
WINLAB

IntroductionProject Overview

Virtual ROS Based Self Driving Car Model
Victor Abril, Nathan Yu, Shounak Rangwala

Advisors: Ivan Seskar, Jenny Shane

Neural Network

Data Collection / Pipeline

Results Future Plans

The goal of this project is to work on development of the WINLAB self driving car

simulator. The project includes development of ~1/14 scale vehicles for use as a

remote self-driving car testing platform, as well as a virtual simulation environment

which will model both the physical vehicles and the testbed environment. Robot

Operating System (ROS) will be used for both halves of the project, with the simulation

running in Gazebo.

Objectives include:

● Incorporation of ROS control into existing car software

● Use of AI/machine learning algorithms for self driving behavior

● Image dimensions: 800x800x3

● Model input dimensions: 424x240x3 (cropped using OpenCV)

● Optimizer : Stochastic Gradient Descent (SGD)

● Loss function : MSELoss (because we had continuous labels)

● Batch size for training data : 32 images

● Output : Float 32 byte value

Collection:

● Scripted WASD control for the car in Gazebo simulated environment

● Recorded several ROS bagfiles storing steering and image data

● Converted bagfiles into NumPy .npz arrays. Mapped images to corresponding steer

commands using timestamps

Training:

● Scripted a DataLoader class to load training data into our model as tensors

● Scripted a training module that used the data from the DataLoader to train the

model, and saved the model parameters as a weights file for testing.

For the future directions of this project, we are planning to combine the virtual self

driving car model that was developed, and the miniature car model to merge with the

Smart Intersection / Intersection Simulation groups.

Other objectives include:

● Implement turning behavior given an input

● Implement Ackermann steering to generalize steering values using turn radius

● Averaging multiple samples to create one steer value for smoothing movement

● Create controller node between the output of CNN and Control message to

translate car-specific command signals to real world signals of velocity/turn radius

Testing:

● Created ROS node Predictor

○ Subscribes to topic: /prius/front_camera/image_raw, msg type: Image

○ Initializes model from weights file, evaluates a steering value for a given image

○ Publishes to topic: /steer, msg type: Float32

● Created ROS node Drive

○ Subscribes to topic: /steer, msg type: Float32

○ Creates Joy message using steering value and a throttle value of 0.3

○ Publishes to topic: /joy, msg type: Joy

We trained the model 4 times, each iteration increasing the number of epochs and

number of bagfiles.

● 5 epochs / 10 bagfiles: car drove in a constant radius and crashed into the curb

● 10 epochs / 15 bagfiles: car exhibited rudimentary path following, but wobbled left

and right at a slow velocity

● 20 epochs / 15 bagfiles: car retained wobbly behavior but less pronounced and

higher velocity

● 20 epochs / 37 bagfiles: car drove in a very smooth fashion with high velocity, and

was able to merge onto another lane with ease.

RQT Graph

Data Collection Setup

Steering Value

-0.053

Image Message Info Control Message Info

Loss Output

Neural Network Overview

Prediction Output to Control Message

Selected References
● https://github.com/osrf/car_demo/tree/master/car_demo

Prius Model Gazebo Environment

https://github.com/osrf/car_demo/tree/master/car_demo

