite condition which enabled Alice to do her assignment. Bob’s membership
in PE1 will nevertheless continue. We feel this is the appropriate action. The prerequisite
conditions of URA97 (and at other places in ARBAC97) are not invariants that hold for all
time. They are simply enabling conditions at the moment that assignment is made.

As another example of the enabling but not invariant nature of prerequisite conditions
consider the following in context of the can-assign relation of table 1. Suppose Alice as
PSO1 enrolls Bob into PE1 due to his prerequisite membership in ED. Later Charles as
SSO revokes Bob from ED. Should Alice’s assignment of Bob to PE1 be negated since the
prerequisite condition has been negated? It depends on Charles’ intention, which in turn
depends on the organizational reason for this revocation. If Charles really needs to clear
out Bob from the engineering department the correct course of action is a strong revocation
of Bob from ED. If Charles does a weak revoke of Bob’s explicit membership in ED he
is leaving open the option that Bob will continue to participate in engineering department
roles till such time as Bob is revoked from all of them (say by project security officers). This
latter option can be useful in allowing Bob to gracefully leave the engineering department
without an abrupt termination. In such cases it might be useful for Charles to be able to
freeze Bob’s membership in engineering department roles so that Bob cannot be assigned to
new roles. This can be done using prerequisite conditions. A role called EF (for engineering
frozen) can be defined and non-membership in EF required in the prerequisite condition of
all can-assign tuples that authorize users to be assigned to engineering department roles.

Note that our examples of can-assign in table 1(b) and can-revoke in table 3 are comple-
mentary in that each administrative role has the same range for adding users and removing
users from roles. Although this would be a common case we do not impose it as a require-
ment on our model.

We have defined URA97 so that the same revocation range applies for both strong and
weak revocation. In principle we could define different ranges for these two operations. We
do not feel this added complexity would be justified.

3.3 Summary of URA97

URAQ97 controls user-role assignment by means of the relation can-assign C AR x CR x 2.
Role sets are specified using the range notation of definition 4. Assignment has a simple
behavior whereby can-assign(a,b, C') authorizes a session with an administrative role a’ > a

18

to enroll any user who satisfies the prerequisite condition b into any role ¢ € C. The
prerequisite condition is a boolean expression using the usual A and V operators on terms
of the form z and T respectively denoting membership and non-membership regular role x.

Revocation is controlled in URA97 by the relation can-revoke C AR x 2%. Weak revoca-
tion applies only to explicit membership in a single role as per the algorithm of definition 7.
Strong revocation cascades upwards in the role hierarchy as per the algorithm of definition 8.
In both cases revocation cascades downwards as noted in property 1.

4 ORACLE RBAC AND RELATED FEATURES

The Oracle database management system [KL95, Feu95] provides support for RBAC includ-
ing support for hierarchical roles. However, Oracle does not directly support the URA97
model. In particular, Oracle has a strong discretionary flavor to its administrative model
for user-role assignment and revocation. Also the Oracle revocation model is similar to our
weak revoke and does not cascade revocation upwards in the role hierarchy like our strong
revoke does. This is reasonable given Oracle’s discretionary orientation. Nevertheless, we
will see in the next section how it is possible to use Oracle’s stored procedures to implement
URA97. In this section we briefly review relevant features of Oracle access control.

4.1 Privileges

Oracle has two kinds of privileges, system privileges and object privileges. System privileges
authorize actions on a particular type of object for example create table, create user, etc.
There are over 60 distinct system privileges. Object privileges authorize actions on a specific
object (table, view, procedure, package etc.). Typical examples of object privileges are select
rows from a table, delete rows, execute procedures etc.

Who can grant or revoke privileges from users or roles? The answer depends on various
issues such as whether it is a system or an object privilege, and whether the object is owned
by the user, etc. In order to grant or revoke a system privilege the user should have the
admin option on that privilege or the user should have GRANT_ANY_PRIVILEGE system
privilege. In order to grant or revoke an object privilege a user should own that particular
object or the user should have grant option on the object if it is owned by someone else.

4.2 Roles in Oracle

Oracle provides roles (from Oracle 7.0 onwards) for ease of management of privilege assign-
ment. System and object privileges can be granted to a role. A role can be granted to any
other role (circular granting is not allowed). Any role can be granted to any user in the
database. A role can either be enabled or disabled during a session. This includes both ex-
plicit and implicit roles that a user is a member of. Enabling a role will implicitly enable all
the roles granted to it directly or transitively. The system privileges related to role manage-
ment are CREATE_ROLE, GRANT_ANY_ROLE, DROP_ROLE, and DROP_ANY_ROLE.

Information about privileges assigned to a role can be obtained from Oracle’s built-in

19

views ROLE_SYS_PRIVILEGES, ROLE_TAB_PRIVILEGES, and ROLE_ROLE_PRIVS.
When a regular user performs query on these views these views only show information
pertaining to the roles granted to that user. However, the Oracle internal user SYS will see
information about all the roles through these views. The view SESSION_ROLES provides
information about roles that are enabled in a session. The view ROLE_ROLE_PRIVS
shows information about which roles are directly assigned to another role. Roles inherited
transitively are not shown. For example, if role C was granted to role B and role B to role
A the ROLE_ROLE_PRIVS view will show that B has been granted to A and C to B, but
will not show the implied transitive C to A grant.

4.3 Procedures, Functions and Packages

Oracle provides a programmatic approach to manipulate database information using pro-
cedural schema objects called PL/SQL (Procedural Language/SQL) program units. Proce-
dures, functions and packages are different types of PL/SQL objects. PL/SQL extends the
capabilities of SQL by providing some programming language features such as conditional
statements, loops etc. Procedures are also referred to as stored procedures.

A procedure is a collection of instructions which can be grouped together and are per-
formed on database objects to add, modify or delete database information. In order to
create a procedure a user should have the CREATE_PROCEDURE system privilege. A
procedure can be executed by a user who owns it or by a user who has execute privileges
on it.

A stored procedure runs with the privileges of the user who owns it and not the user
who is executing it. This feature gives great flexibility in enforcing security. For example
suppose we want a user to perform some operations on a database but we do not want
to grant privileges explicitly. Then one can write a procedure embedded with necessary
operations, and grant execute privileges on the procedure to the user.*

Functions are very similar to procedures. The only difference between a function and a
procedure is that a procedure call is a PL/SQL statement itself, while functions are called
as part of an expression. A function always returns a value when it is called.

Packages are PL/SQL constructs that store related objects together. A package is
essentially a named declarative section. It can contain procedures, functions, variables etc.
A package consists of two parts, the specification part and body, stored separately in the
data dictionary. The package specification, also known as package header, contains the
information about the contents of the package. The package body contains code for the
subprograms declared in the header.

5 IMPLEMENTING URA97 IN ORACLE

To implement URA97 we define Oracle relations which encode the can-assign and can-revoke
relations of URA97. The can-assign relation of URA97 is implemented in Oracle as per the

“The privileges that are referenced in a procedure should have been explicitly granted to the user who
owns the procedure. Privileges obtained by the owner via a role cannot be referenced in a procedure.

20

CAN_ASSIGN

CAN_ASSIGN2
Admin Role
Pre Condition Pre Condition
Min_Int And set name
Min Role Not set name
Max Role
Max_Int
CAN ASSIGN3 CAN_ASSIGN4
And set name Not set name
And roles Not roles

Figure 4: Entity-Relation Diagram for can-assign Relation

entity-relation diagram of figure 4. We assume that the prerequisite condition is converted
into disjunctive normal form using standard techniques. Disjunctive normal form has the
following structure.

(oA A A IV A A A L)Y LV A AL

Each ... is a positive literal x or a negated literal Z. Each group (... A...A... A ..))
is called a disjunct. For a given prerequisite condition can-assign?2 has a tuple for each
disjunct. All positive literals of a single disjunct are in can-assign3, while negated literals
are in can-assign4.

The four PSO1 tuples of table 2 are represented by this scheme as shown in table 6.
The prerequisite conditions in this case all have a single disjunct. An example with multiple
disjuncts is shown in table 7.

The can-revoke relation of URA97 is represented by a single Oracle relation. For example
table 3 is represented as shown in table 8.

The can-assign, can-assign2, can-assigns, can-assign4, and can-revoke relations are
owned by the DBA who also decides what their content should be. In addition we have
three accompanying procedures and a package to support these. There is one procedure
each for assigning a user to a role, doing a weak revoke of membership and doing a strong
revoke of membership, respectively as follows.

e ASSIGN
¢ WEAK_REVOKE

21

| AR | PC | Min_Int [Min_Role | Max_Role | Max_Int |

PSO1 | C1 [El El]
PSO1 | C2 [PE1 PE1]
PSO1 | C3 [QE1 QE1]
PSO1 | C4 [PL1 PL1]

(a) can-assign

‘ PC ‘ and_set_name ‘ not_set_name ‘

C1 ASET1 null
C2 ASET?2 NSET2
C3 ASET3 NSET3
C4 ASET4 null

(b) can-assign?2

‘ and_set_name ‘ and_roles ‘

(c) can-assign3

igg%; gg ‘ not_set_name ‘ not_roles ‘
ASET3 ED NSET?2 QE1
ASET4 PE1 NSETS3 PE1
ASET4 QE1

(d) can-assign4

Table 6: Oracle can-assign Relations for PSO1 from Table 2

| AR | PC | Min_Int | Min_Role | Max_Role | Max_Int
SO1 | C1

(a) can-assign

‘ PC ‘ and_set_name ‘ not_set_name

C1 ASET1 NSET1
C1 ASET?2 NSET?2

(b) can-assign?2

‘ and_set_name ‘ and_roles ‘ ‘ not_set_name ‘ not_roles ‘
ASET1 A NSET1 E
ASET1 D NSET2 F
ASET?2 B NSET2 D

(c) can-assign3 (d) can-assign4

Table 7: Oracle can-assign Relations for Prerequisite Condition (AADAE) V (BAD A F)

| AR | Min.Int | Min_Role | Max_Role | Max_Int |

PSO1 [El PL1)
PSO2 [E2 PL2)
DSO (ED DIR)
SSO [ED DIR]

Table 8: Oracle can-revoke Relation

23

e STRONG_REVOKE

Execute privilege on these procedures is given to all administrative roles. We achieve this
by introducing a junior-most administrative role, say GSO (generic security officer), and
assigning it the permission to execute these procedures.

These relations and accompanying procedures and packages are owned by the DBA.
Our implementation also maintains an audit relation which keeps a log of all attempted
assignment and revoke operations and their outcome. The audit relation is also owned by
the DBA.

Oracle does not provide convenient primitives for testing whether or not a user is an
implicit member of a particular role. Testing explicit membership is straightforward since
explicit membership is encoded as a tuple in Oracle’s system relations. To test implicit
membership, however, we need to chase the role hierarchy. Oracle also does not provide
direct support for enumerating roles in a range set. We built a PL/SQL package to support
these requirements and assist in writing our stored procedures, as discussed below.

In our implementation of URA97 a user invokes the stored procedure to grant or revoke
a role from or to another user. The procedure calls are then as follows.

e ASSIGN(user, trole, arole)
e WEAK_REVOKE(user, trole, arole)
e STRONG_REVOKE(user, trole, arole)

The parameters user and trole (target role) specify which user is to be added to trole, or to be
weakly or strongly revoked from trole. The arole parameter specifies which administrative
role should be applied (with respect to the user who is invoking the URA97 procedure).
The procedure code will check whether or not the user who calls the procedure has turned
on the arole.’

All the three procedures follow three basic steps.

1. If the user executing the procedure is an explicit or implicit member of arole then
proceed to step 2, else stop execution and return an error message indicating this is
not an authorized operation.

2. The tuple(s) from can-assign (for assign procedure) or can-revoke (for revocation
procedures) are obtained where AR role value equals or is junior to the arole parameter
specified in the procedure call.

3. If trole is in the specified range for any one of the tuples selected in step 2, then assign
or revoke the trole else return an appropriate error message.

In case of ASSIGN also check whether the user being assigned to trole satisfies the
prerequisite condition specified in the authorizing can-assign tuple or not.

In case of STRONG_REVOKE the operation may still fail due to all-or-nothing se-
mantics.

5Tt is relatively straightforward to specify a set of administrative roles instead of a single arole, and we
plan to extend our implementation to do that.

24

The implementation of steps 1 and 3 involves complex queries built on Oracle internal
tables. These queries are performed dynamically at runtime. In order to check whether the
user is a member of arole (in step 1) and whether the role is in the specified range for one
of the relevant can-assign or can-revoke tuples (in step 3), we use Oracle CONNECT BY
clause in our queries. By using CONNECT BY clause, one can traverse a tree structure
corresponding to the role hierarchy in one direction. One can start from any point within
the role hierarchy and traverse it towards junior or senior roles. But there is no control on
the end point of the traversal. Specific branches or an individual node of the tree can be
excluded by hard coding their values. Such hard coding is not appropriate for a general
purpose stored procedure. In our implementation we overcome this problem by performing
multiple queries and intersecting them to get the exact range. We specifically do not hard
code any parameters in our queries.

In order to modularize our implementation we developed a package which performs the
necessary checks involved in steps 1 and 3. All the procedures call this package to do
the verification. The package contains several functions. Each one is designed to perform
certain tasks, for example we have a function called user_has_admin_role. This function
takes the parameters from the procedure which has called it and returns the results to the
calling procedure. There are other functions which determine the range for a given arole.

Our implementation is convenient for the DBA since the stored procedures and packages
we provide are generic and can be reused by other databases. The DBA only needs to define
the roles and administrative roles, and configure the can-assign and can-revoke relations.
Our implementation is available in the public domain for other researchers and practitioners
to experiment with.

6 CONCLUSION

In this paper we have developed the URA97 model for assigning users to roles and revoking
users from roles. URA97 is defined in context of the RBAC96 model [SCFY96]. However, it
should apply to almost any RBAC model, including [FCK95, Gui95, GI96, HDT95, NO95],
because user-role assignment is a basic administrative feature which will be required in any
RBAC model.

Authorization to assign and revoke users to and from roles is controlled by administrative
roles. The model requires users must previously satisfy a designated prerequisite condition
(stated in terms of membership and non-membership in roles) before they can be enrolled via
URA9T7 into additional roles. URA97 applies only to regular roles. Control of membership
in administrative roles remains entirely in hands of the chief security officer. We have
identified strong and weak revocation operations in URA97 and have defined their precise
meaning.

The paper has also described an implementation of URA97 using Oracle stored proce-
dures. Oracle’s built in primitives are cumbersome to use for determining indirect member-
ship in roles. We have implemented suitable functions and packages to enable this conve-
niently. These should be of use to other researchers and practitioners and are available in
the public domain.

25

In future work we will extend URA97 to develop more comprehensive role-based admin-
istrative models encompassing administration of role-permission assignment and role-role
relationships. We will also investigate how URA97 can be adapted for user-group assign-
ment on platforms such as Unix and Windows NT (including simulation of group hierar-
chies which neither product provides). More generally we feel our work will inspire other
researchers and developers to investigate administrative models in a systematic, scientific
and experimental approach. We feel the security community has much to gain by pursuing
such work.

Acknowledgment

This work is partially supported by the National Science Foundation and the National
Security Agency.

References

[BSJ93] Elisa Bertino, Pierangela Samarati, and Sushil Jajodia. Authorizations in rela-
tional database management systems. In Proceedings of 1st ACM Conference on
Computer and Communications Security, pages 130-139, Fairfax, VA, Novem-
ber 3-5 1993.

[Fag78] R. Fagin. On an authorization mechanism. ACM Transactions on Database
Systems, 3(3):310-319, 1978.

[FCK95] David Ferraiolo, Janet Cugini, and Richard Kuhn. Role-based access control
(RBAC): Features and motivations. In Proceedings of 11th Annual Computer
Security Application Conference, pages 241-48, New Orleans, LA, December

11-15 1995.

[Feu95] Steven Feuerstein. Oracle PL/SQL Programming. O’Reilly & Associates, Inc.,
1995.

[FK92] David Ferraiolo and Richard Kuhn. Role-based access controls. In Proceedings

of 15th NIST-NCSC National Computer Security Conference, pages 554-563,
Baltimore, MD, October 13-16 1992.

[FWF95] Eduardo B. Fernandez, Jie Wu, and Minjie H. Fernandez. User group structures
in object-oriented database authorization. In J. Biskup, M. Morgernstern, and
C. Landwehr, editors, Database Security VIII: Status and Prospects. North-
Holland, 1995.

[GI96] Luigi Guiri and Pietro Iglio. A formal model for role-based access control with
constraints. In Proceedings of IEEE Computer Security Foundations Workshop
9, pages 136-145, Kenmare, Ireland, June 1996.

[GSF91] Ehud Gudes, Haiyan Song, and Eduardo B. Fernandez. Evaluation of nega-
tive, predicate, and instance-based authorization in object-oriented databases.

26

[Gui95]

[GW76]

[HDTY5]

[KL95]

[Lun8s]

[MD94]

[NOYS5]

[RBKW91]

[San97a]

[San97b]

[SCFY96]

[vSvdM94]

[YCS97]

In S. Jajodia and C.E. Landwehr, editors, Database Security IV: Status and
Prospects, pages 85—98. North-Holland, 1991.

Luigi Guiri. A new model for role-based access control. In Proceedings of
11th Annual Computer Security Application Conference, pages 249-255, New
Orleans, LA, December 11-15 1995.

P.P. Griffiths and B.W. Wade. An authorization mechanism for a relational
database system. ACM Transactions on Database Systems, 1(3):242-255, 1976.

M.-Y. Hu, S.A. Demurjian, and T.C. Ting. User-role based security in
the ADAM object-oriented design and analyses environment. In J. Biskup,
M. Morgernstern, and C. Landwehr, editors, Database Security VIII: Status
and Prospects. North-Holland, 1995.

George Koch and Kevin Loney. Oracle The Complete Reference. Oracle Press,
1995.

Teresa Lunt. Access control policies: Some unanswered questions. In Pro-
ceedings of IEEE Computer Security Foundations Workshop II, pages 227-245,
Franconia, NH, June 1988.

Imtiaz Mohammed and David M. Dilts. Design for dynamic user-role-based
security. Computers € Security, 13(8):661-671, 1994.

Matunda Nyanchama and Sylvia Osborn. Access rights administration in role-
based security systems. In J. Biskup, M. Morgernstern, and C. Landwehr,
editors, Database Security VIII: Status and Prospects. North-Holland, 1995.

F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for
next-generation database systems. ACM Transactions on Database Systems,
16(1), 1991.

Ravi Sandhu. Rationale for the RBAC96 family of access control models. In
Proceedings of the 1st ACM Workshop on Role-Based Access Control. ACM,
1997.

Ravi Sandhu. Roles versus groups. In Proceedings of the 1st ACM Workshop
on Role-Based Access Control. ACM, 1997.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-based access control models. IEEE Computer, 29(2):38-47, February 1996.

S. H. von Solms and Isak van der Merwe. The management of computer security
profiles using a role-oriented approach. Computers € Security, 13(8):673—-680,
1994.

Charles Youman, Ed Coyne, and Ravi Sandhu, editors. Proceedings of the 1st
ACM Workshop on Role-Based Access Control, Nov 31-Dec. 1, 1995. ACM,
1997.

27

