

Real-Time System for Activity Recognition Using Wireless Signals

Bhargav Singaraju, Sachin Mathew, Rishika Sakhuja Supervisors: Prof. Yingying Chen Mentors: Cong Shi, Zhenzhe Lin

MOTIVATION OBJECTIVE

- The capability of recognizing human activities can facilitate a broad range of real-world applications
- Activity recognition is a critical component on monitoring well-being and providing suggestions to improve health
- Objective: implement a real-time system using ubiquitous WiFi signals to conduct activity recognition in a device-free manner

CHANNEL STATE INFORMATION

- Describes how Wi-Fi signals propagate from transceivers and represent the combined effect of scattering, fading, and power decay with distance
- CSI expressed as an array of complex number streams, corresponding to different frequency bands that could be partitioned into 30 subcarriers
- Amplitude and phase at each subcarrier could be used for extracting representations of human movements

SEGMENTATION AND CLASSIFICATION

- Data segmentation is to determine whether a segment of CSI measurement contains human activities
- Utilize a sliding window function to calculate the variance and mean value to segment the large movements such as sitting, walking and running
- Segments are suitable for classification through an RNN - specifically an Long short-term memory (LSTM)
- LSTM takes the extracted CSI stream input in time and can flush its input buffer upon reaching the beginning of a new segment

GRAPH & DATA INTRODUCTION

- CSI Channel State Information
- Simple Sequence Time sequence
- Spikes ambient noise or tiny movements
- Larger Amplitude Increased movement
- Smaller Amplitude dereasing speed

IMPLEMENTATION OF REAL-TIME SYSTEM

- Hardware: two Dell laptops installed with Intel 5300 WiFi NICs, a server computer
- Transmitter: the system starts by transmitting WiFi packet
- Receiver: the receiver reports CSI and sends the CSI trace (binary CSI data) to the server computer via TCP/IP for data processing
- Server computer:
 - o Decode the binary CSI received from the receiver
 - Segment CSI corresponding to human activities
 - Recognize activities based on profile matching
 - Visualize the activity recognition result

Real-time CSI collection

OBSERVATIONS

 Based on observations on CSI fluctuations, we find that different activities lead to distinctive patterns in CSI, which can be explored for activity recognition

VISUALIZATION TOOL

Visualize the real-time CSI with two Python libraries:
QtWidgets and Bokeh

Real Time CSI data collection (Python)

ACKNOWLEDGEMENTS

We would like to thank our supervisor Prof. Yingying Chen and our mentors Cong Shi and Zhenzhe Lin. We appreciate their guidance and supports.

REFERENCES

[1] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. "Tool release: Gathering 802.11 n traces with channel state information." ACM SIGCOMM Computer Communication Review 41, no. 1 (2011): 53-53.

