RUTGERS

WINLAB | Wireless Information
Network Laboratory

Project Overview

Virtual ROS Based Self Driving Car Model

Victor Abril, Nathan Yu, Shounak Rangwala
Advisors: lvan Seskar, Jenny Shane

Data Collection / Pipeline

The goal of this project is to work on development of the WINLAB self driving car
simulator. The project includes development of ~1/14 scale vehicles for use as a
remote self-driving car testing platform, as well as a virtual simulation environment
which will model both the physical vehicles and the testbed environment. Robot
Operating System (ROS) will be used for both halves of the project, with the simulation
running in Gazebo.
Objectives include:

e Incorporation of ROS control into existing car software

e Use of Al/machine learning algorithms for self driving behavior

Gazebo Environment

Prius Model

Neural Network

e Image dimensions: 800x800x3

e Model input dimensions: 424x240x3 (cropped using OpenCV)
e Optimizer : Stochastic Gradient Descent (SGD)

e Loss function : MSELoss (because we had continuous labels)
e Batch size for training data : 32 images

e CQOutput : Float 32 byte value

Neural Network Overview

h.

‘ll’. : \‘l'y 4]”\‘l'yﬁﬁﬁ‘.xxi\'l'
Input Feature extraction + Classification Output

Loss Output
Train Epoch: 1 [1696/1827 (91%)]

Train Epoch: 1 [1728/1827 (93%)]

0.000160
0.000640
0.019821
0.001/64

Loss:
Loss:
Loss:
Loss:

Train Epoch: 1 [1760/1827 (95%)]
Train Epoch: 1 [1792/1827 (97%)]

Selected References

e https://qithub.com/osrf/car demo/tree/master/car demo

Collection:

e Scripted WASD control for the car in Gazebo simulated environment

e Recorded several ROS bagfiles storing steering and image data

e Converted bagfiles into NumPy .npz arrays. Mapped images to corresponding steer
commands using timestamps

Training:

e Scripted a DatalLoader class to load training data into our model as tensors

e Scripted a training module that used the data from the DatalLoader to train the

model, and saved the model parameters as a weights file for testing.

Control Message Info

sdc@nodel-1:~/self_driving/catkin_ws$ rosmsg show prius_msgs/Co

Image Message Info

ing/catkin_ws/src:/opt/ros/melodic/share

sdc@Pnodel-1:~/self_driving/catkin_ws$ rosmsg show sensor_msgs/Im|ntrol
age uint8 NO_COMMAND=0
std_msgs/Header header
uint32 seq
time stamp
string frame_id

uint8 NEUTRAL=1
uint8 FORWARD=2
uint8 REVERSE=3
std_msgs/Header header

uint32 seq

time stamp

string frame_id
floaté4 throttle
floaté64 brake
floaté4 steer
uint8 shift_gears

uint32 height
uint32 width
string encoding
uint8 is_bigendian
uint32 step
uint8[] data

Data Collection Setup

- BOB|E%Z Rk O

Il Real Time Factor:

We trained the model 4 times, each iteration increasing the number of epochs and

number of bagfiles.

e 5 epochs/ 10 bagfiles: car drove in a constant radius and crashed into the curb

e 10 epochs / 15 badfiles: car exhibited rudimentary path following, but wobbled left
and right at a slow velocity

e 20 epochs/ 15 badfiles: car retained wobbly behavior but less pronounced and
higher velocity

e 20 epochs / 37 badfiles: car drove in a very smooth fashion with high velocity, and

was able to merge onto another lane with ease.

B data:
- header:

Testing:

e Created ROS node Predictor
o Subscribes to topic: /prius/front_camera/image_raw, msg type: Image
o Initializes model from weights file, evaluates a steering value for a given image
o Publishes to topic: /steer, msg type: Float32
e Created ROS node Drive
o Subscribes to topic: /steer, msg type: Float32
o Creates Joy message using steering value and a throttle value of 0.3

o Publishes to topic: /joy, msg type: Joy

RQT Graph

[loystick_translator '

/gazebo_gui [robot_state_publisher

[loint_states

[prius/front_camera/image_raw

Prediction Output to Control Message

~ — sdc@node1-1: ~/self_driving/catkin_ws — ssh ShounakRangwala@conso

——— stamp:

data: -0.0840314850211 secs: ©

—_ nsecs: 0

data: —0.0840678662062 frame_id: "'

—_ axes: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

data: —-0.0837767422199 buttons: [0, ©, 0, 0, 0, 0, 0, 0, 0, 0, O, O]

data: —0.0839034691453

le.sb1.orbit-lab.org

header:

: - seq: 705

data: —-0.0840473696589 stamp:
- secs: ©
data: —-0.0837743654847 nsecs:
[3 . L)

data: —-0.0839163288474 axes [0 08357344567775726 0.0, 0.0, 0.0, 0.1000000014901161
—_ 0.0]

data: —0.08398091048 buttonS' 0, ©,—0—0,C

data: —0.0837481841445
data: —0.0839709788561 throttle: 0.10000000149
——— brake: 0.0

data: —-0.0838725194335 steer: -0. 0835734456778
—_ shift_gea 5
—0.0835802182555

data: -0.0836345180869 seq: 4569

—_ stamp:

data: -0.083426117897 secs: ©

—_ nsecs: 0
data: —0.083331130445 frame_id: "'

e throttle: 0.10000000149
data: —0.0837050080299 brake: 0.0

data: —0.0835734456778

steer: —0.0835734456778
shift_gears: ©

Future Plans

For the future directions of this project, we are planning to combine the virtual self
driving car model that was developed, and the miniature car model to merge with the
Smart Intersection / Intersection Simulation groups.

Other objectives include:

e Implement turning behavior given an input
e |Implement Ackermann steering to generalize steering values using turn radius
e Averaging multiple samples to create one steer value for smoothing movement

e Create controller node between the output of CNN and Control message to

translate car-specific command signals to real world signals of velocity/turn radius

u
5
0
'

https://github.com/osrf/car_demo/tree/master/car_demo

